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Abstract

Pixel-wise classification in high-dimensional multivariate images is investi-

gated. The proposed method deals with the joint use of spectral and spatial

information provided in hyperspectral images. Additive morphological de-

composition (AMD) based on morphological operators is proposed. AMD

defines a scale-space decomposition for multivariate images without any loss

of information. AMD is modeled as a tensor structure and tensor principal

components analysis is compared as dimensional reduction algorithm versus

classic approach. Experimental comparison shows that the proposed algo-

rithm can provide better performance for pixel classification of hyperspectral

image than many other well-known techniques.

Keywords: Hyperspectral images; Mathematical Morphology; Pixelwise

Classification; Tensor modeling.
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1. Introduction

Hyperspectral imaging (HSI) is a remote sensing technique that acquires

two dimension spatial images in typically hundreds of contiguous bands of

high spectral resolution covering the visible, near-infrared, and shortwave

infrared bands. This technique has been applied in several applications, for

instance, face detection [1], planetary exploitation [2], and biology [3]. That

technology produces a signature for each pixel in the image in many highly

correlated bands presenting considerable amounts of spectral redundancy.

On the one hand, dimension reduction of multivariate images is one of the

main subject of interest for the hyperspectral community. Target detection,

image segmentation, pixel classification and spectra unmixing in HSI have

the additional difficulty that pixels are located in a high dimension space

increasing computational complexity and degrading accuracy [4, 5]. On the

other hand, identification of relatively small objects incorporates issues be-

cause spatial resolution is necessary for accurate classification. Accordingly,

if the spatial contents of the image is not used, the resulting thematic map

sometimes looks noisy (salt and pepper classification noise). In the particular
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case of supervised classification, that topic is called spatial/spectral classifica-

tion. The aim is to assign each image pixel to one class using a feature vector

based on its own spectral value (the spectral information) and information

extracted from its neighborhood (referred to as the spatial information). The

pioneer work in introducing spatial context into a multivariate image clas-

sification is ECHO (Extraction and Classification of Homogeneous Objects)

classifier [6]. Since then, many studies have been led to propose new algo-

rithms to perform spectral-spatial classification. Recent works in HSI have

seen a surge of research toward developing approaches that exploit various

features specific to the spatial/spectral classification. The approaches due to

([7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]) show some degree of success. Pixel-

wise classification incorporating spatial information in HSI can be roughly

divided according to their mathematical formulation as follows.

• Smoothing by partial differential equation [9, 13]: Anisotropic diffusion

from classic grey-scale image processing [18] is extended to multivariate

scenarios, by using a general definition of vector gradient.

• Markov random field, which takes into account the spatial dependence

between the pixels based on the observed intensity field [14].

• Mathematical Morphology [16, 19, 17]: Results of morphological oper-

ators over features calculated by some dimensionality reduction tech-

nique are incorporate into the classification.

• Classifiers with spatial information [7]: Pairwise classification based on

kernel formulation where the spatial information is incorporated as an

operation among spatial, spectral and spatial-spectral kernels.
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• Segmentation and post-processing [10, 20, 15]: Approaches start with

a preliminary spatial/spectral clustering/segmentation followed by a

fusion-area stage based on supervised criterium.

• Tensor modeling [21, 12]: Three dimension array or third-order tensor

preserves the usual image representation and band continuity is repre-

sented as the third tensor dimension. Spatial information is included

as row-column correspondence in the mathematical structure.

• Context-based classification [11, 8] attempts to identify relevant models

to a test sample through context estimation in the feature space, by

using random set framework [11] or hierarchical segmentation [8].

To the best of our knowledge, there has been no previous work on modeling

multivariate images by using additive morphological decompositions as tensor

structures, which is the subject of this paper. Our approach is motivated

by the desire to discover “interesting” low-dimensional linear projections of

high-dimensional images where the spatial information plays an important

role. In this paper, we present an additive scale-space decomposition which

incorporates spatial information into the dimensionality reduction stage for

multivariate images. In summary, the main contributions of this paper are

as follows.

• A new image decomposition based on mathematical morphology which

is more compact and performs better in supervised classification.

• Tensor-PCA based on morphological decomposition producing a work-

flow where the spatial information is included in the dimensionality

reduction step instead of in the classification stage.

4



Vector Space: F = Rd

Discrete Support: E ⊆ Z2

I(x) = x = [x1, . . . , xd]

x = (i, j) ∈ E

d (dimension space)

(a) Notation for a d-variate 2D image I

n1 n3

n2

x = (i, j) ∈ E
I(x) = x ∈ F

(b) Multivariate image as a tensor I of size
n1 × n2 × n3

Figure 1: Mathematical notation for a 2D multivariate image, I : E→ F

• We show in practical examples that our workflow allows to include the

spatial information in the dimensionality reduction stage.

• State of the art for classification of HSI in remote sensing based on

morphological decomposition.

The paper is organized as follows. Section 2 presents the additive scale-space

decomposition with morphological transformations. Section 3 introduces ten-

sor modeling of morphological decomposed multivariate images. Section 4

proposes a formulation of classification for reduced tensors using support vec-

tor machines (SVM) and shows the effectiveness of the modified approach via

practical examples with a comparison versus classical approaches. Section 5

concludes the paper.

2. Additive Morphological Decomposition

In this section we focus on mathematical morphology (MM) as a nonlinear

image processing methodology composed of a larger family of operators based

5



on the set theory and defined on an abstract structure known as complete

lattice of spatial structures [22].

