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A new protein binding pocket similarity measure
based on comparison of clouds of atoms in 3D:
application to ligand prediction
Brice Hoffmann1,3,4†, Mikhail Zaslavskiy1,2,3,4*†, Jean-Philippe Vert1,3,4, Véronique Stoven1,3,4

Abstract

Background: Predicting which molecules can bind to a given binding site of a protein with known 3D structure is
important to decipher the protein function, and useful in drug design. A classical assumption in structural biology
is that proteins with similar 3D structures have related molecular functions, and therefore may bind similar ligands.
However, proteins that do not display any overall sequence or structure similarity may also bind similar ligands if
they contain similar binding sites. Quantitatively assessing the similarity between binding sites may therefore be
useful to propose new ligands for a given pocket, based on those known for similar pockets.

Results: We propose a new method to quantify the similarity between binding pockets, and explore its relevance
for ligand prediction. We represent each pocket by a cloud of atoms, and assess the similarity between two
pockets by aligning their atoms in the 3D space and comparing the resulting configurations with a convolution
kernel. Pocket alignment and comparison is possible even when the corresponding proteins share no sequence or
overall structure similarities. In order to predict ligands for a given target pocket, we compare it to an ensemble of
pockets with known ligands to identify the most similar pockets. We discuss two criteria to evaluate the
performance of a binding pocket similarity measure in the context of ligand prediction, namely, area under ROC
curve (AUC scores) and classification based scores. We show that the latter is better suited to evaluate the
methods with respect to ligand prediction, and demonstrate the relevance of our new binding site similarity
compared to existing similarity measures.

Conclusions: This study demonstrates the relevance of the proposed method to identify ligands binding to known
binding pockets. We also provide a new benchmark for future work in this field. The new method and the
benchmark are available at http://cbio.ensmp.fr/paris/.

Background
Predicting which molecules can bind to a given binding
site of a protein with known 3D structure is important to
decipher the protein function, and useful in drug design
to identify drug precursors or predict potential side
effects if a drug candidate is predicted to bind to many
protein pockets. A classical assumption in structural biol-
ogy is that the 3D structure of a protein is related to its
molecular function, i.e., the nature of its partner mole-
cules. Most available programs for structure visualization
provide tools for 3D structure superposition and

comparison, which may help to predict the nature of a
protein ligand from those of other proteins with overall
similar 3D structure [1]. However, proteins that do not
display any overall sequence or structure similarity may
present similar binding sites, and consequently also share
similar ligands. Therefore, comparison of binding pockets
is a more appropriate approach in order to predict if two
proteins bind similar ligands [2], and many ligand predic-
tion methods rely on local 3D comparisons at the binding
site, using various ways to perform the comparison. For
example, [3] compared pockets described with real sphe-
rical harmonic expansion coefficients, [4] used a specia-
lized geometric hashing procedure as the core of the
SitesBase web server, [5] developed a method that detects
multiple common sets of points. An approach proposed
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by [6] is based on the representation of binding pockets
by triangle-discretized spheres. [7] and [8] considered
graph-based representations of binding pockets and
applied graph matching algorithms. Finally, [9,10] com-
bines the identification of a binding site on a whole pro-
tein 3D structure and its comparison to a reference
binding site, using a geometric hashing procedure.
Our contribution in this paper is twofold. First, we pro-

pose a new similarity measure to compare binding pock-
ets of proteins. For that purpose, we represent a binding
pocket by a cloud of atoms in the 3D space, potentially
baring labels such as partial charges or atom types. The
method relies on the modeling of local protein structures
are rigid bodies, and we therefore represent a protein
pocket as a cloud of points with fixed relative positions.
The new similarity measure is based on a convolution
kernel between clouds of points, and allows to align pro-
tein pockets. The method provides a superposition of
two pockets even if their corresponding proteins present
no overall sequence or 3D structure similarity. One
important difference between this approach and most
existing methods is that it does not require any pairwise
matching of atoms (or superatoms), or residues, in order
to compare protein binding pockets. Instead we attempt
to capture the similarity of atom densities in the 3D
space. This confers smoothness properties to the pro-
posed similarity measure. Second, we propose to use a
classification method to predict ligands for target pockets
according to their similarity scores with a set of pockets
with known ligands. This approach is able to handle the
difficult case where different families of pockets binding
the same ligand are present. This may be observed when
the ligand is flexible and can be bound in various confor-
mations by pockets displaying different topologies.
An important question debated is how to compare the

quality of similarity measures. We underline that it is
not possible to define an intrinsic quality for a similarity
measure, because there is no absolute reference. Similar-
ity measures can only be compared according to the
question of interest.
Here, we evaluate quality of similarity measures with

respect to their ability to predict a ligand for a pocket.
Although the area under ROC curves (AUC scores) are
commonly used [2], we show that classification-based
scores better compare the performances of similarity
measures for ligand prediction.
We test our method on a benchmark proposed by

other authors, in order to compare our new method to
other published algorithms. We also test the methods
on a new benchmark containing non redundant protein
pockets binding ligands of similar sizes, typical of that
of drug molecules, corresponding to a more realistic
problem. We provide this new dataset as a publicly
available benchmark.

Methods
Convolution kernel between clouds of atoms
In our model, a binding pocket is described by a set of
atoms in the 3D space. Our objective is to construct a
similarity measure between pockets, which may be used
to identify pockets binding the same ligand.
Let P x li i i

N= =( , ) 1 denote a binding pocket consisting
of N atoms, where xi Î R3 is a 3D vector representing
atom coordinates, and li is a label (discrete or real
valued) that may be used to store additional information
on the atoms (for example, atom type, atom partial
charge, or amino acid type).
A classical approach for pocket comparison is to itera-

tively align two pockets and further count the number
of overlapping atoms, usually within a tolerance of 1 Å.
Different implementations of this principle can be found
in such methods as the Tanimoto index [11], the Sites-
Base algorithm (Poisson index, [12]), or the MultiBind
algorithm [5]. The alignment is made to maximize the
number of overlapping atoms, which is generally a good
indicator of pocket similarity. However, atoms may have
different positions but play equivalent roles in ligand
binding (for example, the side chain of a basic residue
may bind a phosphate group of an ATP molecule from
different positions), and the role of one atom in one
pocket may be played by a group of atoms in another
one. These observations suggest the idea of an alterna-
tive smooth score which would not count the number
of overlapping atoms, but rather use a weighted number
of atoms having similar positions. We first consider the
case where labels are ignored, and only atom coordi-
nates are used to measure the similarity between pock-
ets. Then, we explain how the information on atom
labels may be introduced in the new similarity measure.
Given two pockets P1 and P2 the similarity measure K

