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Abstract 

 

The paper describes a robust finite element model of interface motion in media with 

multiple domains and junctions, as the case in polycrystalline materials. The adopted 

level set framework describes each domain (grain) with a single level set function, 

while avoiding the creation of overlap or vacuum between these domains. The finite 

element mesh provides information on stored energies, calculated from a previous 

deformation step. Nucleation and growth of new grains are modelled by inserting 

additional level set functions around chosen nodes of the mesh. The kinetics and 

topological evolutions induced by primary recrystallization are discussed from simple 

test cases to more complex configurations and compared with the Johnson-Mehl-

Avrami-Kolmogorov (JMAK) theory. 

 

 

1.Introduction 

 

Recrystallization phenomena inevitably occur during thermal and mechanical processes and have a 

major impact on the final in-use properties of metallic materials. Theories for recrystallization that 

provide quantitatively correct predictions of crystallographic orientation and grain size distributions 

have long been sought to fill a critical link in our ability to model material processing from start to 

finish. To date, no such theory exists. The phenomena of recrystallization seem simple but their 

mechanisms are not very well understood. Various features of the microstructure contribute to strain 

energy, particularly defect populations and mismatches in lattice orientation at grain boundaries. On 

the other hand, kinetics of grain or subgrain boundary motion is controlled not only by the boundary 

features, but also by the interactions with other defect populations, like dislocations, cells walls, 

particles or solute atoms. And this kinetics will itself affect the strain energy distribution. In summary, 

the strain energy distribution factors heavily into the progression of change from old to new grain 

arrangement, and itself is directly affected by that progression. This dynamic interplay underscores 

why multiscale models are in principle needed to fully describe recrystallization phenomena in a 

generic way [1-5]. 

Historical approaches of recrystallization were based on the Johnson-Mehl-Avrami-

Kolmogorov (JMAK) analytical model where equation (1) is used for the description of 

recrystallization kinetics [6]: 

                                                             ),exp(1)( nbttX −−=                                                               (1) 

where X is the recrystallized volume fraction, b  a constant which depends on nucleation and growth 

and n  the Avrami exponent. If this equation is accurate for very simple loading histories and for some 

materials, it is no longer the case for complex thermomechanical paths and/or complex 

microstructures. Heterogeneous nucleation, non-homogeneous stored energy or anisotropic mobility of 

grain boundaries are only a few of the phenomena to be considered in those cases, especially when the 

prediction of grain size or crystallographic textures is of concern [1]. 
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Considerable progress has been made in the numerical simulation of recrystallization 

phenomena since the JMAK approach [7]. In the Microstructural Path Method (MPM) [8], the 

microstructure was not only characterized by the volume fraction transformed but also by the 

interfacial area between the recrystallized and unrecrystallized material. This allowed the analysis of 

more complex grain geometries. Based on the work of Mahin [9], several groups have employed so-

called "geometric models" which have extended the analytical methods of the JMAK approach and the 

MPM to incorporate computer simulation of grain structure evolution. The major disadvantage of 

these approaches, however, is that they are "blind" approaches: grain growth without regard to the 

stored energy field into which they intrude. 

Monte Carlo (MC) and Cellular Automaton (CA) methods [10] are both probabilistic 

techniques which deliver grain structures with kinetics: they are associated with 2D or 3D geometric 

representations of the microstructure, discretized on a regular grid made of "cells" which are allocated 

to the grains. Both methods have been successfully applied to recrystallization. The standard MC 

method as derived from the Potts model (multistate Ising model) applies probabilistic rules at each cell 

in each time step of the simulation. In this model, contrary to the vertex approach, the interfaces 

between the grains are implicitly defined thanks to the membership of the cells to the various grains. 

In this context, kinks or steps on the boundaries can execute random walks along the boundaries, 

which allow changes in curvature to be communicated along the boundaries. The energy of the system 

is defined by a Hamiltonian which sums the interfacial energy and the topological events appear in a 

natural way by minimization of this energy, which represents an important advantage of this approach. 

Moreover, the use of this model in 3D is relatively easy and efficient [11] and can be extended to the 

recrystallization modelling [10]. However the comparison between MC results and experiments is not 

straightforward [1]. Furthermore, the standard form of the model does not result in a linear 

relationship between migration rate and stored energy and the absence of length and time scales can 

complicate the comparison with the experimental results. 

The CA method uses physically based rules to determine the propagation rate of a 

transformation from one cell to a neighbouring cell [6], and can therefore be readily applied to the 

microstructure change kinetics of a real system. In the case of recrystallization the switch rule is 

simple: an unrecrystallized cell will switch to being recrystallized if one of its neighbours is 

recrystallized. In the standard CA method, the state of all cells are simultaneously updated, which 

provides efficiency but does not enable the curvature to be a driving force for grain boundary 

migration [10]. Another major problem of the CA method to model recrystallization is the absence of 

effective methods for the treatment of nucleation phenomena [1]. 

Several workers have preferred to define microstructures in terms of vertices. Historically, the 

vertex models (also called "front tracking" models) described only the grain growth stage and not 

primary recrystallization [12]. In these models the grain boundaries are considered as continuous 

interfaces transported by a velocity defined thanks to the local curvature of the grains boundaries. The 

main idea is to model the interfaces by a set of points and to move these points at each time increment 

by using the velocity and the normal to the interfaces, which explains the term "front tracking". 

