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AbstractThis paper describes a thorough analysis of the pattern matching techniques usedto compute image motion from a sequence of two or more images. Several correla-tion/distance measures are tested, and problems in displacement estimation are inves-tigated. As a byproduct of this analysis, several novel techniques are presented whichimprove the accuracy of ow vector estimation and reduce the computational cost byusing �lters, multi-scale approach and mask sub-sampling. Furthermore new algorithmsto get a sub-pixel accuracy of the ow are proposed. A large amount of experimentaltests have been performed to compare all the techniques proposed, in order to understandwhich are the most useful for practical applications, and the results obtained are veryaccurate, showing that correlation-based ow computation is suitable for practical andreal-time applications.Keywords:Optical ow, Correlation, distance, computational cost, accuracy.
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IntroductionWindow-matching or correlation-based techniques are the most intuitive and perhaps alsothe most widely applied techniques to compute the optical ow from an image sequence,i.e. to estimate the 2D motion projected on the image plane by the objects moving in the3D scene [4, 20, 1, 15, 18, 19] Optical ow estimation has many practical and industrialapplications, i.e. for object tracking, assisted driving or surveillance systems, obstacledetection, image stabilisation or video compression [2, 7, 8, 9, 10]. In spite of this fact,few works analysing the performances and the possible enhancements of these algorithmshave been presented [4, 20, 1] so that a more detailed analysis of this simple and widelyused optical ow technique seemed to us necessary. The aim of this paper is to give aclear overview of window matching algorithms, presenting new solutions to improve ontheir shortcomings (such as the computational cost, the pixel precision, and so on).The paper is organised as follows: Section 1 gives an overview of correlation-basedtechniques discussing advantages and drawbacks, Section 2 introduces the distance orsimilarity measures we applied to our algorithms. Section 3 discusses the matching er-ror due to high frequencies and search space quantisation. Section 4 introduces severaltechniques in order to have the best results in matching, reducing the complexity and in-creasing the accuracy obtaining also a sub-pixel motion estimation. Section 5 presents theexperimental results, with comparisons of algorithms on well-known test image sequences.1 Overview: advantages and drawbacksCorrelation-based methods are based on the analysis of the gray level pattern around theinterested point and on searching for the most similar pattern in the successive image.In a few words, de�ned a window W (~x) around the point ~x, we consider similar windowsW 0(x+i; y+j) shifted by the possible integer values in pixels in a search space S composedby the i; j such as �� < i < � and �� < j < �. The optical ow, i.e. the estimatedimage displacement is taken as the shift corresponding to the minimum of a distancefunction (or maximum of a correlation measure) between the intensity pattern in the twocorresponding windows: f(W;W 0(i; j)) (1)The basic implicit assumptions are that the gray level pattern is approximately con-stant between successive frames (no perspective e�ects) and that local texture containssu�cient unambiguous information.Many applications of similar algorithms are found in literature, but only few works inves-tigated how to obtain the best results from them. In the well known optical ow techniquecomparison by Barron et al. [4] only two among the algorithms analysed were based oncorrelation, speci�cally on the comparison of image windows with the sum of squareddi�erences (SSD) measure. The �rst, by Anandan [1] reaches then a sub-pixel precision2



SAD(~x; ~d) PN=2i;j=�N=2 jI1(x+ i; y + j)� I2(x+ i+ dx; y + j + dy)jSSD(~x; ~d) PN=2i;j=�N=2(I1(x+ i; y + j)� I2(x+ i+ dx; y + j + dy))2ZSAD(~x; ~d) PN=2i;j=�N=2 jI1(x+ i; y + j)� I1 � I2(x+ i+ dx; y + j + dy)� I2jZSSD(~x; ~d) PN=2i;j=�N=2(I1(x+ i; y + j)� I1 � I2(x+ i+ dx; y + j + dy)� I2)2LSAD(~x; ~d) PN=2i;j=�N=2 ���I1(x+ i; y + j)� I1I2 I2(x+ i+ dx; y + j + dy)���LSSD(~x; ~d) PN=2i;j=�N=2 �I1(x+ i; y + j)� I1I2 I2(x+ i+ dx; y + j + dy)�2Table 1: De�nitions of the most common di�erence measures for squared pattern of pixels.by locally approximating with a quadratic surface the di�erence function, the other, bySingh [20], reaches the same goal by performing a weighted sum of the displacementsaround the minimum of the distance.A comparison among several correlation/distance measure albeit limited to syntheticimages has been proposed by Aschwanden and Guggenbuhl [3].Optical ow estimators based on correlation are less sensitive to noise than derivativebased ones. Usually they have better performances if the texture is not relevant and in thecase of large inter-frame displacements causing the aliasing problem [12] in the derivativeestimation. The main drawbacks are to be found in the computational weight and in thequantisation of the computed values. In the following sections we will discuss methods topartially overcome these problems. First of all we analysed di�erent similarity measuresthat can be used.2 Distance-similarity measuresMany ways of measuring di�erence or similarity between gray-level pattern can be used.In our work we compare squared windows of N � N and compute motion between awindow centered in (x; y) in the image I1 and a window shifted by (i; j) in the imageI2. The most used distance measures are reported in Table 1. The widely used sumof absolute di�erences (SAD) and sum of squared di�erences (SSD) can be modi�ed toconsider the e�ect of global gray-level variations, setting the average gray level di�erenceequal to 0 (ZSSD, ZSAD) or locally scaling the intensity (LSAD, LSSD).Distance minimisation can be replaced by the maximisation of a correlation measure(see Table 2). The standard cross-correlation (CC) is too sensitive to noise and is usuallyreplaced by the normalised one (NCC) or by the zero-mean normalised version (ZNCC).These measures are all based on computations made on the local gray level values.An analysis of their robustness against several types of noise and image distortion onsynthetic images can be found in [3]. Another possible way to perform the comparisonis to reduce the amount of information by extracting local features of the images and3



