Proof of Theorem 2 in ”High-gain observers with updated high-gain and homogeneous correction terms”
Vincent Andrieu, Laurent Praly, Alessandro Astolfi

To cite this version:
Vincent Andrieu, Laurent Praly, Alessandro Astolfi. Proof of Theorem 2 in ”High-gain observers with updated high-gain and homogeneous correction terms”. Rapport LAAS n 08043. 2008. <hal-00229705>

HAL Id: hal-00229705
https://hal.archives-ouvertes.fr/hal-00229705
Submitted on 31 Jan 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Proof of Theorem 2 in: ”High gain observers with updated high-gain and homogeneous correction terms”

V. Andrieua L. Pralyb A. Astolfic
aLAAS-CNRS, University of Toulouse, 31077 Toulouse, France vincent.andrieu@gmail.com
bCAS, École des Mines de Paris, Fontainebleau, France praly@cas.enmp.fr
cEEE Dept, Imperial College, London, UK DISP, University of Rome Tor Vergata, Roma, Italy a.astolfi@ic.ac.uk

Abstract

The aim of this note is to prove Theorem 2 in (Andrieu at al., 2007).

Key words: High-gain observers, Homogeneity in the bi-limit, Dynamic scaling.

1 Introduction

We consider a system, with state $\mathbf{x} = (x_1, \ldots, x_n)$ in \mathbb{R}^n described by:

$$\dot{\mathbf{x}} = \mathbf{A}(t) \mathbf{S} \mathbf{x} , \quad y = x_1 ,$$
(1)

where y is the output, \mathbf{S} is the left shift matrix defined as:

$$\mathbf{S} \mathbf{x} = (x_2, \ldots, x_n, 0)^T ,$$

and $\mathbf{A}(t)$ is a known time varying diagonal matrix $\mathbf{A}(t) = \text{diag}(\alpha_1(t), \ldots, \alpha_n(t))$, where the α_i are assumed to satisfy:

$$0 < \alpha < \alpha_i(t) \leq \alpha \quad \forall t .$$
(2)

After selecting $d_0 = 0$ and d_∞ arbitrarily in $[0, 1/n]$, the system (1) is homogeneous in the bi-limit if and only if we choose the weights $r_0 = (r_{0,1}, \ldots, r_{0,n})$ and $r_\infty = (r_{\infty,1}, \ldots, r_{\infty,n})$ as:

$$r_{0,i} = 1, \quad r_{\infty,i} = 1 - d_\infty (n - i) .$$
(3)

In (Andrieu et al., 2006), a new observer was proposed for system (1) for the particular case where $\alpha_i(t) = 1$. Its design is done recursively together with the one of an appropriate error Lyapunov function W which is homogeneous in the bi-limit (see below for the definition of homogeneity in the bi-limit).

In (Andrieu et al., 2007), we combine this tool with gain updating to obtain a new high-gain observer. To do so we use an extra property on W (see (5) below) which is a counterpart of (Praly, 2003, equation (16)) or (Krishnamurthy et al., 2003, Lemma A1). The fact that it can be obtained with also the presence of \mathbf{S} is stated in the following result.

Theorem 2 Given d_∞ in $[0, 1/n]$, let d_W be a positive real number satisfying $d_W \geq 2 + d_\infty$ and $\mathbf{S} = \text{diag}(b_1, \ldots, b_n)$ with $b_j > 0$. If (2) holds, there exist a vector field $K : \mathbb{R} \to \mathbb{R}^n$ which is homogeneous in the bi-limit with associated weights r_0 and r_∞, and a positive definite, proper and C^1 function $W : \mathbb{R}^n \to \mathbb{R}_+$ homogeneous in the bi-limit with associated triples (r_0, d_W, W_0) and $(r_\infty, d_W, W_\infty)$, such that the following holds.