Complex topological events such as the disappearance of grains or node dissociations are treated 

thanks to a set of rules which is completed by a repositioning of the nodes. More recently, the vertex 

model was extended in order to take into account both recrystallization and grain growth [13]. 

However, even if 2D results for isotropic grain growth seem to show a good agreement with the theory 

[14], the difficulty remains the non-natural treatment of the topological events, mainly in 3D, where 

the set of rules becomes very complex and numerically expensive [15]. Moreover, the nucleation 

modelling remains an open problem. 

Other methods suitable for the recrystallization modelling include the phase field model, as in 

[16], and the level-set method, as in [4,5,17]. These two methods have many common points. They 

have both the advantage of avoiding the difficult problem of tracking interfaces. More precisely, in 

both approaches, artificial fields are introduced for the sole purpose of avoiding this difficulty. The 

initial concept of the phase-field model was to describe the location of two phases by introducing an 

order parameter (the phase field) which varies smoothly from one to zero (or minus one to one) 

through a diffuse interface [18]. This concept has been extended to deal with more complex problems 

involving more than two phases and for modelling microstructure evolution [19,20]. In the case of 

polycrystalline microstructures, each grain orientation is used as a non-conserved order parameter 
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field and the free energy density of a grain is formulated as a Landau expansion in terms of the 

structural order parameters. The grain boundary energy is introduced as gradients of the structural 

order parameters and the boundaries themselves are represented by an isovalue of the order parameter 

fields. As for the MC or CA methods, the topological events are treated in a natural way as a result of 

energy minimization. In the case of 2D ideal normal grain growth, some results illustrate the potential 

of this approach [19]. However, the difficulties of the method remain: (i) the construction of the free 

energy density function which must reflect the physical properties of the microstructure and the 

considered problem; (ii) the very rapid change of the phase field across the diffuse interface which can 

involve very expensive and intensive calculations, particularly for three-dimensional systems; and (iii) 

the nucleation modelling which remains, despite recent developments [21], an open problem. 

In this paper, a new finite element model based on a level set framework, briefly described in 

[5], is shown to be effective in modelling primary recrystallization. The model works in 2D and in 3D, 

and computational cost is reduced thanks to an appropriate mesh refinement around the interfaces. As 

the interface moves, periodic remeshing is performed such as the refinement zone always coincides 

with the interface position. In primary recrystallization, the kinetics of interface motion is directly 

linked to the state variables stored in the mesh, related to the stored strain energy. The formalism also 

allows to trigger the nucleation of new grains, based on desired criteria (mechanical, crystallographic, 

etc.). In section 2 the context of the model is introduced. Section 3 then details the finite element 

approach and the associated level set framework. The associated meshing aspects – automatic meshing 

and remeshing – are developed in section 4. Numerical results finally illustrate the potential of the 

method in section 5, through several test cases and comparisons with the JMAK model. 

 

2. Context and equations 

 

It is generally assumed for pure metals that the kinetic law for grain boundary motion is well 

approximated by [2,22,23] : 

,nfMv
rr

∆=                                                                      (2) 

where M corresponds to the grain boundary mobility, f∆ to the driving force per unit area, and n
r
 to 

the outward unit normal to the grain boundary. Generally, as in [23], M  is calculated with: 
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                                                          (3) 

where b  is burger’s vector, δ  is the characteristic grain boundary thickness,  bD  the boundary self 

diffusion coefficient, bQ  the boundary diffusion activation energy and k  the Boltzmann’s constant.  

The driving force f∆ is defined by [2,22,23]: 

,2γκρτ −∆=∆f                                                                (4) 

where τ  corresponds to the dislocation line energy, ρ∆  to the total dislocation density difference 

across the interface, γ  to the grain boundary energy and κ to the curvature of the grain boundary. If 

we assume that the boundary energy is a function of the boundary misorientation, γ  can be defined 

by: 

,ln1 



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









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m

θ
θθ

θ
γγ                                                           (5) 

where θ  is the grain boundary misorientation, mγ  and mθ  are the boundary energy and misorientation 

when the grain boundary corresponds to a high-angle boundary. In first approximation, we can see the 

normal velocity defined in (2) as a multiple of the curvature of the interface plus the difference of the 

bulk energies. Considering the three grains configuration (in 2D) of figure 1(a), if each interface ijΓ  

separates grains iG  and jG , the oriented normal velocity from iG  to jG  can be defined as: 

( )( )ijijijijijij eecMnv −+=⋅ κrr
,                                                 (6) 

with 
ii

e τρ=  the average stored energy of grain iG  and ijijc γ2−= . The triple junction has prescribed 

angles which can be shown, as in [17],  to be defined by: 
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ααα == ,                                                        (7) 

with iα  the angle at the triple junction inside grain iG . The problem is complex, principally for the 

treatment of the triple junction where, initially, the curvature is not defined. Moreover, even in the 

simplified case where only bulk energies are considered, it has been shown that if no further 

conditions on the motion are imposed, the solution is not unique [24-26]. In [26] it is proved, by 

considering a particular energy functional, that if the energy of the interfaces are not null 

( ( )ji,  0 ∀≠ijc ), the time decrease of this functional is equivalent to the condition defined by equation 