CC(~x; ~d) PN=2i;j=�N=2 I1(x+ i; y + j)I2(x+ i+ dx; y + j + dy)NCC(~x; ~d) PN=2i;j=�N=2 I1(x+i;y+j)I2(x+i+dx;y+j+dy )qPN=2i;j=�N=2 I1(x+i;y+j)2PN=2i;j=�N=2 I2(x+i+dx;y+j+dy )2ZNCC(~x; ~d) PN=2i;j=�N=2 (I1(x+i;y+j)�I1)(I2(x+i+dx;y+j+dy)�I2)qPN=2i;j=�N=2(I1(x+i;y+j)2�I1)PN=2i;j=�N=2(I2(x+i+dx;y+j+dy)2�I2)Table 2: De�nitions of the most common correlation measures for squared pattern ofpixels.limiting to those features the comparison. Some authors proposed to match extractededges using the Hamming distance or the Hausdor� fraction [16] as di�erence measure.The Hamming distance is simply the number of bits in the opposite state (0/1). TheHausdor� fraction, used by Huttenlocher and others [16] to compare binary maps, is thefraction of pixels in the state "1" in the original pattern that have distance less than athreshold from a pixel in the same state in the shifted patch of the successive image. Inour experiments the threshold was �xed to the value of 1 pixel. Zabin and Wood�ll [22]have introduced two image transforms called Rank transform and Census transform to beperformed before the comparison. In the �rst case they compare with the SSD distancethe transformed images given by:R(~x) = jj~x0 2 N(~x) : I(~x0) < I(~x)j j (2)i.e. for each location, the number of neighboring with gray level smaller than the centralvalue.The Census transform consists of de�ning for each pixel a binary matrix with the value"1" in the neighboring points where the gray level is above the central value and "0"otherwise. The local matrixes are then compared by using the Hamming distance.These techniques reduce the amount of information of the patches to be compared andthis means that the results obtained are good only for very simple images.3 High frequencies and quantisationEven if correlation based techniques are not a�ected by the aliasing problem as di�erentialones, signal quantisation introduces error in ow computation due to high frequencies. Ifthe frequency of the signal has the same order of magnitude as the sampling frequencyand the displacements to be computed are not exactly integer (i.e. a multiple of thesampling step), correlation may lead to completely wrong results as well. Let us show itwith a simple example: we consider a 1D sinusoidal pattern translating, as in Fig. 1. The4
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SSD(0) = SSD(dx)=SSD(-dx)=SSD(2dx)=SSD(-2dx)= 5 ???Figure 1: Correlation on a sinusoidal pattern in 1D: signal quantisation creates problemsif the sampling frequency is small compared with the frequency of the signal.similarity measure SAD is given by:x+MXi=x�M j sin!(x+ i)� sin!(x+ i�x+ v � d�x)j (3)where M is the mask half size, v the speed and �x the sampling step and d the trieddisplacement. Applying simple trigonometrical formulas, we obtain:+MXi=�M j sin!(x+ i�x)(1� cos!(v � d�x))� cos !(x+ i�x) sin!(v � d�x)j (4)v � d�x represents the di�erence between the true value of the image motion and theinteger tentative value. It is evident that, if !�x is not small, the di�erence can berelevant if d�x is close to v and negligible if !(v � d�x) � k�.It is therefore useful to �lter the images before the distance computation. We applyusually a Gaussian �lter with � = 1:5. This is su�cient to avoid errors and to have anestimated value close to the real displacement if the signal has low-frequency components.We can show this fact more clearly with another example.Consider a 1D signal like that in Fig. 2 A, roughly the superposition of a low frequencyand a frequency higher than the reciprocal of the sampling step. If the pro�le is moved ofa half sampling step and the signal is re-sampled, we have the sample value represented inFig. 2 B. If we compute the SAD distance for tentative displacements in the range (-2,2)the distance is minimum for a displacement d = �2 (see Fig 2 C), with a completelywrong motion estimate. If the sampled signal is �ltered with a simple 3-point low-passmask like (0:25; 0:5; 0:25), the samples to be compared are now those represented in Fig.3 A and B. Now the SAD distances measured are those in Fig. 3 C, and the minimumvalues correspond to the integer displacements closest to the real value.5
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4 Improving the methodThe previous chapters have shown several features of correlation algorithms showing alsosome problems of the method; in this chapter we will introduce several algorithms to solvethese problems and to improve the algorithm performances.4.1 Optimal window sizeWhat is the ideal size of the windows used to perform the matching? If small windowsare used, the amount of information inside the window is small and the estimate is notreliable. If windows are too large the hypothesis of negligible deformations of the patterninside the window fails and the estimate can be wrong. Furthermore, computationalcomplexity is greatly increased. The ideal size depends on the texture inside. In ourexperiments we usually took windows of 25 � 25 pixels, a good tradeo� as shown by ourexperiments. However, following an idea already applied in the case of stereo matching([17]), we considered the opportunity of using an adaptive window size, but the algorithmwe have implemented, enlarging the window size if the information inside is small, hasnot given good results, because a small accuracy improvement required a relevant speedreduction. As the window "information" measure, we used the determinant of the �rst-order derivatives matrix inside the window, divided by the pixel number. The algorithmstarts from a �xed (11 � 11) dimension then increase it until a threshold is reached ora maximum value is obtained. Better accuracy results would be obtained by using aniterative solution involving also ow regularity in the window adaptive algorithm, butthis would make the algorithm slower.4.2 Complexity reduction: fast minimum/maximum searchCorrelation-based optical ow algorithms are extremely complex and time-consuming.They require repeated comparisons, each one needing N2 operations for each velocityvalue in the search space. If the distance (correlation) used for the comparison is obtainedfrom a certain number of operations for each mask point, the complexity as a function ofthese operations is N2(2M +1)2 for each point where the ow is computed and executiontime is high even on fast machines.It is possible to introduce techniques capable of reducing sensitively the computationtimes, even if they can reduce the accuracy of the estimates.In order to reduce the complexity of the method for a single point we propose thefollowing solutions:� Reducing the tentative displacements (window sub-sampling).� Changing the search strategy.� Replacing arithmetic operations with the use of look-up tables.If we want to compute a dense ow, there are other possibilities to reduce the complexity:7