1. The functions W_0 and W_∞ are positive definite and proper and, for each j in $\{1, \ldots, n\}$, the function $\frac{\partial W_j}{\partial x_j}$ is homogeneous in the bi-limit with approximating functions $\frac{\partial W_j}{\partial x_j}$ and $\frac{\partial W_j}{\partial x_j}$.

2. There exist two positive real numbers c_1 and c_2 such that we have, for all (t, E) in $\mathbb{R} \times \mathbb{R}^n$,

$$\frac{\partial W}{\partial E} (E) \mathbf{A}(t) (S E + K(e_1)) \leq -c_1 \left(W(E) + W(E^{d_W + d_\infty}) \right) ,$$
(4)

Preprint submitted to Automatica 31 January 2008
\[
\frac{\partial W}{\partial E}(E) \mathbb{B} E \geq c_2 W(E),
\]

The proof of this Theorem was omitted in (Andrieu et al., 2007) due to space limitation and is given in Section 3. Section 2 gives some prerequisite needed to address this proof.

2 Some prerequisite

The proof of this Theorem needs some prerequisite. Indeed, we recall the definition of homogeneity in the bi-limit, introduced in (Andrieu et al., 2006), and give some related properties.

Given a vector \(r = (r_1, \ldots, r_n) \) in \((\mathbb{R}^+ / \{0\})^n\), we define the dilation of a vector \(x \) in \(\mathbb{R}^n \)

\[\lambda^r \circ x = (\lambda^{r_1} x_1, \ldots, \lambda^{r_n} x_n)^T. \]

Definition 1 (Homogeneity in the 0-limit)

- A continuous function \(\phi : \mathbb{R}^n \rightarrow \mathbb{R} \) is said homogeneous in the 0-limit with associated triple \((r_0, d_0, \phi_0)\), where \(r_0 \) in \(\mathbb{R}^+ / \{0\} \) is the weight, \(d_0 \) in \(\mathbb{R}^+ \) the degree and \(\phi_0 : \mathbb{R}^n \rightarrow \mathbb{R} \) the approximating function, respectively, if \(\phi_0 \) is continuous and not identically zero and, for each compact set \(C \) in \(\mathbb{R}^n \) and each \(\varepsilon > 0 \), there exists \(\lambda^r \) such that we have:

\[\max_{x \in C} \left| \frac{\phi(\lambda^r \circ x)}{\lambda^{d_0}} - \phi_0(x) \right| \leq \varepsilon \quad \forall \lambda \in (0, \lambda^*]. \]

- A vector field \(f = \sum_{i=1}^n f_i \frac{\partial}{\partial x_i} \) is said homogeneous in the 0-limit with associated triple \((r_0, d_0, f_0)\), where \(f_0 = \sum_{i=1}^n f_{0i} \frac{\partial}{\partial x_i} \), if, for each \(i \) in \(\{1, \ldots, n\} \), the function \(f_i \) is homogeneous in the 0-limit with associated triple \((r_0, d_0 + r_{0i}, f_{0i})\).

Definition 2 (Homogeneity in the \(\infty \)-limit)

- A continuous function \(\phi : \mathbb{R}^n \rightarrow \mathbb{R} \) is said homogeneous in the \(\infty \)-limit with associated triple \((r_\infty, d_\infty, \phi_\infty)\) where \(r_\infty \) in \(\mathbb{R}^+ / \{0\} \) is the weight, \(d_\infty \) in \(\mathbb{R}^+ \) the degree and \(\phi_\infty : \mathbb{R}^n \rightarrow \mathbb{R} \) the approximating function, respectively, if \(\phi_\infty \) is continuous and not identically zero and, for each compact set \(C \) in \(\mathbb{R}^n \) and each \(\varepsilon > 0 \), there exists \(\lambda^r \) such that we have:

\[\max_{x \in C} \left| \frac{\phi(\lambda^r \circ x)}{\lambda^{d_\infty}} - \phi_\infty(x) \right| \leq \varepsilon \quad \forall \lambda \in [\lambda^*, +\infty). \]