(7). However if we consider only the bulk energy term of the velocity expression, the results are more 

complex: uniqueness of the solution is not guaranteed. For example, figure 1(a) describes an initial 

three grains configuration and figure 1(b) and figure 1(c) correspond to two solutions at t=1 for the 

problem described by equation (6) and this particular geometry. In [26] the authors developed the 

concept of "vanishing surface tension" solution (called VST solution) by considering the limit problem 

defined by: 

( ) ( ) 0. with ,ji,  →∀−+=⋅ εκε
ijijijijijijij

eeMcMnv
rr

                                (8) 

Using various 2D tests cases and a perturbation analysis, they strongly suggest that the VST solution 

corresponds to one of the solutions of the considered problem for 0=ε , while it corresponds to the 

unique solution of the problem for .0→ε  

 

(a)  

(b)   (c)  

Figure 1. (a) Example of a triple junction configuration; two solutions at t=1 of this 

configuration for the problem defined by equation (6): (b) the VST solution and (c) 

another solution. 
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In this paper, a new algorithm is proposed to model the problem defined by equation (6), in 

2D or in 3D, and for any polycrystalline microstructure configuration. The numerical approach is 

detailed but the treatment of the curvature term at the multiple junction and the simulations with this 

term will be discussed in a forthcoming publication. The presented approach is based on a level set 

method [5,25,26], now commonly used to follow propagating fronts in various numerical models [27-

29]. In Ref. [25], the authors have extended the standard level set method to model the motion of 

multiple junctions; the method is appropriate for the case of grain growth, i.e. with zero bulk energies. 

Each region has its own private level set function, and this function moves each level set with a 

normal velocity defined by the conditions at the nearest interface. A reassignment step is used to avoid 

kinematic incompatibilities, i.e. the development of vacuum and overlapping regions. The present 

model proposes a new formulation accounting for bulk stored energies as well as nucleation events, 

and still avoiding the development of vacuum and overlapping regions. 

 

 

3. Finite element model and level set framework 

 

3.1. Introduction 

 

Figure 2 illustrates the procedure of creating a virtual microstructure, and the associated finite element 

mesh. Figure 2(a) shows a two hundred grains digital sample [3,30-32], made of Voronoï cells,  The 

Voronoï tessellation is fully described by N seeds or Voronoï sites shown in Figure 2(b). Each site is  

defines a Voronoï cell or grain Gi, which consists of all points closer to is  than to any other site. The 

conversion of the Voronoï tessellation into a finite element mesh is illustrated in Figure 2(c). The 

location of the interfaces (grain boundaries) is defined implicitly using a level set framework. For each 

individual cell or grain, a signed distance function ,φ defined over a domain Ω , gives at any point x 

the distance to the grain boundary Γ . In turn, the interface Γ  is then given by the level 0 of the 

functionφ : 

 

{ }



=Ω∈=Γ
Ω∈Γ=
0)( ,

 ),,()(

xx

xxdx

φ
φ

                                                            (9) 

 

Assuming that the domain Ω  contains GN  grains, we have { }
G

Ni1 , ≤≤
i

φ  with the sign convention 

0≥iφ  inside grain iG , and 0≤iφ  outside grain iG . The procedure to evaluate these functions at all 

nodes x of the finite element mesh goes through evaluating the functions 

,ij ,Nji,1 ,
2

1
)( G ≠≤≤

⋅
−= →

→→
→

ji

iji

jiij

ss

xsss
ssxα                                    (10) 

which correspond to the signed distance of x to the bisector of the segment [ ]ji ss , . )(xiφ  is then 

defined as: 

 

( ))(min)(

   
1

xx ij

ij
Nj

i
G

αφ
≠
≤≤

= .                                                        (11) 

One can also define a global unsigned distance function as: 

 

{ }.1),(max)( Giglob Nixx ≤≤= φφ
                                             

(12) 

 

This function is positive everywhere and the zero value corresponds to the grain boundary network. 

Figure 2(c) displays the function )(xglobφ  corresponding to the microstructure of Figure 2(a) and 

calculated at the nodal points of the finite element mesh (in white). 
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(a)  (b)  

 

(c)  

Figure 2. (a) A 200 grains virtual cubic microstructure; the color scale describes the identity 

of the different grains, (b) the corresponding Voronoï sites, (c) the corresponding 

)(xglobφ function for the finite element mesh, the latter appears in white. 

 

If a velocity field v
r
 is defined over Ω , the motion of the interfaces (or any surfaces defined by a 

given isovalue of the level set functions) is described by:  

 

{ }.N,1,i ,

)(),0(

0
G

0

K

r

∈∀








==

=∇⋅+
∂
∂

xxt

v
t

ii

i
i

φφ

φφ
                                       (13) 

 

At any time t the interface iΓ  of grain 
i

G  is given implicitly by the equation .0),( =xtiφ  The 

expression of v
r
 in Ω  will be detailed in paragraph 3.4. If the initial value of equation (13) is a signed 

distance function, a priori it is not the case of the solution ( )1),( ≠∇ xtiφ . If one wants to keep the 

property of a distance function, a re-initialization technique is introduced and applied periodically 

[28,33], as detailed below.  