Figure 4: Reducing the complexity of a factor 16 by window sub-sampling does not a�ectthe accuracy of the estimate.� Storing partial results to avoid repeated calculations.� Computing the ow at reduced densities and then �lling the gaps in the ow �eldcomputing in the other points the correlations for a reduced search space limited tovalues close to those obtained in the neighboring points.Here are a few details on the methods:4.2.1 Mask subsamplingTests performed on several images have shown that windows at least 15 pixels wideare necessary to have good results in matching, but have also shown that there is thepossibility of using a small subset of the window points to compute di�erences withouta�ecting too much the results. If we use, for example 25 � 25 windows, no error isintroduced by computing di�erences for SSD sampling the windows with a step 4 (i.e.calculating the value only for 1 pixel every 4� 4), with complexity reduced of a factor 16.This is due to the strong correlation between grey level in neighboring points, especiallyafter the spatial �ltering.In the general case, if the sub-sampling rate is s the complexity changes from N2(2M +1)2 for each displacement estimate to N2(2M + 1)2=s2.4.2.2 Fast minimum/maximum searchThe search for the minimum of the distance can be speeded up with di�erent searchstrategy. A simple method, that is e�ective only in very simple cases is the 1D-1D methodproposed by Ancona and Poggio [2] which searches for the minimum �rst moving thewindow in one direction and then assuming that the motion component in that directionis that corresponding to this minimum. The procedure is then repeated independentlyfor the other direction. 8