2.1. Notation

Let us precise the terms and notation to be used in the rest of the paper.

Let E be a subset of the discrete space Z2, considered as the support space

of the 2D image, and F ⊆ Rd be a set of pixels values in dimension d,

corresponding to the vector space of values of the image of size n1 × n2 and

d channels. A vector-valued image is represented by the mapping,

I :

 E → F

x = (i, j) → x

(1)

i.e., I ∈ F(E,F) is the set of maps from a point x at the discrete spa-

tial coordinates (i, j) ∈ E into a vector value x ∈ F ⊆ Rd. Let us as-

sume that the pixel x is represented by a d-dimensional vector x(i, j) =

[x1(i, j), x2(i, j), . . . , xd(i, j)] ∈ Rd, where R denotes the set of real numbers

in which the pixels spectral response xl(i, j) at sensor channels l = 1, . . . , d.

Figure 1 shows the notation in two graphical schemes. Additionally, let X be

an n×d matrix representing d spectral bands for each n pixels in the vector-

value image I. We use the following notations to facilitate presentation:

Scalars are denoted by lower case letters (a, b, . . .), vectors by bold lower case

letters (a,b, . . .), matrices or images by bold upper-case letters (X,Y, . . .),

and higher-order tensors by calligraphic upper-case letters (I,S, . . .). The

order of tensor I ∈ Rn1×n2...×nJ is J . We use subscripts to illustrate the

tensor order, for example Iijkl is a tensor of order four.
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(a) I (b) Gσ(I) (c) εSE (I) (d) δSE (I)

(e) γSE(I) (f) φSE(I) (g) γ∞SE (I) (h) φ∞SE(I)

(i) λσ(I) (j) λσ(I)

Figure 2: Morphological transformations of a scalar (grey level) image. Original image
(a) is a 342 × 342 pixels in 70-cm-resolution satellite image from the panchromatic band
of Quickbird.
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2.2. Basic Morphological Transformation

The morphological image transformation Φ is an image to image transfor-

mation, i.e., Φ : F(E,F)→ F(E,F). Additionally, it is a neighborhood-image

transform [22], i.e., the output value at a given pixel x is a function of the

values of the pixels falling in the neighborhood induced by the structuring

element SE and centered at the considered pixel x. The shape of SE plays

the role of the a priori knowledge about the geometry of the interesting and

uninteresting spatial structures in the image. In general a transformation

Φ ∈ F(E,F)→ F(E,F) is called:

• extensive if I(x) ≤ Φ(I(x)),

• anti-extensive if Φ(I(x)) ≤ I(x),

• idempotent if Φ(Φ(I(x))) = Φ(I(x)),

for all x ∈ E and I ∈ F(E,F). There are two basic operators in MM named

erosion and dilation. The erosion of an image I at pixel x ∈ E by the

structuring element SE ⊂ E is the transformation given by

εSE (I) (x) = {I(y) : I(y) =
∧

z∈SE(x)

I(z)} (2)

where
∧

is the infimum according to a total ordering in F and SE(x) is the

structuring element centered at the considered pixel x. The dual operator

called dilation is the transformation given by

δSE (I) (x) = {I(y) : I(y) =
∨

z∈SE(x)

I(z)} (3)

For binary or grey-scale images, they are simple in the sense that they usu-

ally have an intuitive interpretation. Erosion εSE (I) shrinks bright objects,

8



Table 1: Key notations used in the paper formulation. I is the original image and M a
marker image. B is the unitary isotropic structuring element useful in the geodesic opera-
tors. SE is the structuring element. Idempotent means that it applies the operator twice
with the same set the parameter yields the same result. Transformations are illustrated
in Fig. 2 in a practical example.

Notation Name Definition Idempotent
Gσ(·) Gaussian Filter Gσ(I) = I ∗ N (0, σ) No
εSE (·) Erosion εSE(I)(x) = {I(z) :

∧
y∈SE(x) I(y)} No

δSE (·) Dilation δSE(I)(x) = {I(z) :
∨
y∈SE(x) I(y)} No

γSE(·) Opening γSE(I) = δSE (εSE (I)) Yes
φSE(·) Closing φSE(I) = εSE (δSE (I)) Yes
δiB(·, ·) Geodesic dilation of size i δiB(M, I) = δ1B(δi−1B (M, I), I), with δ1B(M, I) = δSE (M) ∧ I No
εiB(·, ·) Geodesic erosion of size i εiB(M, I) = ε1B(ε

i−1
B (M, I), I), with ε1B(M, I) = εSE (M) ∨ I No

δ∞B (·, ·) Reconstruction by Dilation δ∞B (M, I) = {δiB(M, I) | δi+1
B (M, I) = δiB(M, I)} Yes

ε∞B (·, ·) Reconstruction by Erosion ε∞B (M, I) = {εiB(M, I) | εi+1
B (M, I) = εiB(M, I)} Yes

γ∞SE(·) Opening by reconstruction γ∞SE(I) = δ∞B (γSE(I), I) Yes
φ∞SE(·) Closing by reconstruction φ∞SE(I) = ε∞B (φSE(I), I) Yes

λσ(·) Gaussian Upper-Leveling[23] λσ(I) = δ∞B (Gσ(I) ∧ I, I) No
λσ(·) Gaussian Lower-Leveling [23] λσ(I) = ε∞B (Gσ(I) ∨ I, I) No

whereas dilation δSE (I) expands bright objects at the boundary. The size

effect is controlled by the structuring element SE. They are not inverses,

owing to the non-linear character of the operators, however, they constitute

an algebraic-adjunction [24]. The morphological opening γSE(·) is an idem-

potent transformation defined by composition of erosion and dilation, i.e.