 

3.2. Re-initialization 

 

The re-initialization technique consists in building, from a level set function φ  which is not a 

signed distance function, a new signed distance function β  whose zero isovalue corresponds to the 
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zero isovalue of φ . The most common method to re-initialize level set functions is to solve the 

following Hamilton-Jacobi equation [28]: 

 

 








==

=−∇+
∂
∂

),(),0(

0)1(

xtx

s

ii

ii
i

φτβ

β
τ
β

, with ).( ii signs β=                (14) 

 

In practice, equation (14) is solved periodically, typically every few time steps. Equation (14) can be 

seen as a pure convective equation. Indeed, if we write 
i

i
ii sU

β
β

∇
∇

=
r

, it becomes: 

 








==

=∇+
∂
∂

),(),0(

.

xtx

sU

ii

iii
i

φτβ

β
τ
β r

                                                        (15) 

 

To define the fictitious time τ , a stability condition is used: hU i =∆=∆ ττ
r

, where h corresponds 

to the mesh size. Hence the fictitious time step is usually chosen as h . 

To summarize, this algorithm allows to transform a given irregular level set function into a distance 

function without changing the zero isovalue. This is illustrated in Figure 3: Figure 3(a) represents an 

irregular level set function with 50 equally spaced isovalues (with the zero level in bold), and figure 

3(b) corresponds to the re-initialized level set function.  

In this paper, we propose to use a formulation developed in [33] which performs the stage of re-

initialization automatically during the resolution of the convection problem. The formulation is 

recalled below. 

 

3.3 Automatic re-initialization 

 

 The idea proposed by this author is to modify equation (13) in order to keep the property of a 

signed distance function. The parameter dtd /τλ =  is introduced (in practice th ∆≈ /λ ), to write the 

following equality )(
1 ∇⋅+

∂
∂=∇⋅

∂
∂+

∂
∂

∂
∂=

∂
∂

v
t

x

t

t r

λτττ
 and to transform equation (14): 

 

0)1(. =−∇+∇+
∂

∂
iii

i sv
t

βλββ r
.                                           (16) 

 

The new formulation with convection and re-initialization becomes: 

 

{ },N,1,i ,
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which can be written as a pure convective problem: 

 

( ) { }.N,1,i ,
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G

0

K
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Remark 3.1: the function ( )ii ss φ=  can take the values 1, -1 or 0 if .0=iφ  To force equation (18) to 

be conservative near the interface, the following expression is used: 

 

. ,   if  0 ,  if i hss ii

i

i
i ≈≤=>= εεφεφ

φ
φ

                                   (19) 

 

Remark 3.2: we refer the reader to [33] for a complete description of the method and its possible 

extension (regular truncation of the level set functions). 

 

(a)  

 

(b)  

Figure 3. (a) An irregular level set function with 50 equally spaced 

isovalues and the zero level in bold, (b) the same representation after re-

initialization. 

 

3.4 Expression of the velocity field 

 

In the considered problem, the expression of the velocity field is of prime importance. 

Several comments should be made: 

 

• In order to avoid kinematic incompatibilities (overlapping or vacuum regions), it is necessary 

to work with the same velocity field for all the level set functions. However the kinetic law 

defined by equation (6) is built according to parameters which are specific to a single level set 

function (grain): bulk stored energy difference across the boundary and unit normal 

(neglecting the curvature term). 

• The construction of the velocity field around multiple junctions is critical for a good 

description of microstructure evolution. On a numerical point of view, it must be as regular as 

possible. 

• The expression (6) of the kinetic law implies a very accurate calculation of the normal to each 

interface.  

 

The proposed level set framework gives an answer to each of these comments. Concerning the 

geometric parameters of the interface, it is well known that the level set method is perfectly adapted to 

their accurate calculation [25]. Indeed, keeping in mind the sign convention described previously, if 

the function iφ  corresponds to the signed distance function of grain iG : 

- The outward unit normal to any isovalue of  iφ  is defined by:  

i

i

i

i
i

n φ
φ
φ

φ
∇−=

∇
∇−=

=∇ 1

r
.                                                          (20) 
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- The curvature of any isovalue of  iφ  is defined by:  

 

iii
i

n φκ
φ

∆=⋅−∇=
=∇ 1

r
.                                                            (21) 

 

Concerning the definition of the velocity field, it is useful to divide it in two parts: evvv
rrr

+= κ . The 

first part is related to the curvature of the boundary, while the second part refers to the bulk energy 

term. First of all, some general remarks apply: 

 

• At any time t  a given point Ω∈M  of coordinates x , is easily located, i.e. the grain to which 

it belongs is easily identified. Indeed, as the set { }Gi Ni1 ,\ ≤≤ΓiG corresponds to a 

partition of the domain Ω  and with the sign convention described previously, the following 

results are verified:   

 

( ) ,0,i =⇔Γ∈ xtM iφ                                                         (22) 

( ) ( ) .0, 0,\ ji ≤≠∀⇔>⇔∉⇔Γ∈
≠

xtijxtGMGM ij
ij

i φφU                   (23) 

 

• The description of an interface by a level set function remains a « fuzzy » description, which 

means that the zero level of the level set function (the interface) does not inevitably 

correspond to nodes of the mesh. The point M  is located using the following relationship: 

 

( ) ( )( ).,max,
1

xtxtGM k
Nk

ii
G

φφ
≤≤

=⇔∈                                               (24) 

A classical way to build the velocity field v
r
, for any node of the mesh, is as follows: 

 

• Find i with ( ) ( )( )xtxt k
Nk

i
G

,max,
1

φφ
≤≤

= . 

