
SerAPI: Machine-Friendly, Data-Centric Serialization

for COQ

Emilio Jesús Gallego Arias

To cite this version:

Emilio Jesús Gallego Arias. SerAPI: Machine-Friendly, Data-Centric Serialization for COQ:
Technical Report. 2016. <hal-01384408>

HAL Id: hal-01384408

https://hal-mines-paristech.archives-ouvertes.fr/hal-01384408

Submitted on 19 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://hal.archives-ouvertes.fr
https://hal-mines-paristech.archives-ouvertes.fr/hal-01384408
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

SerAPI: Machine-Friendly, Data-Centric Serialization for COQ
Technical Report

Emilio Jesús Gallego Arias
MINES ParisTech, PSL Research University, France

Abstract
We present SerAPI, a library and protocol for machine-friendly com-
munication with the COQ proof assistant. SerAPI is implemented
using Ocaml’s PPX pre-processing technology, and it is specifi-
cally targeted to reduce implementation burden for tools such as
Integrated Development Environments or code analyzers.

SerAPI tries to address common problems that tools interacting
with COQ face, providing a uniform and data-centric way to access
term representations, proof state, and an extended protocol for
document building.

SerAPI is work in progress but fully functional. It has been
adopted by the jsCoq and PeaCoq Integrated Development Environ-
ments, and supports running inside a web browser instance. For the
near future, we are focused on extending the document protocol and
providing advanced display abilities to clients.

Keywords serialization; interactive protocols; user interfaces; pro-
gram verification; theorem prover implementation

1. Introduction
Historically, the interface to the outside world of the COQ proof as-
sistant has been its toplevel, a Read Print Eval Loop. COQ’s REPL
is targeted at human users, which issue proof building commands —
to progress towards proving the “current goal” — intermixed with
control commands and information requests. The limitations that a
command-based model suppose for proof development quickly be-
come apparent, and proof development environments such as Proof
General [2] appeared to provide a more convenient document-based
model on top of the REPL.

Nobody would deny the success of this approach, however,
interacting with the REPL interface brings some challenges and
limitations. Interpreting prover output is complicated, especially in
the presence of COQ’s extensible parsing and printing mechanism.
Similarly, information internal to the theorem was not exposed in
a systematic way. Queries for such data — often needed by the
tools — were performed by custom-purpose commands, often with
semi-adhoc syntax and output format. The need to modify the core
command language of COQ implied that new functionality was
costly to implement, requiring a new release of system.

Until recently, the only alternative to the REPL was the use of
plugins, written in Ocaml. Plugins provided full access to COQ’s
internals, however they were hard to distribute and restricted to
Ocaml-friendly environments.

Fortunately, the situation has recently changed with the introduc-
tion of the State Transactional Machine [3] in COQ 8.5 and a new,
XML-based, interactive protocol. The new protocol was inspired
by related proof IDE efforts [9], and several new developments are
based on it, including an experimental port of Proof General [7, 4,
10].

Our particular first contact with COQ’s STM came when we
started the development of jsCoq [5], a port of COQ to the browser
platform. jsCoq started as a Ocaml application, then transpiled to
JavaScript by the js_of_ocaml [8] tool. The event-based nature of
the STM API proved to be well suited to the browser environment,
allowing the completion of a first prototype. However, we soon
realized that the next step for jsCoq — running the prover process
inside a web worker thread — would require the use of a protocol.
The obvious choice would have been to use the existing XML
protocol, however after careful consideration we chose to build
our own extension. The main reasons were:
• jsCoq was developed using the STM Ocaml’s API. However,

there is significant impedance with the way the state machine
is exposed through the XML protocol. Adapting would have
required a complete rework of jsCoq.

• Some of the ambitions jsCoq goals — advanced term display,
asynchronous communication — were not well supported by the
XML protocol.

• The amount of serialization boilerplate was high. COQ exposes
hundredths of datatypes and the XML protocol was designed
prior to the introduction of the Ocaml’s PPX meta programming
facilities. The opportunity of designing a new system based on
meta programming seemed worth the effort to us.