(P1, P2) is defined as follows

K P P e

xi y j

y Px P ji

( , )

|| ||

.1 2

2

2 2

21

=

− −

∈∈
∑∑  (1)

In fact, this similarity measure defines a positive defi-
nite kernel, i.e. it may be considered as a true scalar
product on atom clouds that represent binding pockets
[13]. Implicitly, it defines the following distance between
pockets, which has all standard properties of a true
metric (non-negativity, identity of indiscernibles, sym-
metry, triangular inequality):

D P P K P P K P P K P P( , ) ( , ) ( , ) ( , ).1 2 1 1 2 2 1 22= + − (2)

The parameter s characterizes the sensitivity of the
similarity measure (1) to points relative displacements.
When s is small, only atoms which are close to each
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other significantly contribute to K(P1, P2). On the con-
trary, when s is large, almost all pairs of atoms contri-
bute to K(P1, P2). The kernel (1) is an example of a
convolution kernel [14,15] between sets of points. Alter-
native kernels may be constructed by substituting the

Gaussian kernel
e

xi y j− −|| ||2

2 2
by any other kernel

between 3D vectors xi and yj
Alternatively, the kernel (1) defined between sets of

points can also be thought of as a kernel between mass
distribution functions estimated from sets of points [16].
More precisely, let us represent each binding pocket Pi
by a distribution of masses defined as the sum of Gaus-
sian functions with bandwidth s/ 2 and centered on
the pocket atoms, namely:

f x e

x xi

P

x P
i

i i
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|| ||
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− −

∈
∑

2

2

Then kernel (1) between pockets P1 and P2 can be
recovered, up to a scaling constant, as the scalar product
in L2(R

3) between the associated mass distributions:
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where C is a positive constant. In particular, the dis-
tance (2) between pockets can be thought of as the L2
(R3) distance between the corresponding mass distribu-
tions, namely:

D P P C f f

C f x f x dx

P P L

P P

( , ) || ||

( ( ) ( )) .

( )1 2

2

1 2 2
3

1 23

= ′ −

= ′ −∫




This probabilistic interpretation shows that, intuitively,
the similarity score is preserved as far as the corre-
sponding mass distributions are stable. It is therefore
robust to small uncertainty in 3D coordinates.
However, formula (1) is not fully appropriate in prac-

tice, because the proposed measure is not invariant
upon rotations and translations of the binding pockets.
Therefore, we define a similarity measure sup-CK as the
maximum of (1) over all possible rotations and transla-
tions of one of the two pockets:

sup-CK( , )

max

|| ( ||

,
,

,

P P

e

xi Ry j yt

R y
x P y Pt

i j

1 2

2

2 2

1 2

=

− − +

∈ ∈
∑ 

(3)

where R is an orthonormal rotation matrix and yt is a
translation vector. Sup-CK is not a positive definite mea-
sure anymore, but can still be used as a similarity score.
In particular, the interpretation of the similarity as a
comparison of mass densities is still valid after the rigid
motion. Furthermore, to evaluate sup-CK, we now need
to maximize a non-concave function over the set of
rotations and translations, which may have many local
maxima. Exact maximization of this non-concave func-
tion is a hard optimization problem. An approximate
solution can be estimated by running a gradient ascent
algorithm, starting from many different initial points,
and taking the best local maximum. Choosing initial
points near the global optimal can then help find a bet-
ter solution and accelerate the optimization. In the case
of binding pockets, we found experimentally that, rather
than starting from random initial points, a good approx-
imation of the optimal translation vector yt is the vector
which translates the geometric center of P2 into the geo-
metric center of P1:

y
N

x
N

yt i i

y Px P ii

= −
∈∈
∑∑1

1

1

2
21

.

Similarly, an approximation of the optimal rotation
matrix R is the rotation that superposes the first principal
axis of P2 with the first principal axis of P1, the second
one with the second one, and the third one with the
third one. Since principal vectors are defined up to a
sign, the two signs for all principal vectors of one of the
pockets have to be tested (there are 23 = 8 combinations,
each combination defining one initial point). If some of
the pocket axes have close lengths, it may also be inter-
esting to consider rotations which superpose the first
principal axis of one pocket with the second principal
axis of the other one.
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Gradient ascent method requires to calculate the gra-
dient of the function in (3) with respect to R and yt.
Calculation of the gradient components related to yt is
straightforward:

∇ = − +

− − +

∈ ∈
∑yt i j t

x P y P

x Ry y e

xi Ry j yt

i j

1
2

2

2 2

1 2


( ( ))

|| ( )||

.
,

Since the set of rotation matrices is a 3D manifold
embedded in 9D space, we cannot differentiate (1) with
respect to each element of matrix R.
Therefore, we use the Euler representation of the rota-

tion matrix:
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(4)

where R is expressed as a function of (j, θ, ψ) Î
[0;2π)3. We can now calculate the derivatives of the
maximand in (3) with respect to (j, θ, ψ). For instance:

∇ =

− − +

− +
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This optimization step defines the best pocket super-
position, according to the sup-CK similarity measure.
As mentioned above, it may be interesting to use addi-

tional information on binding pocket atoms, such as
atom types or charges. Let us suppose that this informa-
tion is represented by labels li (which may be discrete or
real variables, or multidimensional vectors) and that it is
associated to a similarity measure. For example, to mea-
sure the similarity between categorical labels like atom
types, one can use the Dirac function 1l li j= . In our
experiments, we used atom partial charges as atom

labels, with a Gaussian kernel
K l l ei j

li l j

L( , )

( )

=
−

− 2

 . Of

course, other similarity measures may be employed.