• Compare ( )xti ,φ  with a positive fixed parameter l which defines a length scale related to the 

proximity of the node to the interface: 
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l

φφφ
φ

,       (25)    

with f a decreasing continuous function varying from 1 to 0 when ( )xti ,φ  varies from 0 to l , and 

ijM  the mobility at the interface between grain i  and grain j . The main disadvantage of this 

approach lies in the management of multiple junctions: discontinuous velocity fields are generated, 

which then lead to convergence problems in the resolution of the convection equation (18). We 

propose another algorithm which considers, at any point x , all GN  level set functions: 

 

Find i with, 

  ( ) ( )( ) ( ) ( ),,)(),(exp),(,max,
1

1
∑

≠
=≤≤

−−=⇒=
G

ij

G

N

j

jjijijek
Nk

i xtneextMxtvxtxt
rr φαφφ          (26) 

with α a positive fixed parameter [5]. Expression (26) leads to a smoother velocity field and avoids 

topological considerations, i.e. there is no need to identify neighbouring grains at point x . The 
difference between these two approaches (25) and (26) is illustrated in [5] for the triple junction case 

of Figure 2, where the smoothing effect of (26) appears clearly when compared to (25). As stated 

earlier, we do not detail here the method used to estimate the curvatures of the interfaces (defined by 

the functions φ∆− ), in particular at multiple junctions where these curvatures are not defined. All 
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simulations described in section 5 will therefore involve only the stored energy part of the velocity, in 

the context of primary recrystallization phenomena. 

To summarize, the velocity field for primary recrystallization could be defined as follows: 

                     ( ) ( ) ( ) ( )∑∑
= =

≠

∇−−==
G G

ij

i

N

i

N

j

jijjijGe xteextMxtxtvxtv
1 1

,)(),(exp,),(, φφαχrr
,               (27) 

with ( )xt
iG ,χ  the characteristic function of the grain iG . To solve the problem defined by equations 

(18) and (27), a finite element method based on the C++ library ‘Cimlib’ [33] is used, with 

unstructured meshes and a stabilized P1 solver as SUPG or RFB method. The quality of the described 

approach is strongly related to the accuracy of level set function calculations around the interfaces. 

Indeed, a little disturbance of the levels around an interface leads to an error in the velocity estimation 

and consequently in their own evolution. For a given computational cost, optimal accuracy is obtained 

by using anisotropic meshes, with refinement close to the boundaries [3-5]. The technique to generate 

anisotropic meshes adapted to a polycrystalline aggregate is presented in section 4. 

 

3.5 Nucleation modelling and disappearance of grains   

  

 One of the prominent advantages in using front capturing methods for describing interface 

motion is that there is no need for specific treatment when some regions (grains) disappear. Complex 

topological evolutions are handled automatically. In a similar way, it is possible to introduce new 

regions (grains), based on given criteria. For example, new grains can nucleate during primary 

recrystallization, with an assumed low (often zero) stored energy. 

 A very simple method to create a nucleation site is to build a new signed distance function at a 

desired time increment and at a given spatial position. For example, the new distance function can be 

such that the boundary of the nucleus is spherical (3D) or circular (2D), centred around one node of 

the mesh. Each nucleus, described by a new signed distance function, evolves subsequently according 

to the principles described by equation (27). In particular, spontaneous growth occurs if a zero stored 

energy is assumed inside the new region. Different rules have been developed for the time and space 

nucleation laws. For example, at each time step of the simulation, a probabilistic or deterministic law 

of nucleation can be used considering a set of possible nucleation sites. This set can be chosen in 

different ways: (i) randomly in the domain Ω, (ii) only at grain boundaries, or (iii) according to 

specific criteria based on crystallographic or mechanical variables calculated from a previous 

deformation step of the polycrystal. This last method can be implemented for example when the 

deformation step is modelled using crystal plasticity based constitutive laws [34]. 

Instead of nucleating new grains, topological evolutions can also lead to the disappearance of 

grains. Level set methods automatically manage this type of event, but the numerical cost of the 

simulation needs to be considered. It is clearly optimized by not taking into account the signed 

distance functions which correspond to grains which have disappeared. Each level set function indeed 

leads to a computational effort related to the evaluation of the velocity field according to the kinetic 

law (27), the resolution of the convection equation together with the re-initialization (18), and the 

remeshing operations around the interface every few increments. Hence, the problem solved evolves 

dynamically during the calculation: for each time step, the signed distance functions which become 

negative on the whole domain (disappearance of the corresponding grain) are excluded from the 

calculation as well as the corresponding solvers. 

 Finally, at each time step, the following simplified algorithm concerning the nucleation and 

the disappearance of grains is used: 

 

- Evaluations of the maximum of each signed distance function and decision to exclude or not the 

corresponding grain. 

- Probabilistic or deterministic rule to choose the new nucleation sites (in agreement with the set 

of possible sites, and ignoring the part of the domain which is already recrystallized). 

- If at least one nucleation site is activated, the corresponding new signed distance functions are 

built and the signed distance functions of the existing grains, which have an intersection with these 

new grains, are accordingly modified. 
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- If at least one site is activated, an anisotropic remeshing operation is performed to obtain an 

adapted anisotropic mesh around the new grain(s). 