- A vector field \(f = \sum_{i=1}^n f_i \frac{\partial}{\partial x_i} \) is said homogeneous in the \(\infty \)-limit with associated triple \((r_\infty, d_\infty, f_\infty)\), with \(f_\infty = \sum_{i=1}^n f_{i\infty} \frac{\partial}{\partial x_i} \), if, for each \(i \) in \(\{1, \ldots, n\} \), the function \(f_i \) is homogeneous in the \(\infty \)-limit with associated triple \((r_\infty, d_\infty + r_{i\infty}, f_{i\infty})\).

Definition 3 (Homogeneity in the bi-limit)

A continuous function \(\phi : \mathbb{R}^n \rightarrow \mathbb{R} \) (or a vector field \(f \)) is said homogeneous in the bi-limit if it is homogeneous in the 0-limit and homogeneous in the \(\infty \)-limit.

The following propositions are proved, or are direct consequences of results, in (Andrieu et al., 2006).

Proposition 1 Let \(\eta \) and \(\mu \) be two continuous homogeneous in the bi-limit with weights \(r_0 \) and \(r_\infty \), degrees \(d_{0,0}, d_{0,\infty} \) and \(d_{\mu,0}, d_{\mu,\infty} \), and continuous approximating functions \(\eta_0, \eta_\infty, \mu_0, \mu_\infty \).

1. The function \(x \rightarrow \eta(x)\mu(x) \) is homogeneous in the bi-limit with associated triples \((r_0, d_{0,0} + d_{\mu,0}, \eta_0 \mu_0)\) and \((r_\infty, d_{0,\infty} + d_{\mu,\infty}, \eta_\infty \mu_\infty)\).

2. If the degrees satisfy \(d_{0,0} \geq d_{\mu,0} \) and \(d_{0,\infty} \leq d_{\mu,\infty} \) and the functions \(\mu \), \(\mu_0 \) and \(\mu_\infty \) are positive definite then there exists a positive real number \(c \) satisfying:

\[\eta(x) \leq c \mu(x), \quad \forall x \in \mathbb{R}^n. \]

Proposition 2 If \(\phi : \mathbb{R}^n \rightarrow \mathbb{R} \) and \(\zeta : \mathbb{R} \rightarrow \mathbb{R} \) are homogeneous in the 0-limit functions, with weights \(r_{0,0} \) and \(r_{0,\infty} \), degrees \(d_{0,0} = r_{0,0} \) and \(d_{0,\infty} \), and approximating functions \(\phi_0 \) and \(\phi_\infty \), then \(\zeta \circ \phi \) is homogeneous in the 0-limit with weight \(r_{0,0} \), degree \(d_{0,\infty} \), and approximating function \(\zeta_0 \circ \phi_0 \). The same result holds for the cases of homogeneity in the \(\infty \)-limit and in the bi-limit.

Proposition 3 Let \(\phi : \mathbb{R} \rightarrow \mathbb{R} \) be a bijective homogeneous in the 0-limit function with associated triple \((1, d_0, \phi_0 x^{d_0})\) with \(\phi_0 \neq 0 \) and \(d_0 > 0 \). Then, the inverse function \(\phi^{-1} : \mathbb{R} \rightarrow \mathbb{R} \) is homogeneous in the 0-limit function with associated triple \((1, \frac{1}{d_0}, (\frac{1}{\phi_0})^{d_0})\). The same result holds for the cases of homogeneity in the \(\infty \)-limit and in the bi-limit.

Proposition 4 If the function \(\phi \) is homogeneous in the 0-limit with associated triple \((r_0, d_0, \phi_0)\), then the function \(\Phi_1(x) = \int_0^x \phi(sx_1, \ldots, sx_{i-1}, s, x_n) \) is homogeneous in the 0-limit with associated triple \((r_0, d_0 + r_{0i}, \Phi_1, 0)\), where the approximating function is given by

\[\Phi_{1,0}(x) = \int_0^x \phi_0(x_1, \ldots, x_{i-1}, s, x_n) \]

The same result holds for the cases of homogeneity in the \(\infty \)-limit and in the bi-limit.