These atom labels can be used to re-weight the contri-
bution of two atoms xi and yj by KL(li, lj) in (3):

sup-CK L

R y
x P

P P

e

li l j

e

xi Ry j yt

t
i

( , )
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( ) || ( )||

,

1 2

2 2

2 2
=

−
− − − +

∈

 

11
2y Pj∈

∑ ,
(5)

where parameter l controls the sensitivity of our mea-
sure to atom labels, for example to partial charges.
When l is large, the impact of labels is negligible, which
corresponds to a purely geometrical approach. When l
is close to zero, only pairs of atoms which have the
same partial charge contribute to our measure. In gen-
eral, the smaller l, the greater the contribution of the
atom labels to the binding pocket similarity measure.
Since the function KL does not depend on R and yt in
(5), the same optimization procedure for pockets super-
position can be used to optimize (3) or (5). Finally, it is
important to notice that the sup-CK measure of similar-
ity can be used to compare any set of atoms in 3D. As
mentioned in the introduction section, the superposition
method and the similarity measure may be applied to
superpose and compare pockets, even when they belong
to proteins displaying no sequence and no overall struc-
ture similarity. This point will be illustrated in Results
on the example of two unrelated ATP binding proteins.

Related methods
In the following, we briefly recall the principals of a few
other methods proposed to measure similarity between
pockets, because we compare them to the sup-CK
method defined in the present study.
Spherical harmonic decomposition (SHD)
[3] proposed to model pockets by star-shapes built using
the SURFNET program. The star-shape representation is
defined by a function f (θ, j), representing the distance
from the pocket center to the pocket surface for a given
(θ, j),. To measure the similarity of binding pockets P1
and P2, the corresponding functions f1 and f2 are first
decomposed into spherical harmonics, and the pocket
similarity is then computed as the standard Euclidean
metric between vectors of decomposition coefficients.
[2] presented three different variants of SHD, using

only the shapes or the sizes of the binding pockets
(keeping only the zero-th order in the spherical harmo-
nics expansion), and their combination. In the Results
section, we recall the results that they obtained
with the combination, because it provided the best
performance.
Poisson index (sup-PI)
As mentioned in the Introduction, many binding pock-
ets similarity measures are based on pocket alignment
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with further counting of overlapping atoms. This kind of
approach is used in the Poisson index model [12]. More
precisely, the Poisson index model is based on a normal-
ized number of overlapping atoms

PI P P L
P P L( , ) # #1 2 1 2

= + − , where L is the number of

overlapping atoms, and #P1 and #P2 are the numbers of
atoms in P1 and P2, respectively. The PI score may be
computed for any pocket superposition method. While
[12] used the geometric hashing algorithm, we used the
superposition made by the sup-CK method, with further
superposition refining to maximize the number of over-
lapping atoms.
Multibind
[5] represents pockets by pseudo-atoms labeled with
physico-chemical properties. Pockets are aligned using a
geometric hashing technique. This algorithm was mainly
designed for multiple alignment of binding sites, but it
may be used for pairwise alignment of pockets, as per-
formed in this study.
Other simple methods
We also consider two simple methods based on the com-
parison of simple binding pockets characteristics. These
methods represent each pocket by an ellipsoid constructed
on the basis of the pocket’s principal axis. The first one,
referred to as Vol, estimates the similarity between pockets
P1 and P2 by the absolute value of the difference between
the volumes of their corresponding ellipsoids:
Vol(P1, P2) = |Vol(P1) - Vol(P2)|. The second one,

called Princ-Axis, estimates the similarity score between

pockets by ( ) i
P

i
P

i
1 2 2

1

3 −=∑ , where i
P1 and i

P2 are

the lengths of the three principle axis of pockets P1 and
P2, respectively.
Combination of sup-CK and Vol
Since volume information was found to be important
by [2], we also tested a linear combination of the sup-
CK and Vol methods, called sup-CK-Vol, where the
coefficient of linear combination is learned as other
model parameters (s, l, or the distance cutoff R dis-
cussed in the Datasets section) in the double cross
validation scheme. This linear combination takes
advantage of the Vol method to separate pockets bind-
ing ligands of very different sizes like PO4 and NAD,
and of the sup-CK algorithm to allow finer
discrimination.
Sequence
To compare our method based on local 3D similarity to
a simple and classical approach based on sequence com-
parison, we conducted a pairwise alignment of all pro-
tein sequences for the different datasets, in order to
build a matrix of distance between proteins. This matrix
was built with the algorithm of Needleman and
Wunsch, using the default settings [17,18].

Performance criteria
There are various ways to measure the similarity
between binding pockets, and some of them were dis-
cussed in the previous section. To evaluate the quality
of a given similarity measure, one may compare it to
some “ideal” similarity measure, but the problem is that
such measure does not exist. As an example, if two
alternative measures SM1 and SM2 compare two pock-
ets P1 and P2 so that SM1(P1, P2) = 0.3 and SM2(P1,
P2) = 0.4, there is no way to decide which one is the
best, because we do not have any absolute reference.
The choice of the optimal measure, thus, depends on
the problem of interest. In the context of ligand predic-
tion, the quality of a similarity measure can be evaluated
according to its ability to cluster together pockets that
bind the same ligand. This can then help to predict
ligands for previously unseen pockets. To evaluate this
clustering ability, we considered two different scores.
AUC score
[2] used the AUC score which is computed as follows.
Let us consider a set of pockets (P1,.., PN) and a similar-
ity measure SM. To estimate the AUC score of a given
pocket P*, we rank all other pockets according to their
similarity to P*, SM(Pi, P*) (descending order), and we
plot the ROC curve, i.e., the number of pockets binding
the same ligand versus the number of pockets binding a
different ligand among the top n pockets, when n varies
from 0 to N. The quality of SM is measured by the sur-
face of the area under the ROC curve, which defines the
AUC score. An “ideal” SM function will rank all pockets
binding the same ligand as P* on the top of the list,
leading to an AUC score equal to 1.0. On the contrary,
if these pockets have random positions in the ranked
list, the AUC score will be equal to 0.5 (worst possible
case). Finally, the overall AUC score of a method equals
its mean value over all pockets. While the AUC score
represents an intuitive and classical way to evaluate the
quality of similarity measures, it may fail in some situa-
tions. Consider the case of a dataset containing two
types of pockets L1 and L2 (i.e. binding two different
ligands), and a similarity measure that correctly clusters
pockets according to their type. If clusters are close to
each other (see clusters A and C in Figure 1), the AUC
score of pockets situated near the border (pockets p1
and p2 in Figure 1) will below. The situation becomes
even worse if pockets binding ligand L1 form several
clusters, as shown in Figure 1, leading to low AUC
scores for almost all pockets binding ligand L1 This
similarity measure will have an overall poor AUC score
on this dataset, although it produces perfect separation
of pocket types. This may happen when the database
contains proteins that underwent convergent evolution,
or that bind the same ligand under very different con-
formations. Therefore, a poor AUC score does not
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necessarily correspond to a poor pocket separation, and
AUC scores may not be suited to evaluate the quality of
similarity measures with respect to the question of
ligand prediction.
Classification error
These remarks lead us to employ another quality score
based on a classification error. To estimate the quality
of the similarity measure SM, we try to predict a ligand
(class) for each pocket from that of its neighbors. The
smaller the classification error (proportion of bad pre-
dictions), the better the similarity measure. In this work,
we used a K nearest neighbors (KNN) classifier. To eval-
uate the classification error, we applied a leave-one-out
double cross validation methodology. Namely, each
pocket P from the dataset is considered one by one, and
all other pockets are used as the training set. Parameters
of the model (K – number of neighbors, s and l in the
case of the sup-CK method) are estimated on the train-
ing set via cross-validation technique, and the class (i.e.
the ligand) of the pocket P under consideration is pre-
dicted using the training set and the estimated para-
meters of the model. More precisely, in the case of a
dataset containing 100 proteins, double cross validation
is performed according to the following scheme: each of
the 100 pockets is extracted in turn from the dataset in
a leave one out procedure. Then, each of the other 99
pockets is selected in turn and its class is predicted
from the 98 remaining pockets. This operation is
repeated for different values of s and l, and the s* and
l* values providing the highest number (over 99) of well
predicted pockets are retained and used to predict a
class for the initially extracted pocket. Note, that all
datasets contained proteins that presented less than 30%
global sequence identity [17], to ensure that there were
no duplicates or very close elements in the datasets.
This allowed to use a leave-one-out scheme without risk
of bias.