γSE(I) = δSE (εSE (I)). Duality, the morphological closing φSE(·) is defined as

the composition of dilation and erosion i.e. γSE(I) = εSE (δSE (I)). Their effect

are also intuitive: Closing removes “holes” and thin cavities, and opening re-

moves small object protuberances. Additionally, one of the most interesting

properties for (γSE(·), φSE(·)) is that they form a Matheron semi-group and

they obey the absorption law [25], i.e.

γSE1(γSE2(I)) = γSE1(I) and φSE1(φSE2(I)) = φSE1(I) (4)
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if SE2 ⊆ SE1 in a family of scaled structuring elements. For the case of the

family of concentric discrete disks, see [22] p.325. Fig. 2 shows the basic

morphological transformations in a high resolution panchromatic image.

2.3. Morphological Reconstruction

It is often desirable to remove small objects from the image, while keeping

larger objects totally intact. A morphological approach to answer this is the

morphological reconstruction. For example, in the case of reconstruction by

dilation, an image M is dilated in the usual way, but constrained so as to

never grow outside the “control” image M, called marker image. This oper-

ator is iterated until convergence is reached. Similarly, the reconstruction by

erosion uses standard erosion and the dual constrain. We use the notation

(ε∞B (M, I), δ∞B (M, I)) for the couple erosion and dilation by reconstruction

[22]. Table 1 gives the key notations used and the detailed definitions of

morphological transformations required in the following formulation. Addi-

tionally, transformations by reconstruction are shown in Fig. 2 in a practical

example.

2.4. Additive Morphological Decomposition

Let {Φi}, i = 1 . . . ,m be a set ofm anti-extensive transformations indexed

for its scale i, such that:

Φm(Φm−1(I)) ≤ . . . ≤ Φ2(Φ1(I)) ≤ Φ1(I) ≤ I (5)

Similarly, let {Φi} be a set of m extensive transformations, where i is asso-

ciated with the parameter of scale, such that:

I ≤ Φ(I) ≤ Φ
2
(Φ

1
(I)) ≤ . . . ≤ Φ

m
(Φ

m−1
(I)). (6)
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Let us define the consecutive residuals from (5) and (6), as follows

R+
i = Φ

i
(Φ

i−1
(I))− Φ

i−1
(Φ

i−2
(I)) ≥ 0 (7)

R−i = Φi−1(Φi−2(I))− Φi(Φi−1(I)) ≥ 0 (8)

with Φ
0

= Φ0 = Id, the identity transform. From (5) and (6) we obtain,

I = Φ
m

(Φ
m−1

(I))−
m∑
i=1

R+
i (9)

and likewise,

I = Φm(Φm−1(I)) +
m∑
i=1

R−i (10)

combining (9) and (10) provides us with an additive decomposition of the

original image as follows

I =
Φ
m

(Φ
m−1

(I)) + Φm(Φm−1(I))

2︸ ︷︷ ︸
S

+
m∑
i=1

(R−i −R+
i )

2︸ ︷︷ ︸
Ri

= S +
m∑
i=1

Ri = S + R.

We now need to determine what kind of transformations (Φi,Φ
i
) should use

to have interesting additive decomposition. Firstly, we consider the case of

a family of morphological operators by reconstruction indexed by the size

of the structuring element, i.e., (Φi,Φ
i
) = (γ∞SEi , φ

∞
SEi

) such that SEi ⊆ SEj

for all i < j. In this additive morphological decomposition (AMD), the cou-

ple (R−i ,R
+
i ) is essentially composed by image structures associated with

bright and dark objects in the image at different scales. The results for a

spectral band of a hyperspectral image are shown in Fig.3(a)-(d). In this

case, thanks to idempotence and absorption laws of the openings [22], i.e.
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φ∞SEi(φ
∞
SEj

) = φ∞SEj if SEi ⊆ SEj, the implementation of AMD does not require

the composition of transformations associated with different scales. We re-

mark that AMD has the same residues produced by the differential mor-

phological profile (DMP)[26] but its representation has dimension (m + 1)d

instead than 2md, and in addition the AMD includes the term S associated

with the image structure.

Secondly, the additive decomposition (11) can be applied even if the trans-

formations do not satisfy the absorption law as in the previous case. That is

the case of (Φi,Φ
i
) = (λσ(·), λσ(·)) the pair of Upper/Lower Leveling where

marker M is the minimum (maximum) between Gσ(I) (the convolution of

the original image with a Gaussian kernel with variance σ2) and the original

I [23]. See Table 1 to get details of the definition. We use the acronym ADL

for additive decomposition by leveling to refer to this approach. In ADL, the

multiscale effect is controlled by the value σ in the gaussian kernel associ-

ated to the marker. Results for ADL are shown in Fig.3(f)-(h) for a practical

example. In remote sensing applications, the leveling transformation was

advocated in [27]. Other kind of function can be considered instead of a

gaussian convolution, for instance, subtraction of the original image and a

constant as in [28]. The decomposition step extracts the most relevant parts

from the original image I, resulting to a cartoon-like image S, formed by

homogeneous regions with sharp boundaries. Expressed in a different way,

image S retains all contrast and boundary information but loses all small

scale pattern details. The correspondent residue R = {R1, . . . ,Rm}, consti-

tutes a hierarchy of multiscale texture components. It should be remarked

that the scope of this decomposition is not to find the optimum additive
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(a) S (b) R1 (c) R2 (d) R3

(e) S (f) R1 (g) R2 (h) R3

Figure 3: (a)-(d) Additive Morphological Decomposition (AMD) with SE’s disks of radius
3,7,11. (e)-(h) Additive Decomposition by Leveling (ADL) with σ’s 3,7,11. Note that
residuals can be negatives(red) or positives(green).

decomposition as done in [29, 30], but it is a simple decomposition scheme

where the spatial size of the texture can be interpreted. In the particular case

of remote sensing imagery, several morphological decompositions have been

proposed as summarized in Table 2. In section 4, we include experiments of

performance of AMD, ADL and DMP in well-known hyperspectral images.