Figure 5: 2D and 1D-1D minimisationIt is clear that this technique will provide good results only if the minimum of thedistance function is well de�ned. The complexity is, of course, drastically reduced andgoes from the N2 (2M + 1)2 operations per point of the full search to N2 2(2M + 1).4.2.3 Coarse-to-�ne minimisationA better way to reduce complexity consists of introducing a coarse-to-�ne minimisation.The search space is �rst quantised with a large step (2K pixels), and when the minimumis found at this resolution a new search with step 2K�1 is performed around the foundminimum, and the procedure is then repeated. When the step 1 is reached, a vector withthe pixel precision is obtained, with a complexity of only [(N=(2K))2 + 8 �K](2M + 1)2steps.4.2.4 Look-up tablesIf the distance function is a sum of di�erences or products of the gray level of two points,it is convenient to avoid the computation by generating and storing a look-up table as-sociating the result of the operation with the values of the two gray levels. If the SSDcorrelation is used and the number of gray level is 256, the following table is generated:table(i; j) = (i� j)2 (5)and the program compute the distance as:SSD(~x; ~d) = N=2Xi;j=�N=2 table(I1(x+ i; y + j); I2(x+ i+ dx; y + j + dy)) (6)The time saved depends on the operations replaced by the table access. The problem ofthe method is that it requires the allocation of a large amount of memory for the table.9



4.2.5 Increasing density algorithmIf the user wants to estimate a dense ow �eld, it is possible to exploit the linear de-pendence of the estimates of neighboring points to reduce the complexity. To computea dense ow on a X � Y image region the complexity is XY N2(2M + 1)2 times the ba-sic operation. But to compute the ow in neighboring points, many of these operationsare repeated, so there is a redundancy and estimates of neighboring points are stronglycorrelated. It is found that there is no accuracy loss in computing the ow only at areduced density, (X=2S )� (Y=2S) and then adding the missing estimates at the immedi-ately �ner resolution, (X=2S�1) � (Y=2S�1) limiting the search space to the range of thedisplacements values computed in the neighboring point at the coarser resolution. Thecomplexity reduction depends on the ow variations, but is usually relevant due to strongow continuity.4.2.6 Avoiding repeated operationsAs suggested before, when the ow is computed at a density such as overlapping windowsare used to compute the ow in di�erent points, some operations are repeated if the usualalgorithm is applied to each pixel. It is however possible to avoid this waste of time witha fast algorithm eliminating all the repeated operations by computing partial sums foreach tentative displacement and storing them in memory. The theoretical complexity isthus drastically reduced. With the correlation estimate repeated for each point, we haveusually (2� + 1)2N2(2M + 1)2calls to the LUT and an equal number of additions. The fast algorithm works s follows:�rst partial sums over horizontal segment of the window x-size are computed simply byadding the following pixel and subtracting the previous one. The second step consistsin repeating the procedure by adding the partial sums vertically over segments of thewindow size (2M + 1).The two steps are repeated for each tentative displacement and all the distances arethen computed with (2� + 1)2N2calls to the LUT and (2� + 1)22N((2M + 1) + 2(N � 1))additions or subtractions. When N >> M the algorithm should be faster of a factorthat is of the magnitude of the squared window size, that is usually about 102. In theexperiments the time saving is not so relevant (it is of a factor 10-20 for N=256 andM=12) due to the memory management of the elaborator.4.3 Subpixel precisionThe motion to be estimated is, for most image sequences, small and not integer. On theother hand, the motion estimated with correlation, is quantised. It is therefore useful10



to add to the algorithms some procedures to obtain a precision not limited by the pixeldimension. Techniques to obtain this result are used in the correlation algorithms testedin the work of Barron et al. ([4]). We propose similar and new methods that we havetested in our experiments.4.3.1 Anandan's algorithmAnandan [1] used SSD correlation to compute the ow with a multi-scale approach andvery small windows (3 � 3). He then approximated the surface of the distance functionwith a quadratic surface, generating a potential where the continuous SSD approximationis added to another term depending on velocity smoothness. This approach requires thenan iterative minimisation of the potential and therefore is computationally heavy.4.3.2 Weighted average of displacementsAnother possibility consists of computing the non integer displacement as an averagedsum of the displacements for which the distance measure has been computed, using thedistance values to calculate the weights. Singh's algorithm use the SSD correlation on 7�7windows doing the correlation on 3 consecutive images: im(�1); im(0); im(1) minimizingthe distance:SSD(~x; ~d; im(�1); im(0); im(1)) = SSD(~x;�~d; im(�1); im(0))+SSD(~x; ~d; im(0); im(1)):(7)Then a weight function is build:R(~x; ~d) = e�k SSD(~x;~d) (8)where k = �ln(0:95)=minimum(SSD(im(�1); im(0); im(1))) and the subpixel displace-ment v(~x) = (u(~x); v(~x)) is given by:u(~x) = PR(~d)dxPR(~d) (9)v(~x) = PR(~d)dyPR(~d) (10)This method like similar ones give good results, even if it is not theoretically well-foundedand is computationally heavy. We implemented a simpli�ed technique of this kind simplyperforming a similar weighted sum of the displacements in a 1� 1 neighborhood N of theone corresponding of the minimum SSD:u(~x) = P~d2N R(~d)dxP~d2N R(~d) (11)v(~x) = P~d2N R(~d)dyP~d2N R(~d) (12)11