- Velocity field re-evaluated in the new topological configuration. 

 

Tests cases illustrating this algorithm will be described in section 5. 

 

4. Generation of finite element meshes 

 

Figure 4(a) and figure 4(b) illustrate an adapted anisotropic mesh to the microstructure 

detailed in Figure 2. The mesh is made of tetrahedral elements, whose size and shape are not 

homogeneous. Anisotropic meshing is used along the interfaces of the grains, with a smaller size in the 

direction perpendicular to the boundary.  

 

(a)  (b)  

Figure 4. (a) An adapted anisotropic mesh to the microstructure detailed in Figure 2, (b) A 

zoom on the surface of a triple junction 

 

The technique used to generate such meshes lies in the definition of a metric. A metric is a symmetric 

positive defined tensor which represents a local base modifying the way to compute a distance, such 

that: 

                                           uuu t rrr
M

M
= ,  vuvu t rrrr

MM=>< , .          (28) 

 

If M  is the identity tensor, the distance corresponds to the usual one in the Euclidian space. As M is a 

symmetric positive defined tensor, it is diagonalizable in an orthonormal basis of eigenvectors and all 

the eigenvalues are strictly positive. The metric M  can be interpreted as a tensor whose eigenvalues 

are linked to the mesh sizes, and whose eigenvectors define the direction in which these mesh sizes are 

applied. Let us consider the simple case of figure 5 with only two grains (hence, one interface). The 

direction of mesh refinement is the unit normal to the interface (vector φ∇  in figure 5). To specify the 

mesh size in that direction, and its evolution in space, a characteristic thickness E  is introduced (see 

figure 5): 
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                                          (29) 

The mesh size takes a default value far from the interface, and is reduced in the direction 

perpendicular to the interface when φ  is reduced. A simple example is given by the following choice 

of h : 
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At the interface the mesh size is reduced by a factor m  with respect to the default value dh . This mesh 

size increases with the distance φ  to the default value dh  at the distance 2/E . The unit normal to the 

interface φ∇ , and the mesh size h  defined by equation (30), lead to the following metric: 

 

( )
2

dh
C

Id
M +∇⊗∇= φφ  with 













<−

≥

=

2

11

2
0

22

E
if

hh

E
if

C

d

φ

φ
                         (31) 

 

with Id the identity tensor. This metric corresponds to an isotropic metric far from the interface (with 

a mesh size equal to dh for all directions) and an anisotropic metric near the interface (with a mesh size 

equal to h  in the direction φ∇  and equal to dh for the other directions, i.e. in the plane normal to 

φ∇ ). 

 When dealing with polycrystalline aggregates and multiple interfaces, the above strategy is 

repeated for each grain. Combining all information, the number of refinement directions is then 

evaluated at each node of the mesh. For the nodes at which: 

 

( ) Gi NEx ≤≤≥ i1 ,2/φ ,                                                         (32) 

 

there is no direction of refinement, and the mesh size is isotropic with 
d

hh = . As the number of 

directions of refinement increases, the mesh size is reduced in one or several directions. This happens 

when there is more than one level set function for which 2/)( Ex
i

<φ , and when the corresponding 

normal directions in
r

 calculated from equation (20) are not co-linear. A vector base is then 

constructed from these normals, and refinement is performed along these independent vectors, which 

are the eigenvectors of the metric. For each vector direction the mesh size is calculated from equation 

(30), with )(xiφ  being the signed distance function associated to the considered normal. At triple or 

multiple junctions, the refinement may therefore become isotropic [35]. 

Anisotropic meshes are built using the MTC mesher-remesher developed by T. Coupez [36], it is 

based on local mesh topology optimizations and works for all meshing applications from adaptive 

remeshing to mesh generation by using a minimal volume principle. MTC improves a mesh topology 

by considering the quality of the elements. The quality of an element is defined through a shape factor 

that gives to equilateral triangles the highest quality, while the worst quality corresponds to a triangle 

which degenerates into a segment (2D). In 3D, degeneration corresponds to a tetrahedron becoming a 

surface. The element quality is normalised within an interval [0,1], and the shape factor is given by : 

 

                                                               
del

e
cec

)(
)( 0= ,                                                                 (33) 

 

where 0c  is a normalised coefficient, e  the volume of the element, ( )el  the average length of the 

element edges and d  the space dimension. The shape factor takes into account the metric by 

calculating volume and lengths according to equation (28). More details and illustrations of the 

robustness and capability of this meshing technique for microstructure are described in [35]. 
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  Figure 5. A 2D grain boundary  

 

 

5. Numerical results 

 

 As explained in section 3, the investigated applications study the motion of interfaces under 

ev
r
 caused by the spatial distribution of bulk stored energy, in the context of primary recrystallization. 

For the sake of simplicity, the mobility is assumed to be a constant equal to one, independent from the 

crystallographic nature of the interfaces. 