Recently, difference of morphological attributes filters have been also intro-

duced by [31, 16, 32]. The extension of additive morphological decomposition

using these filters is straightforward but it is out of the scope of this paper.

At this point, we have introduced an additive decomposition for a multivari-

ate image. The next challenge is to find a way to handle the increase of the

dimensionality.
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Table 2: Different morphological decompositions for an image I of size n1 × n2 × d in m
levels.

Acronym Additive Trans.(Φ/Φ) Dimension
Differential Morphological
Profile (DMP) [26]

No γ∞SE(·)/φ∞SE(·) 2×m× d

Morphological Profile by
Leveling (MPL) [33]

Yes λσ(·)/λσ(·) 2×m× d

Additive Morphological De-
composition (AMD)

Yes γ∞SE(·)/φ∞SE(·) (m+ 1)× d

Additive Decomposition by
Leveling (ADL)

Yes λσ(·)/λσ(·) (m+ 1)× d

3. Tensor Modeling

3.1. Introduction

The most popular dimensional reduction approach in HSI is PCA. How-

ever, PCA requires a preliminary data arrangement, i.e., the original hyper-

spectral image I of size n1 × n2 × n3 is firstly vectorized into a matrix X of

size (n1n2)× n3 permitting the use of classic linear algebra approaches, but

neglecting spatial rearrangement. The main shortcoming of this method is

the assumption of separability between spatial processing and spectral pro-

cessing. The dimensional reduction approach based on tensor decomposition

considers the multivariate image I as a third order tensor I [34]. This kind of

model based on tensor signal processing had been previously applied in HSI

[35] [12]. Let us introduce the notation commonly used within tensor analy-

sis literature, followed by the core of dimensional reduction problem and its

solution. Let the tensor I ∈ Rn1×n2×n3 be an n1 × n2 × n3 array containing

the original information of image I. Note that n3 = d. Each index in the

tensor is called mode: the first two are spatial and the third is spectral. Our
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approach is based on applying multilinear algebra on the whole tensor struc-

ture instead of adapting the data tensor to classical matrix-based algebraic

techniques by rearrangement.

3.2. Tensor Decomposition

A matrix X ∈ Rn1×n2 is a two-mode mathematical object that has two

associated vector spaces, a row space and a column space. Singular Value

Decomposition (SVD) orthogonalizes these two spaces and decomposes the

matrix as X = U1ΣUT
2 , where U1 and UT

2 represent orthogonal column

space, and Σ is a diagonal singular value matrix. In terms of the i-mode

products, this SVD decomposition can be rewritten as X = Σ×1 U1 ×2 U2,

where ×i is the i-mode product [36] [34]. Extension to a J-order tensor

I ∈ Rn1×n2×n3×...×nJ was presented by [36] orthogonalizing J spaces and

expressing the tensor as the J-mode product of J-orthogonal spaces

I = C ×1 U1 ×2 U2 ×3 . . .×J UJ (11)

Tensor C, known as the core tensor, is analogous to the diagonal singular value

matrix in conventional matrix SVD. It is important to realize, however, that

the core tensor has no a diagonal structure; rather, C is in general a full tensor.

The core tensor governs the interaction between the mode matrices Ui, for

i = 1, . . . , J . Mode matrix Ui contains the orthonormal vectors spanning

the column space of the matrix Xi that results from the i-mode flattening

of I. Flattening, also known as matricization or unfolding, is the process

of reordering the elements of an i-mode into a matrix [34]. This method is

know as higher-order SVD (HOSVD) from the work of De Lathauwer, De

Moor, and Vandewalle [36], who showed that the HOSVD is a convincing
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generalization of the matrix SVD and discussed ways to efficiently compute

the leading left singular vectors of Xi. An excellent compendium about

tensor decomposition is presented in [34]. The HOSVD is usually performed

using Alternative Least Square algorithm used to jointly find i-mode matrices

Ui, but recently other approaches have been introduced [37]. In the case of

three mode tensors I, the objective of HOSVD is to select subspaces U1,U2

and U3 and the core tensor C such that the L2-norm reconstruction error is

minimized [34],

min
U1,U2,U3,C

E1 = ||I − C ×1 U1 ×2 U2 ×3 U3||2 (12)

where U1,U2,U3 are required to be orthogonal, i.e., UT
1 U1 = UT

2 U2 =

UT
3 U3. With the orthonormality condition, we can obtain E = I ×1 UT

1 ×2

UT
2 ×3 UT

3 ,and (12) can be written as:

min
U1,U2,U3

E1 = ||I||2 − ||E||2

⇔ max
U1,U2,U3

E2 = ||E||2 (13)