4.3.3 InterpolationAnother typical method to obtain a sub-pixel precision is to interpolate the signal inorder to have an image value also for non integer pixel positions. We have developedan algorithm that introduces grey level values at non integer coordinates interpolatingneighboring values and then correct the best integer value searching for the best matchof the �ner image around that value.4.3.4 The "mixed" algorithmThe last method we propose is completely new and cosists of a combination of the classicalinteger matching and the Lucas-Kanade di�erential technique. It consists of computingthe integer part of the motion vector with the correlation method, and then computecorrections to this value by using the di�erential method on the locally warped sequenceobtained by shifting the neighborhood of the point in the previous and successive imageof the integer motion computed. In detail, let us call ~V (~x) = (U(~x); V (~x)) the computedinteger vector and W (~x) a small window (e.g. of 9�9 pixels) around the considered point~x. The non integer correction is computed by solving the overconstrained system:Ex(i; j)cx(~x) + Ey(i; j)cy(~x) + E 0t(i; j) = 0 i; j 2 W (13)where E 0t is the "shifted" derivative:E0t = E(x+ U(~x); y + V (~x); t+ 1) �E(x� U(~x); y � V (~x); t� 1)2 (14)If the least square solution is considered reliable, i.e. if the residual of the least square �t:Q(W (~x)) = Xi;j2W (~x)(Et(i; j) + Ex(i; j)cx(~x; t) + Ey(i; j)cy(~x; t))2=N(W ) (15)(where N is the number of pixels inside the window) is low, the integer vector is correctedand the best velocity estimate becomes:~v = ~V + ~c (16)This method is e�ective because the di�erential technique is fast and gives good estimatesfor corrections that are of less than one pixel (di�erential techniques are not reliable forlarge inter-frame motions because of aliasing [12]).4.4 Post-processingOther techniques of post processing can be useful to improve the ow accuracy. If a reliablecon�dence measure is provided by the optical ow algorithm, a non linear �ltering ableto correct bad estimates can be introduced. As a con�dence measure for correlation we12



consider the ratio between the distance value (or the reciprocal of the correlation value)and the average distance value in the search space S(~x):Q(~x) = min�2S(~x) �� (17)Using this function it is possible to implement for example a multi-window �lter ([5, 12])or regularising �lters performing weighted averages and possibly preserving the velocityedges ([12]).5 Experimental ResultsTo test the algorithms, we computed optical ows on synthetic or calibrated image se-quences with the true displacements known at every pixel location. We measured theaverage di�erences between the computed ow ~v and the true motion ~v0 using the angulardistance introduced by Barron et al. [4]:dist(~v;~v0) = arccos0@ uu0 + vv0+ 1q(j~vj2 + 1)(j~v0j2 + 1)1A (18)5.1 Comparison between similarity measuresEven if matching algorithms based on di�erent similarity/distance measures are widelyused both for motion estimate and disparity computation, few works analysing theirperformances can be found in literature. Furthermore, those works often present resultsobtained only on simple or synthetic images. As a �rst experimental test, we have thereforecompared the accuracy of the displacements estimated with di�erent measures on severalimage sequences. In the case of rich texture and integer displacements, the results are,as expected, accurate using all the considered measures. The only interesting comparisoncan be done on the execution times. A good analysis of measure performances addingcontrolled noise to similar images is presented in [22]. But real images are corruptedby other noise sources and present other problems due to perspective e�ects and motiondiscontinuities.In order to verify the execution time and at the same time analyse the accuracy neardiscontinuities we have generated a synthetic image sequence with integer inter-framedisplacements. The "MJ" sequence, represents the superposition of a textured circleover a di�erently textured background. The circle translates with constant speed (2,3)pixel/frame, while the background translates with speed (-1,0) pixel/frame. Poor textureand discontinuities create problems even if there is no added noise..In this case no speeding up algorithms are applied and time values (relative) are ap-proximated. All the distances provide good results with the exception of a few points nearthe motion discontinuity. Algorithms using reduced information are accurate too and asexpected faster. But when the sequence becomes more realistic, these last techniques13