 

5.1 A three grains academic test case 

 

The first test case, which is very classical and instructive [5,26], corresponds to the 

configuration detailed in figure 1: three straight lines meeting at 120° in an unit square domain. We set 

231 == ee  and 12 =e , the challenge is to check the growth of grain 2 at the expense of grains 1 and 

3. The time step considered is equal to 1.4e-3 s. Figure 6 shows the comparison, after 20 time steps, of 

isovalues of 1φ  using an adapted anisotropic mesh, with and without re-initialization. This comparison 

illustrates the need for re-initialization steps of the level set functions to avoid the appearance of 

discontinuities and associated numerical instabilities. Figure 7 shows the influence of the mesh on the 

evolution of the distance functions. Lines indicate the 
3105 −⋅±  isovalues of the three distance 

functions as a function of time, with an isotropic constant mesh size equal to 0.01 and with an adapted 

anisotropic mesh close to the interfaces. In the latter case, automatic operations of anisotropic 

remeshing are performed every five time steps in order to track the interfaces and the anisotropic 

metric was built thanks to equation (31) with 015.0=E , 01.0=dh  and 31 −= eh . The bad quality 

of the results with an isotropic constant mesh underlines the need to work with very fine meshes near 

the interfaces. Working with anisotropic meshes avoids the use of too fine elements far from the 

interfaces. At the same time, it is seen in figure 7 that the non uniform anisotropic meshing procedure 

leads to results which are in very good agreement with one of the exact solutions of this configuration 

(see [26] or Figure 1), although this solution does not correspond to the VST solution. In terms of 

accuracy, the 2L  error between the exact and calculated function defined by ( )( )







≤≤≤≤
xtk

NkTt Gend

,maxmax
10

φ  

is less than 3%. At the triple junction, the numerical treatment smoothes out the geometrical 

discontinuity and, as underlined in the introduction, it is a way of imposing the uniqueness of the 

solution, i.e. the configuration now evolves in a deterministic way. The numerical result is coherent 

with the construction method of the velocity field, which allows (i) the accurate account of stored 

energy differences across boundaries, and (ii) regularizing the discontinuous nature of the problem, 

incompatible with the resolution of the convection equations given by (18). Obviously, the proposed 

numerical strategy has a cost. On average, there is an approximate 10% difference in terms of number 

of nodes or elements between the constant isotropic mesh and the non uniform anisotropic mesh. 

Besides, the cost of successive remeshing operations (typically every 5 time steps) must be added to 
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this 10% difference. The simulation of Figure 7 was performed on 4 processors of an Opteron 2,4GHz 

linux cluster in 7min20s with no remeshing, and in 18min32s with automatic anisotropic remeshing. It 

is therefore important to find a good compromise between numerical cost and desired accuracy. 

 

(a)  (b)  

Figure 6. Function 1φ  after 20 time steps: (a) without re-initialization and (b) with re-initialization 

 

5.2 A simple nucleation case 

 

 Figure 8 describes primary recrystallization in a unit square domain, starting from a 25 grains 

aggregate. A uniform stored energy field is assumed initially, such that the recrystallization front is 

convected everywhere with a velocity of the same magnitude. A random set of 1000 potential 

nucleation sites is considered, and a probability of activation of 410.2 −  is used at each time step of the 

simulation. A new activated site is effectively taken into account if it does not belong to the existing 

recrystallized volume fraction of the domain. Figure 10 illustrates the evolution of the recrystallized 

volume fraction in white. The computation time is 30 minutes, performed on 8 processors of the 

cluster described previously. Two hundred time steps were necessary to achieve 100% of 

recrystallization with an automatic remeshing operation every five time steps and a time step equal to 

8.6e-3 s. The anisotropic metric was calculated thanks to equation (31) with 04.0=E , 01.0=dh  and 

366.2 −= eh . The adopted level set framework, associated with the smoothed definition of the 

interface velocities, and automatic adapted remeshing operations, is shown here to systematically 

avoid kinematic incompatibilities (no development of vacuum or overlapping regions [23]). 

Furthermore, the approach is very effective and natural in the modelling of nucleation events. 

Comparison can be made with the JMAK theory [6,37,38] predicting the recrystallized volume 

fraction X as a function of the annealing time t using equation (1). Assuming a two-dimensional 

growth, the JMAK theory predicts n=3 for a low and constant nucleation rate. A linear kinetics refers 

to a constant value of n; i.e. a linear JMAK plot displaying ln[-ln(1-X)] as a function of ln(t). A least-

square regression analysis on the numerical results of Figure 8 was performed, providing n=2.95. 

Figure 9 describes the comparison between the numerical results and the curve obtained by the least-

square regression. This result is considered as a validation of our model in 2D. 
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(a)  (e)  

(b)  (f)  

(c)  (g)  

(d)  (h)  

Figure 7. 
3105 −⋅± isovalues of the three distance functions with isotropic mesh after  

(a) 0, (b) 120, (c) 300 and (d) 395 time steps and with adapted anisotropic mesh at the 

grain boundaries (darker orange) after (e) 0, (f) 120, (g) 300 and (h) 395 time steps 
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(a)  (b)  

(c)  (d)  

(e)  (f)  

Figure 8. 2D simulation of primary recrystallization with an initial uniform stored energy. 

Recrystallized part in white corresponding to volume fractions of (a) 1%, (b) 10%, (c) 40%, (d) 

60%, (e) 90% and (f) 100% 
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Figure 9. JMAK approximation of the numerical recrystallization kinetics extracted 

from Figure 8. 