As it was presented by Huang [38], the equation (13) is equivalent to maxi-

mize:

max
U1,U2,U3

E2 = Trace(UT
1 FU1) =

Trace(UT
2 GU2) = Trace(UT

3 HU3)

(14)

where:

Fii′ =
∑
ll′

(X(l)U2U
T
2 XT

(l′))ii′(U3U
T
3 )ll′

Gjj′ =
∑
ll′

(X(l)U1U
T
1 XT

(l′))jj′(U3U
T
3 )ll′

Hll′ =
∑
ii′jj′

IijlIi′j′l′(U1U
T
1 )ii′(U2U

T
2 )jj′
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Since F,G,H are semipositive definite, ||E2|| is monotonically increasing,

therefore HOSVD algorithm converges to a local optimal. Thus theoretically,

the solutions HOSVD are not unique. That issue was already pointed in

[34] and studied in detail for [39] in real life databases concluding that the

convergence depends on the eigenvalue distribution for the matrix F,G and

H. However, convergence problem in real HSIs has shown that cumulative

values in the eigenvalues of F and G is a better criterion [40].

3.3. Tensor Principal Component Analysis (TPCA)

In high-dimensional images as HSI, it is of great interest to reduce the

spectral dimension in order to exceed problems as “Curse of Dimensional-

ity” in distance-based analysis or nonparametric analysis and “Hughes phe-

nomenon” in linear classifiers. Commonly a pre-processing step consists in

performing a PCA to reduce feature space. We present a tensor version for

PCA based on [21]. It is a lower rank approximation, where classical PCA

is a particular case, if no subspace reduction is performed in the modes as-

sociated with rows and columns. We assume that the hyperspectral image

I is a zero-mean tensor in the flattening matrix related to the J-mode, i.e.,

XJ = 0. That is equivalent to subtracting the empirical mean vector from

each column of the data matrix X as in PCA. In addition, the best lower

rank tensor approximation of I [36], denoted by Ĩ is:

Ĩ = I ×1 P1 ×2 P2 ×3 . . .×J PJ (15)

where Pi = UiUi
T , and Ui is found by using expression (11). This repre-

sentation allows to include noise filtering in the sense of SVD filtering [41] if

only the largest eigenvectors are considered per mode. Thus, the tensor-PCA
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(TPCA) approximation of the image I with parameters (s1, s2, . . . , sJ−1, k),

1 ≤ si ≤ ni,∀i = 1, . . . , J − 1, is defined as follows:

Ĩ = I ×1 Ũs1Ũ
T
s1
×2 Ũs2Ũ

T
s2
×3 . . .×J ŨT

k (16)

where k denotes the dimension in the J-mode, i.e., the number of components

in the dimensional reduction. Additionally, si is the number of eigenvectors

included in the filtering with respect to the i-mode and Ũsi contains the

si eigenvectors associated with the si largest eigenvalues holding of the un-

folding matrix Xi. We define the first k tensor principal components with

parameters (s1, . . . , sj−1) of I as the first k column of the matrix ŨT
k from

(16). Summarizing, for a HSI I, the tensor principal component analysis with

parameters (s1, s2, k) is a transformation F(E,Rd)→ F(E,Rk). The equiva-

lence to the principal component analysis is presented in the next section.

3.4. Equivalence with PCA

In the case of a typical hyperspectral image represented as a tensor, I of

size n1 × n2 × n3, the expression (16) is particularized as

Ĩ = I ×1 Ũs1Ũ
T
s1
×2 Ũs2Ũ

T
s2
×3 ŨT

k , (17)

where Ũ1 and Ũ2 has the s1 and s2 largest eigenvectors associated of the

unfolding matrix X1 and X2, respectively. Firstly, it is important to remark

that if s1 = n1 and s2 = n2, Ũ1Ũ
T
1 = In1×n1 and Ũ2Ũ

T
2 = In2×n2 in that

case, expression (17) becomes:

Ĩ = I ×3 ŨT
k ,

where Ũk contains the k-largest eigenvectors associated of the unfolding ma-

trix X3, i.e., the matrix X of (n1 × n2) rows and n3 columns that is the
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Figure 4: Experiment shows clearly that TPCA is equivalent to PCA. Experiments are
presented with s1 = s2 in the interval [n1 = n2, . . . , 1], for Indian Pines HSI used in the
experiments.

traditional unfolding of I. Using the assumption that I is a zero-mean ten-

sor in the third order, the eigenvectors associated to X are the same as the

expression (X − µ)T (X − µ) which are the projections calculated by PCA.

To illustrate this results in a practical example, we calculate the first five

components in both PCA and TPCA.The absolute value of the differences

between the squares of projections calculated by PCA and TPCA are illus-

trated in Fig. 4 for a real HSI (Indian Pine). It is easy to see that when

the components number in the spatial dimension (s1, s2) for TPCA are equal

to the image original dimension, the projections calculated by TPCA and

PCA become similar. The differences become larger as soon as the spatial

dimension reduces. Consequently, by this spatial dimension reduction with

s1 < n1 and s2 < n2 we obtain through TPCA a spatial smoothing separately

in rows and columns of the image, which is not produced in PCA.
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Figure 5: Illustration of dimensional reduction stage using additive morphological decom-
position.