Proposition 5 Suppose \(\eta \) and \(\mu \) are two functions homogeneous in the bi-limit, with weights \(r_0 \) and \(r_\infty \), degrees \(d_0 \) and \(d_\infty \), and such that the approximating functions, denoted \(\eta_0 \) and \(\eta_\infty \), and, \(\mu_0 \) and \(\mu_\infty \) are continuous. If \(\mu(x) \geq 0 \) and

\[
\begin{align*}
\{ x \in \mathbb{R}^n \setminus \{0\} \} & \quad \Rightarrow \quad \eta(x) > 0, \\
\{ x \in \mathbb{R}^n \setminus \{0\} \} & \quad \Rightarrow \quad \eta_0(x) > 0, \\
\{ x \in \mathbb{R}^n \setminus \{0\} \} & \quad \Rightarrow \quad \eta_\infty(x) > 0,
\end{align*}
\]

then there exists a strictly positive real number \(k \) such that, for all \(k \geq k^* \), the functions \(\eta(x) + k \mu(x), \eta_0(x) + k \mu_0(x) \) and \(\eta_\infty(x) + k \mu_\infty(x) \) are positive definite.

\[\text{In the case of a vector field the degree } d_0 \text{ can be negative as long as } d_0 + r_{0i} \geq 0, \text{ for all } 1 \leq i \leq n. \]
3 Proof of Theorem 2

The proof we propose here is an adaptation of the one in (Andrieu et al., 2006). It is done by induction. To do so we use notations with an index showing the value from which we start counting. For instance $E_i = (e_1, \ldots, e_n)^T$ denotes a state vector in \mathbb{R}^{n+1}. S_i is the left shift matrix of dimension $n - i + 1$, i.e.

$$S_i E_i = (e_{i+1}, \ldots, e_n, 0)^T.$$

Proposition 6 Let d_W be a positive real number satisfying $d_W \geq 2 + d_\infty$. Suppose there exist a bounded continuous diagonal matrix function A_{i+1}, a homogeneous in the bi-limit vector field $K_i : \mathbb{R} \to \mathbb{R}^{n+1}$, and a positive definite, proper and C^1 function homogeneous in the bi-limit $W_{i+1} : \mathbb{R}^{n+1} \to \mathbb{R}_+$, with associated triples $(r_0, d_W, W_{i+1,0})$ and $(r_\infty, d_W, W_{i+1,\infty})$ such that the following holds:

1. The functions $W_{1,0}$ and $W_{1,\infty}$ are positive definite and proper and for all j in $[1, n]$, the functions $\partial W_{1,j} / \partial e_j$ are homogeneous in the bi-limit with approximating functions $\partial W_{1,j} / \partial e_j$ and $\partial W_{1,j} / \partial e_j$.

2. There exist positive real numbers c_i, b_{i+1}, b_n such that for all E_{i+1} in \mathbb{R}^{n+1}:

$$\sum_{j=1}^{n} b_j \frac{\partial W_{i+1}}{\partial e_j}(E_{i+1}) e_j \geq c W_{i+1}(E_{i+1}),$$

where A_i is the diagonal matrix $\text{diag}(\alpha_i, \ldots, \alpha_{i+1})$.

Proof: The proof is divided in three steps.