Data
For all protein structures, binding pockets were
extracted as follows: protein atoms situated at less than
R Å of one of the ligand atoms were selected, where R
is a parameter of the model (as the number of neighbors
k, or the s and l parameters), and is also learned in the
double cross-validation scheme. In most cases, the opti-
mal value of R was found to equal to 5.3 Å, a value
which was retained in this study. However, experiments
where R is varied are also presented in the discussion
section. Finally, pockets are represented by 3D clouds of
atoms labeled by their partial charge, attributed accord-
ing to the GROMACS (FFG43a1) force field [19]. Atom
partial charges were assigned according to the protein
structure alone, in absence of the ligand. However, the
presence of a ligand would potentially modify these cal-
culated charges, but this could not be taken into
account since the method aimed at predicting the
ligand. Other labels representing chemical properties
such as amino-acid type, hydrogen donor or acceptor,
or hydrophobic atom could be included.
We considered three benchmark datasets. The first

one, proposed by [2] and referred to as the Kahraman
dataset, comprises 100 protein crystal structures in
complex with one of ten ligands (AMP, ATP, PO4,
GLC, FAD, HEM, FMN, EST, AND, NAD). The second
one is an extended version of the Kahraman dataset
(called extended Kahraman Dataset below), in which we
added protein structures in complex with one of the
same ten ligands, leading to a total of 972 crystal struc-
tures (see Additional file 1). The added proteins pre-
sented pairwise sequence identities less or equal to 30%,
to avoid potential bias by inclusion of close homologues.
The Kaharaman dataset comprises ligands of very dif-

ferent sizes and chemical natures, as shown in Table 1.
However, the real challenge is to test methods on pock-
ets that bind ligands of similar sizes. Therefore, we cre-
ated a third dataset comprising 100 structures of
proteins in complex with ten ligands of similar size (ten
pockets per ligand), see Table 2. This dataset will be
referred to as the Homogeneous Dataset (HD) (see Addi-
tional file 2). The results presented below on this dataset
may constitute a new benchmark for future work in the
same area.

Results
All methods were tested on three datasets described in
the Data section. The performance of all methods is
evaluated on the basis of the AUC score and of the clas-
sification error (see Performance criteria). The sup-CK
method is compared to sup-PI, SHD, Vol, Princ-Axis
and MultiBind algorithms (see Related methods).
Among the pocket extraction methods used in the SHD
approach, we considered the results corresponding to

Figure 1 AUC score versus classification error as an evaluation
of binding pocket similarity measure. Red circles represents
pockets fixing ligand L1, blue squares represents pockets fixing
ligand L2. The AUC score does not reflect the fact of good pocket
clusterization, while the classification error does.

Hoffmann et al. BMC Bioinformatics 2010, 11:99
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the Interact Cleft Model, which is similar to our pocket
extraction method, and allows to compare the sup-CK
and SHD approaches. Algorithms, benchmark datasets
and distance matrices for the SupCK method are avail-
able at http://cbio.ensmp.fr/paris/.

Kahraman Dataset
Results of all methods on the Kahraman Dataset are pre-
sented in Table 3. According to the AUC score, all meth-
ods improve the baseline value of 0.5 corresponding to a
random ranking, and simple methods like Vol and Princ-
Axis give surprisingly good results, for example, there is no
significant difference between the AUC score of Vol and
the AUC score of the best performing method sup-CKL-
Vol. The same effect was observed by [2] when they used
simple measures based on comparison of pockets sizes.

Table 1 Ligands descriptors for the Kahraman dataset

ligand atoms count Molecular weight hydrogen-bond acceptors hydrogen-bond donors Rotatable bonds

AMP 23 345.21 9 4 4

ATP 31 503.15 13 4 8

PO4 5 95.98 3 1 0

GLC 12 180.16 6 5 1

FAD 53 785.55 15 10 13

HEM 43 616.49 4 2 8

FMN 31 456.34 8 6 7

EST 20 272.38 1 2 0

AND 21 288.42 2 1 0

NAD 44 663.43 14 9 11

Average 28.3 ± 15.0 420.7 ± 222.8 7.5 ± 5.1 4.4 ± 3.2 5.2 ± 4.9

AMP: adenosine monophosphate, ATP: adenosine-5’-triphosphate FAD, flavin-adenine dinucleotide, FMN: flavin mononucleotide, GLC: alpha-D-glucose, HEM:
protoporphyrin containing Fe, NAD: nicotinamide-adenine-dinucleotide, PO4: phosphate ion, AND: 3-beta-hydroxy-5-androsten-17-one, EST: estradiol.