Measure Avg. error std. dev time/time(RANK)SSD 6.0 20.5 2.5ZSSD 6.1 20.6 4.1LSSD 6.1 20.5 4.5SAD 3.6 17.6 2.5ZSAD 4.4 17.3 4.5LSAD 4.3 17.9 4.8NCC 6.1 20.5 2.7ZNCC 6.2 20.6 4.9RANK 4.1 19.0 1.0CENSUS 16.8 24.7 4.6EDG(HAMMING) 3.7 17.7 1.9EDG(HAUSD.) 3.7 17.7 1.9Table 3: Comparison between distance measure over the MJ sequence. (SSD sum ofsquared distances, ZSSD zero-mean sum of squared distances, LSSD locally scaled sum ofsquared distances, SAD sum of absolute distances, ZSAD zero-mean sum of absolute dis-tances, LSAD locally scaled sum of absolute distances, NCC normalized cross-correlation,ZNCC zero-mean normalized cross-correlation, RANK rank transform, CENSUS censustransform, EDG (HAMMING) Hamming distance on binary edge image, EDG(HAUSD.)Haussdor� distance on binary edge image.
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Figure 6: The MJ sequence. A: Central frame with the true motion superimposed. B:Image motion estimated with SAD correlation, the "classical" algorithm giving the bestresults. C: Edge map extracted from the central image. D: Optical ow computed on theedge images with the Hamming distance.
15



fail. The "Reduced Marbled Block" sequence represents a real motion of objects with arich texture. The results obtained are shown in Table 4. In this case algorithms basedon reduced information are not accurate. The best one, based on the Rank Transform,provides results that are worser than those obtained with the worst classical method.Distance Avg. Err. Std. Dev.SSSD 20.7 10.8ZSSD 20.7 11.1LSSD 20.7 11.1SAD 20.6 10.7ZSAD 20.2 10.7LSAD 20.2 10.7NCC 20.7 11.0ZNCC 20.9 11.1RANK 21.4 11.7CENS 25.2 26.2EDG(HAMMING) 41.0 28.2EDG(HAUSD.) 41.0 28.2Table 4: Comparison between di�erent correlation/distance measure on the 256x256 Mar-bled Block sequence."Yosemite Valley", is a synthetic sequence widely used to analyse the accuracy of opticalow estimators over realistic images. In fact it presents many problems such as perspectivee�ects, non-integer displacements and global variations of brightness. Table 5 shows theresults obtained computing the ow at a reduced density (1 pixel every 4�4) with 25�25masks, sub-sampled by a factor 4.We can conclude that, for practical applications, standard measures based on graylevels (SAD,SSD, ZSAD,ZSSD,LSAD,LSSD, NCC, ZNCC) are the best choice and theirperformance are similar. Only in the case of global brightness variations as in the sky ofthe Yosemite Valley Sequence, the performance of the non-normalised measures becomebad. Algorithms based on normalised measures, on the other hand, require the additionof a large amount of operations and are therefore slower. SAD and SSD, depending onlyon local gray level values, can be computed more e�ciently by using look-up tables.5.2 Window sizeTable 6 shows the results obtained on the Yosemite Valley Sequence changing the windowsize and keeping the other parameters �xed (SSD distance, Gaussian �ltering with � = 1:5,density 4). We compared the average angular distances and the execution times. It seemsthat a window size of 25 � 25 pixels is a good tradeo� between accuracy and velocity.Where not explicitly indicated otherwise we have always used windows of this size.16



Distance Avg. Err. Std. Dev.SAD 12.6 10.1ZSAD 10.5 9.3LSAD 10.3 10.1SSD 12.7 9.3ZSSD 10.9 8.3LSSD 10.5 9.0NCC 10.4 8.8ZNCC 10.0 8,5RANK 18.6 19.1CENS 25.2 26.2Table 5: Comparison between di�erent correlation/distance measure on the YosemiteValley sequence.
Win. size Avg. err. Std. dev Time/Time(9)9� 9 17.58 19.05 1.015� 15 13.09 13.58 2.621� 21 11.80 7.89 4.225� 25 11.36 7.67 5.733� 33 11.79 7.61 10.141� 41 12.51 9.07 13.6Table 6: Comparison of results obtained on the "Yosemite Valley" sequence using di�er-ently sized windows. 17
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Figure 7: The main di�erence between "classical" measures is found when the globalvariations of brightness are present: A: SSD cannot provide good results for the sky ofthe Yosemite Valley sequence. B: NCC gives a correct estimate also in that region (seetable). 18
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Figure 8: A,B: Flows obtained with 9� 9 and 41� 41 windows (SSD). In both cases theaccuracy is lower than the one obtained with 25 � 25 windows(see table).
19