1. Construction of the Lyapunov function. Consider the function $q_i : \mathbb{R} \to \mathbb{R}$ defined as

$$q_i(s) = s + s^{-r_{\infty,i+1}}.$$

This function is C^1, strictly increasing and onto. Also, with

$$\frac{r_{\infty,i} + d_\infty}{r_{\infty,i}} \geq 1, \quad i \in \{1, \ldots, n\},$$

it is homogeneous in the bi-limit with associated triples $(1, 1, s)$ and $(r_{\infty,i}, r_{\infty,i+1}, s^{-r_{\infty,i+1}})$. Its derivative q_i' is also homogeneous in the bi-limit with approximating functions 1 and $\frac{r_{\infty,i} + d_\infty}{r_{\infty,i}}$, $s^{-r_{\infty,i}}$. Using Proposition 3, we know that the inverse function q_i^{-1} of q_i is C^1 and homogeneous in the bi-limit with associated triples $(1, 1, s)$ and $(r_{\infty,i+1}, r_{\infty,i}, s^{-r_{\infty,i+1}})$. Furthermore, since we have $d_W - 1 \leq dq_i^{-1} - d_\infty$, by picking the function ζ as

$$\zeta(s) = s d_W - 1 + s^{-r_{\infty,i}},$$

we obtain from Proposition 2 that the function $s \mapsto q_i^{-1}(s)d_W - 1 + q_i^{-1}(s)d_\infty - r_{\infty,i}$.

Let $W_i : \mathbb{R}^{n+1} \to \mathbb{R}_+$ be defined as

$$W_i(E_i) = W_{i+1}(E_{i+1}) + \sigma_i V_i(\ell_{i+1}, E_{i+1}),$$

with

$$V_i(e_{i+1}) = \int_{q_i^{-1}(e_{i+1})}^{q_i^{-1}(s)} \frac{d_\infty - r_{\infty,i+1}}{s^{r_{\infty,i+1}}} - q_i^{-1}(e_{i+1}) \frac{d_\infty - r_{\infty,i}}{s^{r_{\infty,i}}} dv,$$

where σ_i and ℓ_i are positive real numbers that will be defined later. W_i is positive definite and proper. Also, as $1 \geq r_{\infty,i}$, it is homogeneous in the bi-limit with weights r_0 and r_∞, and degrees $dW_0 = dW_\infty = dW$. The function given in (10) as well as its derivative being homogeneous in the bi-limit, we get with Proposition 4 that the functions $\partial W_i / \partial e_j$ are homogeneous in the bi-limit with approximating functions $\partial W_i / \partial e_j$ and $\partial W_i / \partial e_j$. Hence point

Recall that we have $r_{\infty,i} + d_\infty = r_{\infty,i+1} \leq 1$.

Compared to (Andrieu et al., 2006), σ_i is a new parameter introduced to obtain inequality (8).
1 of Proposition 6 is established.

2. Properties of the Lyapunov function. Let $J : \mathbb{R}^{n-i} \times \mathbb{R} \to \mathbb{R}$ be the function defined as:

$$J(E_{i+1}, s) = b_{i+1} \frac{\partial V_i}{\partial e_{i+1}}(s, e_{i+1}) + b_i \frac{\partial V_i}{\partial s}(s, e_i + s).$$

The functions W_{i+1} and J are homogeneous in the bi-limit with associated weights 1 and $r_{\infty, i}$ for s and 1 and $r_{\infty, j}$ for e_j, $j \geq i + 1$, and degrees $d_{W_{i+1}} = d_{W_{i+1}} = d_{W_i}$. By assumption W_{i+1} is positive definite and the same holds for its homogeneous approximations in the 0-limit and in the ∞-limit and we have:

$$J(0, s) = b_i \left[|s|^{d_{W_i}} + |s|^{d_{W_i}} \right] > 0 \quad \forall s \neq 0.$$

It follows that the assumptions of Proposition 5 are satisfied with $\mu = W_{i+1}$ and $\eta = J$. Hence, with c given in (6), there exists a positive real number σ_i such that the functions $cW_{i+1, 0} + \sigma_i, cW_{i+1, \infty} + \sigma_iJ_{\infty}$ and $cW_{i+1} + \sigma_iJ$ are continuous and positive definite in (E_{i+1}, s). But then, from Proposition 1.2, there exists a positive real number ε satisfying:

$$\frac{1}{\varepsilon} [cW_{i+1} + \sigma_iJ] \geq W_{i+1}.$$

Since assumption (6) gives readily, for all E_i in \mathbb{R}^{n-i},

$$\sum_{j=n}^i b_j \frac{\partial W_{i+1}}{\partial e_j}(E_i) e_j \geq cW_{i+1}(E_{i+1}) + \sigma_iJ(E_{i+1}, e_i),$$

we have established inequality (8) of Proposition 6.