Table 2 Ligands descriptors for the homogeneous dataset

ligand Atom count Molecular weight hydrogen-bond acceptors hydrogen-bond donors Rotatable bonds

PMP 16 247.17 4 4 4

SUC 23 342.3 11 8 5

LLP 24 361.33 5 6 11

LDA 16 229.4 1 0 11

BOG 20 292.37 6 4 9

PLM 18 255.42 2 0 14

SAM 27 399.45 8 7 7

U5P 21 322.17 8 3 4

GSH 20 306.32 6 6 11

1PE 14 208.25 5 1 11

Average 19.9 ± 4.0 296.4 ± 61.5 5.6 ± 3.0 3.9 ± 2.9 8.7 ± 3.5

PMP: 4’-deoxy-4’-aminopyridoxal-5’-phosphate, SUC: sucrose, LLP: 2-lysine(3-hydroxy-2-methyl-5-phosphonooxymethyl- pyridin-4-ylmethane), LDA: lauryl
dimethylamine-N-oxide, BOG: b-octylglucoside, PLM: palmitic acid, SAM: S-adenosylmethionine, U5P: uridine-5’-monophosphate, GSH: glutathione, 1PE:
pentaethylene glycol.

Table 3 Performance on the Kahraman benchmark

Method AUC CE

sup-CK 0.858 ± 0.14 0.36

sup-CKL 0.861 ± 0.13 0.27

sup-CK-Vol 0.889 ± 0.14 0.34

sup-CKL-Vol 0.895 ± 0.12 0.26

Vol 0.875 ± 0.14 0.39

Princ-Axis 0.853 ± 0.13 0.35

sup-PI 0.815 ± 0.13 0.42

SHD 0.770 0.39

MultiBind 0.715 ± 0.17 0.42

Sequence 0.55 ± 0.08 0.8

Performance for each algorithm is evaluated by its mean AUC score and by its
classification error (CE), averaged over all pockets. (AUC score for SHD are
taken directly from [2], CE scores are estimated from data provided by
authors).

Hoffmann et al. BMC Bioinformatics 2010, 11:99
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As expected, the score obtained using the sequence
alignment is close to the baseline value, indicating that
this approach is not suitable to the problem of predict-
ing ligand when sequences are very different. The AUC
scores of sup-CK-Vol (with or without partial charges)
are better than those of all other methods, except for
Vol, according to the Wilcoxon signed-rank test (see
Figure 2a). The best results are obtained by the sup-CK-
Vol algorithm, which seems to benefit from the associa-
tion of volume information and of more subtle geo-
metric details provided by the sup-CK algorithm.
Another observation, is that information on atom partial
charges does not significantly improve the AUC score of
the sup-CK methods.
To evaluate the classification error, we tried to predict

a ligand (a class) for each pocket using the k-nearest
neighbors classifier (see Performance criteria). Note that
in a ten class (10 ligands) classification problem, a ran-
dom classifier would have an error of 0.9, which repre-
sents baseline performance for all classifiers.
Table 3 shows that methods with higher AUC scores

tend to have smaller classification errors, but this corre-
lation is not strict. For example, the SHD and Vol meth-
ods have the same classification error, although the
latter displayed a better AUC score than the former.

Conversely, the sup-CK and sup-CKL-Vol methods had
similar AUC scores, but the latter performs much better
than the former in terms of classification error. This
indicates that the AUC score is not appropriate to com-
pare the quality of similarity measures with respect to
the problem of ligand identification, and underlines the
interest of the classification approach.
The sup-CK and sup-CK-Vol algorithms have lower

classification errors than other methods, which means
that they are well suited to the problem of ligand pre-
diction. Interestingly, atom partial charges information
significantly reduces classification errors of both meth-
ods, which was not the case for AUC scores. The use of
additional atom labels such as amino-acid type, hydro-
gen donor or acceptor, or hydrophobic atom may again
improve the quality of ligand prediction.
No method reaches the AUC score of 1.0, or perfectly

predicts the ligands. Several remarks might explain this
fact. First, pockets have to be extracted from the protein
structure. Whatever the employed method might be, it
is difficult to extract all atoms interacting with the
ligand, and only these atoms. In particular, atoms that
do not interact with the ligand might have been
included in the pockets, which could reduce the
observed similarity between pockets that bind this

Figure 2 Relationship between AUC performances of the methods tested. (a) on the Kahraman dataset (b) on the Homogenous dataset.
Each node corresponds to a particular method, parent nodes perform significantly better than child nodes according to the Wilcoxon signed-
rank test.
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ligand. Second, ligands are flexible molecules that can
adopt different conformations. Therefore, protein pock-
ets that bind the same ligand may display various
shapes. In such situations, correct prediction is still pos-
sible if the learning dataset contains pockets in which
the ligand conformations correctly samples its accessible
conformational space. The present dataset contains only
10 pockets per ligand, which might be too small for the
most flexible ligands.
When analyzing results in Table 3, one must remem-

ber that the Vol and Princ-Axis methods do not require
pockets superposition, while all other methods do. The
superposition algorithms of the latter are different,
which contributes to the observed scores. However, the
sup-PI and sup-CK methods only differ by their similar-
ity measures. After superposition, sup-PI requires to

determine the number of overlapping atoms, while sup-
CK relies on a weighted number of atoms having close
positions. This seems to confer some smoothness prop-
erties to the latter, and robustness with respect to varia-
tions observed between pockets binding the same ligand.
An important point mentioned in Background is that

pocket superposition with sup-CK does not require any
sequence or structure similarities between the corre-
sponding proteins. To illustrate this property, we ana-
lyzed in more details the results for ATP-binding
proteins of this dataset. For example, the biotin carboxy-
lase from E. coli (452 residues in PDB: 1DV2), and the
phosphoinositide 3-kinase (961 residues in PDB: 1E8X)
are unrelated proteins. They present no sequence simi-
larity (they cannot be aligned), and their overall struc-
tures are totally different, as shown in Figure 3a.

Figure 3 Superposition of the binding pockets of two structurally different proteins binding ATP. A) overall structures of pdb: PDB: 1E8X
in grey and PDB: 1DV2 in red superposed according to their binding sites using Sup-CK. ATP molecules are represented in blue. B)
Superposition of the ATP molecules from PDB: 1DV2 and PDB: 1E8X when their binding sites are superposed. C) Positively charged protein
regions around ATP molecules of PDB: 1E8X in grey and PDB: 1DV2 in red. D) Protein hydrophobic patches around ATP molecules of PDB: 1E8X
in grey and PDB: 1DV2 in red.