 

5.3 A case with stored energy  

 

A ten grains microstructure in a unit cubic domain is considered, and mechanical testing is performed 

using finite element simulations where each integration point of the mesh behaves as a single crystal 

subjected to finite strain increments. The finite element approach is based on a mixed velocity–

pressure formulation with an enhanced (P1+/P1) four-node tetrahedral element [39]. Classical theory 

of crystal plasticity [40,41] is considered, using a slightly modified version of the time integration 

algorithm developed by Delannay et al. [34,42]. For computational efficiency, one computes rates of 

lattice rotation and rates of dislocation slip in a decoupled way. The objective of the test case is to 

analyze the spatial distribution of stored strain energy in a digital aggregate, subjected to large 

deformations. A channel die test has been chosen. Slip is assumed to operate on the 12 {111}<110> 

slip systems as is typically considered in fcc crystals at room temperature. For more details, see 

[34,35]. A 20% reduction in height is applied, and the stored energy is computed from: 

 

∫ ∇= dtvEn  :
rσδ .                                                           (34) 

 

with δ the fraction of the strain energy which is stored in the material, considered constant in a first 

approximation. The stored energy corresponds to defects (dislocations essentially), which represent 

the driving force for subsequent static recrystallization when performing a heat treatment. Figure 10 

illustrates the final stored energy distribution and the corresponding norm of the stored energy gradient 

En∇ , together with the adaptive and anisotropic meshing used to model subsequent recrystallization 

(see section 4 for the meshing strategy). More accurate measures of stored energy could be 

implemented in the future, by directly relying on dislocation densities computed within the crystal 

plasticity approach [43]. 
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(a)  (b)  

(c)  (d)  

Figure 10. A 3D ten grains microstructure after plastic deformation: (a) external surface view of 

stored energy, (b) corresponding norm of the stored energy gradient ( En∇ ), (c) volumetric view 

of the stored energy with grain boundaries in black and (d) adaptive and anisotropic meshing in 

white, grain boundaries in black. 

 

 

The calculated stored energy field is used as an input to model recrystallization. A normalized average 

of the stored energy is computed for each grain iG , and the distribution of En∇  is used to define the 

set of potential nucleation sites. The selection of 1000 potential sites is done by choosing the nodes of 

the mesh for which En∇  is the highest, while considering a safe distance between two neighbouring 

nuclei equal to 3 times the average element size. As for the previous test case, a probability of 

activation of 410.2 −  is used at each time step, and 1200 time steps were simulated to achieve 100% of 

recrystallization with a time step equal to 3e-3 s. Figure 11 illustrates the increasing recrystallized 

volume fractions and the corresponding recrystallized front in blue. The simulation was performed in 

6 hours on 16 processors of the cluster described previously and the final microstructure is made of 27 

grains. The anisotropic metric was calculated thanks to equation (31) with 1.0=E  for the anisotropic 

thickness, 05.0=dh  and 366.6 −= eh . 

Comparisons with the JMAK theory were performed again, and are described in Figure 12. A first 

simple comparison was done with no consideration of the stored energy field, with a random choice of 

nucleation sites. A least-square regression analysis on the numerical results provided a JMAK 

exponent n=3.91 (Figure 12(a)), while the theoretical value is n=4 in 3D. This result validates our 

method in 3D. The second case, illustrated by Figure 12(b), corresponds to the numerical 

recrystallization kinetics of the numerical simulation described by Figure 11. Interestingly, in this 

case, a single value of n does not allow fitting the numerical results with sufficient accuracy. This 

result must be placed in the context of repeated discussions in the literature on the reasons of 

deviations from the standard JMAK theory. Heterogeneous distribution of stored energy [44], and, 

spatial and time distribution of nuclei [45] can explained these deviations. These can be studied in 

details with the present level-set model. 
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(a)  (f)  

(b)  (g)  

(c)  (h)  

(d)  (i)  

(e)  (j)  

Figure 11. 3D recrystallization with a non uniform initial stored energy field: external 

surface view of the stored energy for recrystallized volume fractions of (a) 1%, (b) 15%, 

(c) 58%, (d) 80%, (e) 95%, and corresponding recrystallized front in blue (f-j). 
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(a)  

(b)  
Figure 12. JMAK approximations of the numerical recrystallization kinetics 

extracted from Figure 11: (a) random choice of nucleation sites, low and 

constant nucleation rate of 410.2 − ; (b) considering the non uniform stored 

energy field and choosing nucleation sites at highest values of En∇ . 

 

   

6. Conclusion 
 
 It has been shown that a finite element model associated to a level set framework, using 

adaptive anisotropic automatic remeshing, is a promising tool to describe primary recrystallization in a 

polycrystalline material. A special smoothing algorithm is applied to the calculated velocity field, 

which allows avoiding the appearance of vacuum or overlapping regions. The method allows efficient 

and natural modelling of nucleation phenomena.  On going work is currently addressing:  

• The modelling of primary recrystallization with stored energy due to prior deformation steps, 

modelled with crystal plasticity and 3D aggregates composed of a statistical number of grains.  

• Comparisons with experiments and other models, like the Monte-Carlo or phase field 

methods. 



 21 

• The respective influences of initial microstructure topology, stored energy field, and local 

crystallographic orientations, on the nucleation and growth kinetics involved in static 

recrystallization. 

• The extension of the method to model grain growth and discontinuous dynamic 

recrystallization. 
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