3. Construction of the vector field K_i. Given a real number ℓ_i, we define the vector field K_i as:

$$K_i(e_i) = \begin{pmatrix} -q_i(\ell_i e_i) \\ K_{i+1}(q_i(\ell_i e_i)) \end{pmatrix}.$$

With Propositions 1 and 2 and the properties we have established from q_i, it is a homogeneous in the bi-limit vector field.

We show now that by selecting ℓ_i large enough we can satisfy (9). We have:

$$\frac{\partial W_{i+1}}{\partial E_i}(E_i) \mathcal{A}_i(t) (S_i(E_i) + K_i(e_i)) = \alpha_i(t) \left[T_2(t, E_{i+1}, \ell_i e_i) + \ell_i T_1(E_{i+1}, \ell_i e_i)\right],$$

with the notations:

$$T_1(E_{i+1}, s) = \sigma_i \frac{\partial V_i}{\partial s}(s, e_i + s) q_i(s)$$

$$T_2(t, E_{i+1}, s) = \frac{\partial W_{i+1}}{\partial E_{i+1}}(E_{i+1}) + \sigma_i \frac{\partial V_i}{\partial E_{i+1}}(s, e_i + s) \times \mathcal{A}_{i+1}(t) (S_{i+1} E_{i+1} + K_{i+1}(q_i(s)))$$

But with (7), we get

$$T_2(t, E_{i+1}, s) = -c \left(W_{i+1}(E_{i+1}) + W_{i+1}(E_{i+1}) \frac{d_{W_{i+1}} + d_{W_i}}{d_{W_{i+1}} + d_{W_i}}\right)$$

$$+ \sigma_i \frac{\partial V_i}{\partial E_{i+1}}(s, e_i + s) \mathcal{A}_{i+1}(t) [K_{i+1}(q_i(s)) - K_{i+1}(e_i + s)]$$

Then, the function \mathcal{A}_{i+1} being bounded, say by c_A, we have:

$$T_2(t, E_{i+1}, s) \leq T_3(E_{i+1}, s)$$

with the notation,

$$T_3(E_{i+1}, s) = -c \left(W_{i+1}(E_{i+1}) + W_{i+1}(E_{i+1}) \frac{d_{W_{i+1}} + d_{W_i}}{d_{W_{i+1}} + d_{W_i}}\right)$$

$$+ c_A \left[T_1(E_{i+1}, s) \mathcal{A}_i(t) (K_{i+1}(q_i(s)) - K_{i+1}(e_i + s))\right]$$

The functions T_1 and T_3 are homogeneous in the bi-limit with weights r_i for E_{i+1} and 1 and r_{i+1} for s, degrees $d_{W_{i+1}}$ and $d_{W_{i+1}} + d_{W_i}$, continuous approximating functions $T_1, 0$ and T_1, ∞, and $T_3, 0$ and T_3, ∞, with, in particular:

$$T_{1,0}(E_{i+1}, s) = \sigma_i(e_i + s) s^{d_{W_{i+1}} - d_{W_{i+1}}}$$

$$T_{1,\infty}(E_{i+1}, s) = \sigma_i(e_i + s) s^{d_{W_{i+1}} - d_{W_{i+1}}}$$

As the function q_i^{-1} is strictly increasing and onto, the function $\frac{\partial W_{i+1}}{\partial E_{i+1}}(s, e_i + s)$ has a unique zero at $q_i(s) = e_i + s$ and has the same sign as $q_i(s) - e_i + s$. It follows