Hoffmann et al. BMC Bioinformatics 2010, 11:99
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However, they bind ATP in similar conformations.
When these two pockets are aligned with the sup-CK
algorithm, their corresponding ATP molecules are
found correctly superposed, as shown in Figure 3b,
although the sup-CK algorithm only uses protein atoms.
Moreover, similar residues, playing equivalent roles in

ATP binding, are found in equivalent positions in the
superposed structures. In particular, N951 and K807
interact with the g phosphate of ATP in PDB: 1E8X and
are found close respectively to K288 and H236 that play
the same role in PDB: 1DV2. We also observe that,
K833 interacting with the b and a phosphates of ATP
in PDB: 1E8X, is found close to K116 in PDB: 1DV2
after pockets superposition. These residues form equiva-
lent positively charged regions, as shown in Figure 3c.
Similarly, the hydrophobic region interacting with the
adenine ring of ATP in PDB: 1E8X and involving resi-
dues W812, I831, I879, I881, V882, A885, M953, F961,
and I963 is equivalent to the hydrophobic region invol-
ving residues V131, V156, I157, L204, L278, I287, I437
in the superposed PDB: 1DV2 structure. These hydro-
phobic patches overlap after pockets superposition, as
shown in Figure 3d. Overall, these observations indicate
that the sup-CK algorithm proposed a reasonable super-
position for these two unrelated ATP-binding pockets.
Figure 4 shows the alignment of the two pockets,

extracted from PDB: 1E8X and PDB: 1DV2 as clouds of
atoms, and superposed by sup-CK. Note, that sup-CK
did not try to superpose individual atoms, but rather
superposes atom sets.

Extension of Kahraman dataset
To evaluate the ability of the sup-CK method to
improve its performance when trained on a larger data-
set, we considered an extension of Kahraman dataset
consisting of 972 of non redundant pockets that bind
one of the 10 ligands of the original dataset (see Data).
Therefore, the new dataset consists of 100 Kahraman
pockets and 872 new pockets from the PDB.
Table 4 presents the classification errors observed on

this dataset for different algorithms. Note that in the
case of the sup-CK methods, the parameters were opti-
mized on the original Kahraman dataset of 100 proteins.
Column A presents the classification errors when all
972 pockets are used in the leave-one-out procedure. It
shows that all methods improve when the dataset is
larger.
However, sup-CKL provides the best performance. The

quality of its predictions might again improve by includ-
ing more structures available at the PDB. Column B
presents the results on the 100 original pockets
extracted from those presented in column A. It shows
that 79% of the binding pockets of the original Kahra-
man dataset were correctly classified by sup-CKL, com-
pared to 73% when they were classified using only the
original dataset (a classification error of 0.27 in Table 3).
Finally, column C shows the prediction errors for the
872 new pockets when the 100 original pockets are not
used in the leave one out procedure. The scores in this
column may be seen as a test on an external indepen-
dent dataset (as mentioned above, the optimal para-
meters s and l used here were those learned only on
the 100 original pockets). It shows that the performance
of the sup-CK methods does not degrade on the 872
new pockets, and remains above those of the other
methods.
It is also interesting to study the structure of the data-

set according to the metric associated to the sup-CK
method. We performed kernel principal component
analysis [20] on the pockets similarity matrix of the sup-

Figure 4 Alignment two ATP binding pockets. Alignment of two
ATP pockets made by sup-CK, atoms of each pockets are
represented by blue and red points, two ATP ligands are traced in
licorice.

Table 4 Classification error on the extended Kahraman
benchmark

Method A B C

sup-CKL 0.19 0.21 0.18

sup-CKL-Vol 0.18 0.19 0.18

Vol 0.32 0.39 0.31

Princ-Axis 0.22 0.27 0.21

sup-PI 0.24 0.33 0.23

Classification error for all algorithms on the extended Kahraman dataset.
Column A - classification error evaluated on all 972 pockets. Column B
Proportion of wrong predictions among the original 100 Kahraman pockets
extracted from column A, i.e. classification error evaluated on 100 Kahraman
pockets when all 972 pockets are used in the leave-one-out procedure.
Column C - classification error evaluated on the 872 new pockets, when the
100 Kahraman pockets are not used in the leave-one-out procedure.

Hoffmann et al. BMC Bioinformatics 2010, 11:99
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CK method (this matrix is not positive definite, but we
can extract principal components associated to the lar-
gest positive eigenvalues). Figure 5 represents the pro-
jection of 972 binding pockets on the first two principal
components. Overall, we observe a clustering of binding
pockets according to their ligands, which illustrates the
good performance of this method for ligand prediction.
Looking into more details, we notice that the clusters of
pockets that bind ATP, AMP or PO4 overlap. Indeed,
proteins that bind ATP usually also bind AMP or PO4,
although with different affinities. Furthermore, some
pockets (for example pockets that bind GLC or FAD)
are found far from their main cluster, or form secondary
clusters, which illustrates that pockets having different
geometrical characteristics may bind the same ligand. In
the classification approach employed here, prediction of
a ligand for a given pocket uses the classes of its neigh-
bors, which allows to better predict ligands for pockets
belonging to such secondary clusters.

Homogeneous dataset (HD)
The Kahraman dataset contains ligands of very different
sizes, which might not be typical of real problems.
Therefore, we built the Homogeneous dataset because it
was important to test methods on a benchmark contain-
ing pockets binding ligands of more similar sizes.
Table 5 shows that the performances of all algorithms

are lower than on the Kahraman dataset, which illus-
trates that the Homogeneous dataset is a more difficult
benchmark. Vol and Princ-Axis display stronger degra-
dation of performances, with AUC scores of 0.65, and
classification errors of 89% and 71%, respectively. The
latter must be compared to the baseline value of 90%

error for a random classifier for ten classes (ten ligands).
This illustrates that size information is less discrimina-
tive on this dataset, as expected. All other methods dis-
play a stronger improvement with respect to the
baseline. Interestingly, although the AUC scores of the
simple Vol and Princ-Axis methods are only 5 to 10%
lower than those of all other methods, their classifica-
tion error is much worse, and Vol does not behave bet-
ter than a random classifier. This again underlines the
interest of the classification error score to compare the
performances of similarity measures for ligand
prediction.
The best AUC score is obtained by the sup-CKL-Vol

algorithm. The AUC scores of all other methods are sig-
nificantly lower according to the Wilcoxon signed-rank
test (see Figure 2b), except sup-CKL. Indeed, volume
information only provides a slight improvement of 1%,
compared to 3% on the Kahraman dataset. On the con-
trary, information on partial charges leads to an
improvement of 4% for the sup-CK and sup-CK-Vol
algorithms, which was not observed on the Kahraman
dataset. This shows that addition of physico-chemical
information is critical to better compare pockets of simi-
lar sizes. The lowest classification errors are obtained by
the sup-CKL and sup-CKL-Vol algorithms, which again
shows that volume information is not critical on this
benchmark. On the contrary, partial charge information
leads to an improvement of 9% between sup-CK and
sup-CKL, and of 8% between sup-CK-Vol and sup-CKL-
Vol.