3.5. Modeling additive morphological decomposition with TPCA

The basic idea of our approach is summarized in Fig. 5. For a hyper-

spectral image I we find the additive decomposition in m levels, as it was

introduced in Section 2, i.e. I = S +R1 + . . .+Rm. We regroup the whole

decomposition in a four-order tensor D = [S,R1, . . . ,Rm]. We apply the

TPCA with parameters s1, s2, k1, k2 with k = k1 × k2,

D̃ = D ×1 Ũs1Ũ
T
s1
×2 Ũs2Ũ

T
s2
×3 ŨT

k1
×4 ŨT

k2
(18)

where D̃ is a tensor of size n1 × n2 × k1 × k2. The parameters s1 and s2 are

associated with the spatial filtering in the sense of SVD filtering in the rows

and columns space, k1 is the reduction in the spectral space and k2 is corre-

sponding to the scale decomposition. The connection to precedent subsection

is established for TPCA in four-order tensors, to traditional PCA in the case
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of k1 = n1, k2 = n2 and no scale decomposition. In summary, the proposed

workflow yields a reduced feature space as PCA where the spatial informa-

tion included in the morphological decomposition is relevant. Additionally,

spatial filtering can be included through the tensor decomposition.

4. Experiments

In this section, we present the experimental results obtained in our anal-

ysis. Firstly, we overview the characteristics of the data used in the ex-

perimental setup. After that, several experiments are presented in order to

compare the effectiveness of the proposed additive decompositions and tensor

dimensional reduction. The application of the introduced approach requires

a morphological transformation for vector images. Unfortunately, the gen-

eralization to multivariate image of mathematical morphology operators is

still an open problem [42, 43]. We present the results of our approach ap-

plying the transformations marginally, i.e. for each channel i = {1, 2, . . . , d}

independently. For instance, the dilation of the d-variate image I is given by

δSE (I) (x) = [δSE (x1) , δSE (x2) , . . . , δSE (xd)], where x = [x1, x2, . . . , xd]. And

similarly, for all the other operators summarized in Table 1.

4.1. Data Description and Experimental Setup

In order to further evaluate and compare the proposed algorithm with

other state-of-the-art approaches for spatial-spectral classification, we use

two real hyperspectral images.

1. Airborne Visible/Infrared imaging spectrometer hyperspectral image (AVIRIS)

Indian Pines Scene. The AVIRIS sensor generates 220 bands across the spec-

tral range from 0.2 to 2.4 µm. In the experiments, the number of bands is
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Figure 6: AMD using {SE1, SE2} a disk of diameter 2 and 4 is shown for four pixels
in the ROSIS Pavia University HSI. First pixel (Left-Up) is a one-pixel set object. Its
residual component (R) is large in comparison to the structure one S, i.e., the pixel is very
different from its neighbors. Second pixel (Right-Up) is a tree. The residual component
is important only in the spectrum associated with vegetation. Third pixel (Left-Down)
is a shadow-tree. Residual is negative and significative only in the vegetation section of
the spectrum. Fourth pixel (Right-Down) is a pixel in a homogeneous zone, i.e., it has no
texture component.
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reduced to 200 by removing 20 water absorption bands. The image has a

spatial resolution of 20 meters per pixel and a spatial dimension of 145×145

pixels.This image is a classical benchmark to validate the accuracy of HSI

classification algorithms and constitutes a challenging problem due to the

significant presence of mixed pixels in all available classes and also because

of the unbalanced number of available labeled pixels per class. We follow the

experiment proposed in [44] to analyze HSI classification in a very difficult

situation. From the 16 different land-cover classes available in the original

ground-truth, seven were discarded due to an insufficient number of training

samples. The finally selected classes were: Corn-no till (1434), Corn-min

till (834), Grass/Pasture (497), Grass/Trees (747), Hay-wind-rowed (489),

Soybean-no till (968), Soybean-min till (2468), Soybean-clean till (614), and

Woods (1294). Summarizing, the ground-truth contains nine classes, as seen

in Fig. 8(a). In the experiment, we test the introduced method in different

ill-posed scenarios where only five pixels are used as training samples per

class. Our results are compared with those reported by [44, 45].

2. University of Pavia, is an urban image acquired by Reflective Optics

System Imaging Spectrometer (ROSIS). The ROSIS sensor generates 115

spectral bands ranging from 0.43 to 0.86 µm with a band of 4nm and has

a spatial resolution of 1.3-meter per pixel. The image consists of 610 × 340

pixels, each having 103 bands with 12 most noisy bands removed. There are

nine ground-truth classes of interest, as shown in Fig. 10(a). Nine thematic

land-cover classes were identified in the university campus: Trees, Asphalt,

Bitumen, Gravel, Metal sheets, Shadows, Self-blocking Bricks, Meadows, and

Bare soil. For this data set, a total of 3921 and 42776 pixels were available as
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(a) Overall accuracy of morphological
decompositions as a function of the num-
ber of components in PCA.

(b) Overall accuracy of morphological
decompositions as a function of the num-
ber of component in TPCA.

Figure 7: Indian Pine first scenario. Only five pixels per class are selected for the training
set. The results show the average and standard deviation in 25 repetitions.

training and test sets, respectively, as seen in Fig. 10(b). Proposed approach

results are compared with those obtained from [6, 46, 14, 15, 17].