$$T_1(E_{i+1}, s) \leq 0 \quad \forall E_i \in \mathbb{R}^{n-i+1},$$

$$T_1(E_{i+1}, s) = 0 \iff q_i(s) = e_i + s$$

and similarly for the approximating functions $T_1, 0$ and T_1, ∞. Since $\frac{\partial V_i}{\partial s}(s, e_i + s)$ is zero for $q_i(s) = e_i + s$ and W_{i+1} is positive definite, we get

$$\{ E_{i+1} \neq 0, T_1(E_{i+1}, s) = 0 \} \Rightarrow T_3(E_{i+1}, s) = 0.$$

With Proposition 2, the same holds for the approximating functions. The assumptions of Proposition 5 being satisfied, there exists a positive real number ℓ_i^* such that, for all $\ell_i \geq \ell_i^*$ the function $T_3 + \ell_i T_1$ and its approximations are continuous and negative definite in (E_{i+1}, s).

But then Proposition 1.2, with $\eta = W_i + W_i$ and $\mu = -(T_3 + \ell_i T_1)$, guarantees the existence of a positive real number \bar{c} satisfying:

$$-\frac{1}{\bar{c}} \left[T_3(E_{i+1}, \ell_i e_i) + \ell_i T_1(E_{i+1}, \ell_i e_i)\right] \geq W_i(E_i) + W_i(E_i) \frac{d_{W_{i+1}} + d_{W_i}}{d_{W_{i+1}} + d_{W_i}}.$$

With (12) and (13), and since α_i is bounded away from 0,
we have proved inequality (9) and completed the proof. □

To construct the error Lyapunov function W and the vector field K, which prove Theorem 2, it is sufficient to iterate the construction proposed in Proposition 6 starting from

$$r_{\infty,n} = 1, \quad A_n(t) = \frac{a_n(y)}{a_{n-1}(y)},$$

$$K_n(e_n) = -\frac{e_n - e_n}{r_{\infty,n} + d_{\infty}}, \quad W_n(e_n) = |e_n|^d,$$

where ℓ_n is any strictly positive positive real number.

With (2), we get:

$$A_n A_{n-1} \leq A_n(y) A_{n-1}(y) \leq A_{n+1}(y) \partial W_n(E_n) e_n = b_n dW |e_n|^d,$$

and

$$\partial W_n(E_n) = W_n(e_n) + W_n(e_n) \frac{dW + d_{\infty}}{dW},$$

$$\leq -dW \frac{a_n(y)}{a_{n-1}(y)} K_n(e_n) \leq -dW \frac{a_n(y)}{a_{n-1}(y)} \left(W_n(e_n) + W_n(e_n) \frac{dW + d_{\infty}}{dW}\right).$$

Hence the assumptions of Proposition 6 are satisfied with $i + 1 = n$.

We apply this Proposition recursively for $i + 1$ ranging from n to 2 with, for $i = n - 1, \ldots, 2$, $\alpha_i = \frac{a_i}{A_{i-1}}$ which lies in $[\frac{\alpha_n}{2}, \frac{\alpha_1}{2}]$, and $\alpha_1 = a_1 \geq a$. In this way, we get

$$\mathcal{A}_i = \text{diag} \left(\frac{a_i}{a_{i-1}}, \ldots, \frac{a_i}{a_{i-1}} \right) \forall i \in \{n - 1, \ldots, 2\},$$

$$\mathcal{A}_1 = \text{diag} (a_1, \ldots, a_n).$$

As a last comment, we remark that the idea of designing an observer recursively starting from x_n and going backwards towards x_1 is not new. It can be found in (Gauthier and Kupka, 2001, Lemma 6.2.1), (Praly and Jiang, 1998), (Shim and Seo, 2006) for instance.

Acknowledgements

This work has been performed while the first author was a member of the Control and Power Group, EEE Department of Imperial College London.

References