Discussion
Computer vision methods
An important topic is the relation between methods for
binding pockets comparison and algorithms in field of
computer vision for comparison of 3D shapes. A com-
plete review of 3D shapes comparison methods is out of
scope of this article, and interested readers may consult
[21] for a detailed review. Interestingly, most of the

Figure 5 Projection of the ext-KD dataset on the first two
kernel principal components defined by the similarity measure
sup-CK. Clustering of binding pockets according to their ligands,
which illustrates the performance of this method for ligand
prediction.

Table 5 Performance on the HD benchmark

Method AUC CE

sup-CK 0.710 ± 0.19 0.47

sup-CKL 0.752 ± 0.16 0.38

sup-CK-Vol 0.722 ± 0.18 0.46

sup-CKL-Vol 0.766 ± 0.17 0.38

Vol 0.648 ± 0.15 0.89

Princ-Axis 0.650 ± 0.18 0.71

sup-PI 0.702 ± 0.19 0.47

MultiBind 0.69 ± 0.14 0.48

Sequence 0.577 ± 0.09 0.83

Performance for each algorithm is evaluated by its mean AUC score and by its
classification error (CE), averaged over all pockets.
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existing methods for binding pocket comparison have an
analogue in the domain of computer vision. For exam-
ple, methods based on real spherical harmonic expan-
sion used in [3] for binding pocket comparison are also
discussed by [22,23] in the context of general 3D shape
matching. Principles used in another popular method
for matching and comparison of 3D forms, called Itera-
tive Closest Point algorithm [24], and its variants are
used in Poisson index and MultiBind algorithms. Exam-
ples of approaches based on graph representation of 3D
forms and graph matching methods may be found in [7]
for binding pockets comparison, as well as in [25] for
3D shapes comparison. Nevertheless, binding pockets
are not continuous shapes but discrete clouds of points.
They can be transformed into 3D shapes [2,3], but this
transformation may be a source of noise. Moreover, a
similarity measure between binding pockets should be
rotationally and translationally invariant, which is not
always the case in computer vision methods. However,
we believe that the adaptation of appropriate methods
may be very fruitful for the recognition of binding
pockets.

Choice of optimal parameters
An important characteristic of the sup-CK algorithm is
its ability to adapt to the variability potentially observed
between pockets binding the same ligand. The sup-CK
algorithm presents two parameters, s and l. Parameter
s controls the sensitivity of the similarity measure to
atoms relative displacements. The larger the variability
of pockets binding the same ligand, the greater the
value of s should be. Figure 6a shows how the mean
(over all pockets) AUC score and classification error
vary with s on the Homogeneous dataset. In both cases,
the optimum is reached when s is equal to 1. Note that
we did not use the same value of s estimated from all
pockets. For each pocket, the optimal value was esti-
mated on the basis of the remaining 99 pockets used for
training, in a double cross validation scheme, to avoid
overfitting to the data. However, we observed that, in
most cases (90%), s = 1 was chosen. When information
on atom partial charges is used, parameter l (5) condi-
tions the sensitivity of the method to atoms charges.
Figures 6b and 6c present the mean AUC score and the
classification error as functions of s and l. We observe

Figure 6 Performance on the HD dataset. (a) Mean AUC score and prediction error as functions of s in the sup-CK method (pure geometrical
version, l = ∞), (b) mean AUC score and (c) classification error as functions of s and l when information on atoms partial charges is used.

Hoffmann et al. BMC Bioinformatics 2010, 11:99
http://www.biomedcentral.com/1471-2105/11/99

Page 12 of 16



that for the AUC score, the optimum is reached when s
equals 2 and l equals 0.25, while for the classification
error the optimal value of s is equal to 4.
While in general we suggest to learn these two para-

meters of the sup-CK algorithm on the dataset of inter-
est, we observed that some default values provide good
performance in many cases, and that they could be used
in dry-runs on new datasets. For example, a good
default value for s is 1. This value was optimal for the
HD dataset when we used the pure geometrical
approach, and it also gave good results on the

Kahraman and extended Kahraman datasets. When par-
tial charges are used, i.e. with the sup-CKL algorithm,
larger default values for s are recommended (between 2
and 4), and a good default value for l is around 0.25.
The radius R of the extracted pocket is a parameter of
the extraction pocket procedure. Figures 7a and 7b pre-
sent the classification errors of sup-CK as a function of
s and R, respectively for the Kahraman and the HD
datasets. We observe that in both cases, the optimal
value of R is around 5.3 Å, which corresponds to a good
default value. However, Figures 7a and 7b show that the

Figure 7 Classification error of the sup-CKL algorithm. as a function of R and s (l = 0.25): (a) Kahraman dataset, (b) HD dataset.
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performance of the method is still interesting for values
varying between 4.5 and 8 Å. Importantly, they also
show that the optimal value of s does not depend on R.
Finally, K is a parameter of the K nearest neighbors clas-
sifier (KNN classifier). Ideally, it should also be learned,
but values of K between 3 and 5 usually work well.