The window size can be also made adaptive in order to use more pixels where thelocal information is poor and less where it is rich. The results we obtained, however,do not seem to be so good to compensate for the increased computation time. We usedthe determinant of the matrix of the gray level derivatives as a measure of the localinformation. Starting from an initial window size of 15 � 15, we increased the size ofthe window until the information measure reached a previously �xed threshold. Theaccuracy obtained on our test images was not better than that obtained with the �xed21 � 21 window, but the computation time was higher.Window Avg. err. Std. dev Time/Time(15)variable 12.8 13.5 3.215 � 15 13.1 13.6 1.021 � 21 11.8 7.9 4.2Table 7: The adaptive window algorithm we tested did not yield good result.5.3 Image �lteringIn order to verify the improvements in ow accuracy due to image �ltering before process-ing, let us analyse the results obtained on the same sequence keeping the other parameters�xed (25�25 mask, sub-sampled with step 4, density 4, search space (-4,4), SSD distance)changing only the value of � in the Gaussian �lter.� Avg. err. std. dev0 14.9 14.90:5 14.8 14.41:0 13.3 11.71:5 12.8 10.12:0 12.8 10.02:5 13.8 11.7Table 8: Changes in accuracy due to variations on the standard deviation of the Gaussian�lter used for pre-processing. The values are the average errors on estimates realized onthe Yosemite Valley Sequence.We therefore used � = 1:5 as a default choice, a value that seems to give optimal results.20



5.4 Speeding up the computation5.4.1 Mask sub-samplingMask sub-sampling has already been introduced in the previous section and it was statedthat it does not strongly a�ect the accuracy. We now demonstrate this fact by analysingthe quality deterioration as a function of the sub-sampling step. Fixing the other pa-rameters, we computed the di�erence between true and estimated displacements on theYosemite sequence ( 25 � 25, Gaussian �ltering with � = 1:5, density 4) changing thesampling rate of the windows. The average errors obtained are in Table 9. It is evidentStep Avg. err. Std. dev Time/Time(8)8 14.9 14.5 16 11.9 7.8 1.24 11.7 7.8 1.83 11.8 8.1 2.52 11.3 7.7 4.71 11.4 7.7 17.2Table 9: E�ect of mask sub-sampling on the average precision an the computational speed.that the computation of the best match can be performed in a faster way by computingthe distance only for a subset of the mask points: the reduction of the operations of afactor 16 do not a�ect the accuracy of the results.5.4.2 Fast minimisationStill using ZNCC, we tested the e�ectiveness of our fast search strategies evaluating theaverage error introduced as a function of the time saving, computed simply as the averagetime of the program run on the same hardware. For the Yosemite Valley sequence, the1D-1D method, giving good results for very simple images [2] introduces a too largeerror, while the coarse to �ne search strategy is e�ective in reducing the time withoutintroducing a large error.Table 10 includes the results (SSD, � = 1:5, 25 � 25 mask, subsampled with step 4,density 4).5.4.3 Dense ows: Multi-resolutionThe e�ectiveness of the multi-scale minimisation depends on the entity of the local varia-tions of the ow. Discontinuities, however, are usually found at a few image locations sothe time savings is considerable. Table 5.4.3 represents the time decrease as a functionof the number of scales used for the minimisation, using SSD distance, 25 � 25 windowssub-sampled with step 4, �nal density of the ow equal to 1, Gaussian �ltering of theimages with � = 1:5. 21



Algorithm Avg. err. Std. dev Time/Time(1D-1D)1D-1D 30.2 28.0 13 scale 15.6 18.2 1.42 scale 13.4 10.9 1.8Full 12.8 10.1 3.2Table 10: Results obtained with di�erent search strategies: the 1D-1D by Ancona andPoggio provides bad results. A 2D multi-grid strategy is slightly slower but much moreprecise. Density Avg. err std. dev Time/Time(5)5 11.7 9.1 14 11.7 9.2 1.23 11.7 9.2 1.62 11.7 9.2 3.51 11.7 9.2 11.3Table 11: Speeding up the ow estimate by using a multi-scale minimisation does notintroduce a relevant error for the "Yosemite Valley".The average error on the ow does not change at all, but the time is drastically reduced.5.5 Look-up tables-Repeated operationsThe replacement of the computation of the squared di�erences of SSD with the retrievalof a look-up table value causes, for 25 � 25 windows sub-sampled of a factor 4 a timesaving of a factor 2.5. When the algorithm that eliminates all the repeated operations isintroduced, the time is reduced by a factor 15 for a 256 � 256 image and a 25 � 25 notsub-sampled window. Of course, in this case there is no loss in accuracy.The time saving is not as relevant as expected from the theoretical analysis because ofmemory management.5.6 Non-integer correctionFinally, we tested the performance of the three algorithms to re�ne the precision of theow to non-integer values presented in Section 5. We used the Barron angular distanceto compare the performance of weighted sum, interpolation and di�erential correction. InTable 5.6 are reported the results obtained on the Translating Tree and Diverging Treesequences. Flow density is always equal to 100%. The di�erential algorithm gives thebest results both in accuracy and time. 22
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Figure 9: Results obtained with di�erent techniques for non-integer approximation onthe Diverging Tree Sequence (only 1 arrow every 4� 4 is displayed for clear visualization.Zero length vectors are not shown.) A: Integer estimate (SSD). B: Weighted sum. C:Interpolation. D: Di�erential.
23
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Figure 10: Optical ows obtained on the Yosemite Valley Sequence (only 1 arrow every 4�4 is displayed for clear visualization). A: ZNCC + interpolation. B: ZNCC + di�erential.24