4.2. Classification

Support Vector Machine (SVM) have shown promising results in terms

of prediction accuracy in HSI [48]. A pixelwise classification was performed

using the multiclass “one versus one” SVM classifier in the correspondent

dimension produced by PCA and TPCA in the morphological decomposi-

tions considered in Section 2. The reduced space is scaled to the range of

[0, 1] and SVM is trained with Gaussian kernel, and parameters tuned in the

range {−1, . . . , 3} for the regularization parameter and {−4, . . . , 1} for the

Gaussian kernel parameter by using cross-validation. The following measures

of accuracy were used: Overall accuracy (OA) is the percentage of correctly

classified pixels, average accuracy (AA) is the mean of class-specific accu-

racies, i.e., the percentage of correctly classified pixels for each class, and
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(a) Groundtruth (b) PCA+SVM (c)
DMP+PCA+SVM

(d)
DMP+TPCA+SVM

(e)
AMD+PCA+SVM

(f)
ADL+PCA+SVM

(g)
AMD+TPCA+SVM

(h)
ADL+TPCA+SVM

Figure 8: Classification maps for the Indian Pines HSI using different approaches. Only
five training pixels in nine classes are considered. The classification map is the best result
in 25 random repetitions.
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Table 3: Classification accuracy for Indian Pines HSI. Only five samples per class are
included in the training set. For proposed methods in parentheses the number of compo-
nents.

Method OA % κ
Spatial Kernel [44]

Spectral +SVM 45.79 0.43
Spectral +Graph 48.96 0.46

Summation + SVM 48.88 0.46
Summation + Graph 52.27 0.49

Cross +SVM 61.75 0.60
Cross+Graph 66.04 0.64

Random Field+Multinomial Logistic Regression [45]
SS 72.62 N/A

LORSAL 58.10 N/A
Differential Morphological Profile

DMP + PCA(16)+SVM 67.33 0.62
DMP + TPCA(15)+SVM 68.10 0.63

Additive Morphological Decomposition
ADL + PCA(15)+SVM 70.57 0.66

ADL + TPCA(12)+SVM 73.39 0.69
AMD + PCA(13)+SVM 63.13 0.57

AMD + TPCA(14)+SVM 65.31 0.60

Figure 9: Behavior of the overall accuracy in the Pavia University dataset for different
morphological decompositions and dimensional reduction approach.
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Table 4: Overall and average classification accuracies and κ statistics obtained after com-
paring the proposed framework with other spatial-spectral classifiers for Pavia University
data set. The number of components is reported in parentheses.

Method Overall
Accuracy

Average
Accuracy

κ

ECHO [6] 87.58 92.16 .8390
SVMMSF+MV [46] 91.08 94.76 .8830

SSK [17] 86.11 91.98 .8235
LORSAL-MLL [14] 85.57 92.54 .8180
MLRsubMLL [15] 94.10 93.45 .9224

PCA+SVM(9) 81.57 87.39 .7662
DMP+PCA+SVM(23) 82.12 83.54 .7675
AMD+PCA+SVM(20) 94.32 94.64 .9253
ADL+PCA+SVM (18) 88.67 91.39 .8508

AMD+TPCA+SVM(15) 94.70 94.51 .9301
ADL+TPCA+SVM(15) 92.72 91.77 .9043

Table 5: Overall and average classification accuracies and κ statistics obtained after com-
paring the proposed framework with other spatial-spectral classifiers for Pavia University
data set. Classification task is performed by SVM. For proposed methods in parentheses
the number of components.

Class SVM EMP[47] SSK [17] PCA(9) DMP + PCA(23) AMD + PCA(20) ADL + PCA(18) AMD + TPCA(15) ADL+ TPCA(15)
Asphalt 80.64 93.33 84.36 83.52 88.30 96.56 92.75 93.45 93.30
Meadow 68.47 73.40 78.52 74.89 84.06 94.01 89.72 95.77 94.07
Gravel 73.80 52.45 84.80 70.32 55.03 84.52 88.71 82.80 65.41
Tree 97.49 99.31 96.87 98.07 84.30 98.56 97.91 98.86 98.56

Metal sheet 99.49 99.48 99.88 99.48 99.78 99.48 100 99.48 99.55
Bare soil 94.83 61.90 95.61 82.86 57.49 88.86 59.14 89.72 87.69
Bitumen 91.50 97.67 95.56 90.30 99.02 99.17 96.84 99.02 97.44

Brick 91.88 95.17 95.44 88.78 93.78 98.23 99.13 98.86 98.56
Shadow 97.04 92.29 97.78 98.21 90.07 92.40 98.31 92.61 91.34
Overall 80.13 79.83 86.11 81.57 82.12 94.32 88.67 94.70 92.72
Average 88.33 85.00 91.98 87.39 83.54 94.64 91.39 94.51 91.77

κ .7519 .7415 .8235 .7662 .7675 .9253 .8508 .9301 .9043
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(a) Training Set (b) Test Set (c) PCA (81.57%) (d) DMP+PCA
(82.12%)

(e) AMD+PCA
(94.32%)

(f) ADL+PCA
(88.67%)

(g) AMD+TPCA
(94.70%)

(h) ADL+TPCA
(92.72%)

Figure 10: Classification maps obtained by the different tested methods for Pavia Univer-
sity data set (Overall accuracies are reported in parentheses)
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kappa coefficient (κ) is the percentage of agreement, i.e., correctly classified

pixels, corrected by the number of agreements that would be expected purely

by chance. In order to compare the performance of the proposed technique

to include the spatial information into a classification task, we have also in-

cluded results of the previously proposed methods: ECHO spatial classifier

[6], Spatial kernels [44], Markov Random Field [45], Bayesian approach to

active learning [14], subspace multinomial logistic regression [15] and classifi-

cation followed by post-processing [46]. Morphological approaches to analysis

HSI are also included [17] and [47]. Additionally, the objective in the exper-

iment is to complete the comparative analysis in feature spaces of different

dimension size produced by the proposed additive morphological decomposi-

tion and extracted by PCA and TPCA. The parameters in the TPCA (s1, s2)

have been set to avoid the convergence problem in the tensor decomposition,

as it has been suggested in [40].