Robustness of the method with respect to pockets
definition
It is important to discuss the impact of using the R
parameter, a cutoff distance used for pocket definition.
This could lead to situations where an atom is excluded
from the pocket in one protein, when a similar atom is
included in the pocket of another protein to which it is
compared. However, as briefly mentioned in the back-
ground section, the principle of the method is to com-
pare pockets based on the optimal superposition of their
clouds of atoms. The method does not define or use
pairwise matching of atoms of the two pockets, as most
other available methods do. Figure 4 illustrates this
point: the method did not lead to local pairwise super-
position of blue and red points, but rather proposed a
global superposition of the red and blue atoms densities.
Therefore, the method is expected to be robust with
respect to potential inclusion or exclusion of a small
number of atoms in one of the pockets. As mentioned
in the above paragraph, the fact that the performance of
the method remains interesting when R varies between
4.5 and 8 Å is also an indirect illustration of this idea.
One could wonder if the use of atom labels such as par-
tial charges would decrease the robustness of the
method with respect to pockets definition using R.
Indeed, a cutoff distance could split a strong dipole in
one of the proteins, and not in the other (for example
an N-H group). However, the addition of atom labels
like partial charges is only one option of the method.
Results using only atom positions (corresponding to a
pure geometrical approach) already show good perfor-
mances. Addition of partial charges labels still improves
the results, despite the risk that strong dipoles might
have been cut. This can probably be explained by the
facts that such events are rare, and that the method
searches an overall best superposition of atoms densi-
ties, despite possible local mismatches in atoms posi-
tions or labels. Nevertheless, it would be interesting to
explore other cutoff criteria taking atom labels into
account (including other types of labels such as hydro-
gen bond acceptor, donor,...), in future developments of
the method.

Pocket extraction
We did not tackle the problem of pocket detection,
which relies on totally different algorithms than those
discussed in this paper, and which was out of the scope

of the present study. However, the similarity measured
between two pockets strongly depends on pocket defini-
tion. We extracted pockets as the set of all protein
atoms within about 6 Å of the bound ligand. Similar
approaches were used by [2] (Interacted Cleft Model),
and similar pockets may also be retrieved by methods
like Q-SiteFinder [26] without any information on ligand
coordinates. Another alternative could be to employ one
the various programs that have been developed to locate
depressions on protein surfaces, particularly in the case
where no holo structure is available [27], or in the case
of orphan proteins for which the ligand and the binding
site is unknown. However, existing pocket extraction
algorithms have difficulty to define the rim of a binding
pocket, and tend to extract protein cavities that are lar-
ger than the binding pocket itself, as defined by the
ensemble of residues involved in ligand binding.
Although we observed that our method had some
robustness with respect to the definition of the binding
pocket, global similarity measures like those proposed in
this paper may loose some performance on automati-
cally extracted pockets.

Protein functions
The problem of ligand prediction for proteins is related
to the problem of predicting the protein molecular func-
tion. We analyzed the repartition of the ATP binding
pockets generated by the sup-CK similarity measure on
the extended Kahraman dataset. Figure 8 presents the
projection of ATP pockets annotated as transferases or
ligases, on the first two principal components of the
similarity matrix associated to sup-CK. We observed
that these two families of enzymes are essentially

Figure 8 Projection of ATP binding pockets on the two first
kernel principal components of sup-CK. Repartition of the ATP
binding pockets generated by the sup-CK similarity measure on the
extended Kahraman dataset. Red squares represent ligases, blue stars
represent transferases.
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separated. Although these are very preliminary results,
they show that sup-CK method may be a useful tool, in
conjunction with other approaches, for the prediction of
protein molecular functions.
In the Result Section, we showed the example of the

PDB: 1E8X and PDB: 1DV2 unrelated structures, binding
ATP in similar conformations, and whose pockets were
correctly superposed by the sup-CK method. In the case
of even more dissimilar pockets, binding ATP in different
conformations, sup-CK still allows superposition of the
pockets so that similar regions overlap. For example, rab-
bit muscle pyruvate kinase (530 residues in PDB: 1A49)
and E. coli 7,8-dihydro 6-hydroxymethylpterin pyropho-
sphokinase (158 residues in PDB: 1DY3) of the Kahra-
man dataset have no sequence or structures homologies,
and bind ATP in different conformations as shown in
Figure 3a. However, according to the sup-CK superposi-
tion of these two pockets, shown in Figure 3c, the two
patches of hydrophobic residues that interact with the
adenine ring of ATP are found to overlap. Note that
these two pockets where correctly classified by sup-CK
(an ATP ligand was correctly predicted), on the basis of
other more similar pockets present in the dataset.
Nevertherless, a reasonable pocket superposition for

these highly different proteins with significant pockets
deviations, was proposed by the sup-CK method.

Apo structures
The sup-CK algorithm had a good performance in
ligand prediction for holo structures. It also showed
robustness with respect to atom displacements. This is
an important characteristic for future application of the
method to real case studies where the ligand is
unknown, and one must extract pockets from apo struc-
tures. Local structural rearrangements are frequent
upon ligand binding, and methods displaying some
smoothness with respect to atoms positions are required
when working with apo structures. This would also be
necessary for proteins with no available experimental
structure but for which a homology model can be con-
structed, since the modeled pocket may somewhat differ
from the true, but unknown, pocket. We expected that,
for large flexible ligands, the performance of the sup-CK
method might decrease, but this was not observed for
the two datasets that we used (Kahraman dataset and
Homogeneous dataset). However, we cannot rule out
the possibility that this could be observed if the method
is trained on other small training datasets.

Computational issues
The running time of the sup-CK method depends on the
value of the stopping criterion used in the gradient ascent
method, and on the number of atoms. In our experi-
ments, the algorithm running time varied between 0.2

and 1.3 seconds (2.5 GHz CPU) per pockets pair. This
running time is already quite reasonable to process large
protein databanks. The method is presented on datasets
of moderate sizes because our aim was to validate the
methodology. However, it can be applied on ligand pre-
diction problems, where the number of pockets (and
ligands) included in the learning dataset needs to be lar-
ger. For future applications in the domain of screening
using all ligands available in the Protein Data Bank, a
pre-filtering on the basis of simple pocket descriptors
(like volume or size) could further accelerate the sup-CK
method. Future application of the method proposed
could include identification of new ligands for protein
pockets according to those known for the most similar
pockets. This is of interest in the context of identification
of drug precursors or of side effects prediction.

Conclusion
we have developed a new method to measure the simi-
larity between protein binding sites. In this method,
binding pockets are described as clouds of points in the
3D space, each point corresponding to an atom. These
points may bare additional labels representing various
characteristics such as atom partial charges, atom types,
or other atomic features. The proposed method showed
good performance in the classification of binding pock-
ets according to their respective ligands. It relies on the
search for the best global superposition of clouds of
atoms, which confers robustness with respect to binding
site definition or variations in ligand conformation. This
method may be used to compare any type of binding
sites in the 3D space, even in absence of overall
sequence or structure similarity between their corre-
sponding proteins.
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