Algorithm Avg. err. std. devInteger 1.12 0.67Weighted sum 1.05 0.54Interpolation 1.15 1.24Di�erential 0.44 0.45Di� (reg.) 0.34 0.39Algorithm Avg. err. std. devInteger 18.28 8.32Weighted Sum 15.29 7.91Interpolation 10.39 5.36Di�erential 3.65 3.27Di� (reg.) 2.24 2.05Table 12: Precision of the non-integer ows computed with di�erent correction algorithmson the Translating Tree and Diverging Tree sequences: the di�erential is clearly the bestone.In the case of the "Yosemite Valley" we used the NCC distance instead of the usualSSD to have better performance for the sky region where the global brightness changes.The results are reported in the Table 13.Algorithm Avg. err. std. devInteger(NCC) 13.54 13.35Weighted sum 14.15 13.40Interpolation 8.70 10.91Di�erential 5.73 9.43Di� (reg.) 4.86 10.22Table 13: Results obtained on the Yosemite Valley: notice that the ow density is 100%and clouds are not removed.The accuracy obtained is very good, especially considering that the ow density is equalto 100% and that the sequence used includes the clouds.5.7 Real world sequencesIn order to show the robustness of the proposed algorithms, we applied the multi scale,corrected and fast ow estimation to the real world. We have chosen examples whereusual di�erential algorithms perform badly due tue noise or large displacements. Fig11 shows an image from a sequence taken by a camera mounted on a car. The optical25



ow superimposed to the image is computed on 32 � 32 window with 2 resolutions anddi�erential correction. The ow vectors computed are often very good even if the textureis poor. The computed ow can be e�ectively used to estimate the car speed ant to detectobstacles and other vehicles on the road, as pointed out in [13], and this means that theestimate of the optical ow is precise. With the same parameters, we have computed theow on a sequence of METEOSAT images. The result shown in Fig. 12 superimposed tothe corresponding image, show a good behavior and is possible to think of applications ofthese algorithms in weather forecasting, computing the future position and deformation ofclouds from the ow values in the past. Also on a very noisy ultrasound medical image itis possible to have a good estimation of the optical ow. Fig. 13 shows the ow computedon a sequence showing the left ventricle in the diastolic phase. The optical ow seemsreasonable, and it is not surprising therefore that we used the fast correlation algorithmto help the contour tracking of the left ventricle described in [14].
Figure 11: Optical ow computed on the car sequence superimposed to the correspondingimage.5.8 FlowtoolAll the algorithms implemented can be executed from a user-friendly interface, Flowtool,that we have developed during the tests. All the options described in this paper for thecorrelation can be selected with the appropriate menu, and the user can also computethe ow with di�erential algorithms, compute ow di�erences, display and print imagesand ows. It has been developed using the X window and the Sun XView libraries26



Figure 12: Optical ow computed on the Meteosat sequence superimposed to the corre-sponding image.

Figure 13: Optical ow computed on the ultrasound heart sequence superimposed to thecorresponding image. 27



and an executable code for Sun-Sparcstation is available on the net from the web pagehttp://www.crs4.it/�giach.

Figure 14: The user-friendly tool realized for motion analysis.6 DiscussionThe use of techniques based on pattern matching between subsequent images is commonin practical applications, even if a few algorithms of this kind are considered in the litera-ture reviews [4]. In this paper several variations of this kind of algorithms and some tricksto reduce the major drawbacks of the method (i.e. the computational complexity and theinteger values of the estimates) are presented. All the solution proposed have been testedon the classic images used by all the optical ow researchers and the results obtained arevery interesting. The accuracy of the ow estimated with the best correlation-based tech-niques, especially the one obtained with the new "mixed" technique proposed, seem to beextremely good even if compared with the outputs of the best di�erential or energy basedalgorithms presented in [4]. The research and the tests performed provided also otherinteresting information, showing clearly, for example, that the usual distance measures28
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