4.3. Results and discussion

Firstly, to illustrate the motivation behind this work and to clarify the

concept of “additive decomposition” for multivariate images, Fig. 6 visualizes

the result of ADL for four types of pixels for a HSI. Spectra are decomposed

accordingly to their relationship in the spatial neighborhood. Simple inter-

pretations can be done regarding the structure+texture decomposition in

the spectrum range (See caption in Fig. 6). Secondly, a quantitive com-

parison is carried out in two real HSI. The Indian Pines experiment shows

the importance to incorporate spatial information previously to do feature

reduction. We point out that the experiment was set in a extremely diffi-

cult case (only 5 samples per class as training set) to illustrate the effect of
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spatial information, additive decomposition and tensor-PCA in classification

of high dimensional images. In other words, in this scenario the influence of

the classifier is limited and allow us to compare the different techniques of

dimensionality reduction. To reliably evaluate the performance of the pro-

posed method, the results were averaged over 25 different randomly selected

training (of size five) for a number of feature yield by PCA and TPCA in

the range of [1, . . . , 16]. For a best understanding of this comparison, the

experiment considered in Fig. 7 illustrates the performance of ADL, AMD

and DMP in both dimensional reduction approaches (PCA and TPCA). In

the broader range of results, ADL exhibits a higher classification rate for the

dimensionality size considered in this example. ADL led to the best classifi-

cation results, as it can also be seen from Table 3. On the other hand, this

experiment confirms our intuition that the inclusion of a spatial prior can sig-

nificantly improve the classification results provided by using only spectral

information. Fig. 8 shows the thematic classification maps for the pixel wise

SVM and the spectral-spatial classification by morphological decomposition

after the dimensional reduction step. Our approach involving morphological

information is clearly better that its spectral equivalent. Additionally, ADL

and tensor reduction has the best performance with more than 73% in overall

classification in this very difficult scenario.

Additionally, to get fair comparison with others approaches, we analyze the

Pavia University HSI in Fig. 9. This is the standard scenario to do com-

parisons in HSI. We can observe how additive decomposition have a better

performance than classical approaches. However, ADL and AMP produce

equivalent results. We note that in this experiments the training set is fixed,
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so the result depend of this selection, i.e., we can not argument that in

the statistical sense than the difference are significative or not. Compari-

son with state-of-the-art approaches are presented in Table 3 (summarizing

Fig. 9), where we can see: a) The performance of tensor-PCA is in gen-

eral better (in most of the dimensions) than PCA. b) Classification from

AMD are better than original image or DMP in all the considered cases. c)

AMD+TPCA gives the best result of the reported approaches in this super-

vised scenario. In turn, it can also be seen in Fig. 9 that the inclusion of

the tensor structure provides much higher classification accuracies than those

reported for PCA. From Table 4, it can be observed that the proposed ad-

ditive decompositions (AMD and ADL) obtain good result when compared

with other methods. Tensor structure improves the classification accuracy

and yields a representation with better separability in lower dimension, for

instance, from 20 features for ADL+PCA+SVM (OA-88.67%) to 15 features

for ADL+TPCA+SVM (OA-92.72%). Table 5 gives the class-specific accu-

racies of the best pixel wise classification in the projected space induced by

the correspondent dimensional reduction algorithm. The performances of the

proposed additive decomposition are compared with those obtained by other

morphological based approaches [47, 17]. The AMD+TPCA yields the best

OA and kappa coefficient. Most of the best class-specific accuracies are ob-

tained by AMD with PCA or TPCA. This approach significantly outperforms

other classification approaches. For illustrative purposes, the effectiveness of

the proposed framework with Pavia University HSI is further shown in Fig.10

and the classification maps obtained are displayed along with their associ-

ated OA scores. Fig. 10 shows the classification maps of PCA, DMP+PCA,
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and additive decompositions reduced by PCA and TPCA. As it can be seen,

the ADM map contains much more homogeneous spatial structures when

compared with the PCA map.

To conclude, in real applications the analysis of high-dimensional images

by using morphological decomposition is related to the prior knowledge of

object of interest. The problem that we address in this paper is a multi-class

supervised problem, where prior information about ‘shape/size” of the object

is not available. Accordingly, multi-scale decompositions based on ADM

and DMP are obtained by using “isotropic disk” for different sizes, as in

[17]. Analyzing the difficulty to select the parameters, the unique parameter

required in ADL is a set of σ associated with the scale of the objects of

interest, which is easier to set than a “size/shape” parameter necessary in

AMD.

5. Conclusions

The paper proposed a framework integrating structural/spatial informa-

tion in unsupervised dimensional exploration and feature extraction for hy-

perspectral images. Additive morphological decomposition is a nonlinear

representation that favorably incorporate the spatial information in dimen-

sion reduction approaches. Tensor modeling integrates structural/spatial

information, together with the spectral one, in feature extraction causing

drastic dimension reductions without detrimental effect to classifier perfor-

mance. We notice that complex objects are not defined by single level sets

and consequently their structures appear in several scales of the decompo-

sition. Results in real hyperspectral images show how the tensor approach

32



incorporates more usefully spatial information in dimensional reduction stage

in comparison with its matrix equivalent version.
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