• The final factor was the realization that the existence of such a
tool could be potentially useful to other developers and users.

This way, SerAPI was born.

2. SerAPI overview
The SerAPI philosophy is to use ML-style datatypes as the schema
specification, using PPX to automatically generate a machine-
friendly serialization. In our opinion, the cost of maintaining a
separate data representation is too high. This has the effect to link
SerAPI data representation to Ocaml’s API stability, however care
is taken in order to ensure that the more advanced representation
are opt-in. For example, a client may request to receive all objects
pretty printed as strings.

Once we have encoded the required datatypes, the API we
want to expose are reified to — usually small — domain specific
languages, with their corresponding interpreter serving as the link
between the reified version and the actual COQ procedures. The
DSL representation is serialized in the same way.

We briefly survey the components of the current distribution.

The Serialization Library The base component of SerAPI is
SerLib, the serialization library. SerLib provides an overlay of
COQ’s modules, extending them with the corresponding serialization
functions.

Serialization is performed by the ppx_sexp_conv package, with
help from ppx_import. For example, we declare the vernac_expr
datatype to be serializable to sexps with:

type vernac_expr =
[%import: Vernacexpr.vernac_expr]
[@@deriving sexp]

(* will generate: *)
val vernac_expr_of_sexp : Sexp.t → vernac_expr
val sexp_of_vernac_expr : vernac_expr → Sexp.t

The current distribution serializes 328 COQ datatypes by including
this boilerplate in the corresponding modules. For the few private
datatypes of interest — such as constr — we provide our own view
and translation functions.

The SerAPI Protocol The second component is the SerAPI con-
trol protocol, an extension of COQ’s STM API which is used to build
and execute proof scripts. Given the IDE origins of SerAPI, it was
natural to provide IDE support first. The current control protocol is
specified by a DSL and its full description goes beyond the scope of
this abstract. A peek on the definitions is:

type control_cmd =
| StmAdd of add_opts * string
| StmCancel of Stateid.t list
| StmObserve of Stateid.t
...

type answer_kind =
| StmAdded of Loc.t
| StmCanceled of Stateid.t list
...

Several changes over the standard STM model have been performed,
mainly to facilitate the work of the clients and to be more robust
w.r.t. race conditions. Events or feedback from COQ are forwarded
to the client unchanged.

The SerComp Coq Processor The last component is SerComp,
an experimental batch processor for COQ files, supporting data
aggregation and exporting of COQ files to a machine-friendly format.

3. A Data-Centric View
A central goal of SerAPI is to expose information known to COQ
using a principled, “database-inspired” API. The SerAPI “Query”
protocol is completely separated from the control protocol, and
still in heavy development. An important feature is that changes in
the protocol aggregation or query functions don’t require changes
in COQ at all. Thus, we enjoy freedom to experiment without
interfering with core parts of the system.

The base datatype is the coq_object datatype that simply adds
a tag to COQ types. Then, each tag can be queried for, with common
options including output format, paging, and filtering:

type coq_object =
| CoqConstr of Constr.constr
| CoqExpr of Constrexpr.constr_expr
| CoqTactic of KerName.t * Tacenv.ltac_entry

type query_opt = {
preds : query_pred sexp_list;
limit : int sexp_option;
sid : Stateid.t [@default current_state()];
pp : print_opt [@default {pp_fmt = PpSer}];
}

type query_cmd = Option | Tactics | Goals | ...

A key difference with the current XML protocol is that SerAPI
won’t produce any non-control information unless queried. This
implies a slightly different control flow that we prefer.

4. Current Status and Goals
SerAPI is open source and available at [1]. The current prototype is
fully functional, and we provide a functional web version1. Experi-
ence with jsCoq gives us moderate confidence on the robustness of
the approach; our main goal at this stage is to gather more interest
and get feedback from users, helping us to converge on the design.
The two most important tasks for the near future are:
• Finalize the control protocol: Experience implementing IDEs on

top of SerAPI has led us to extend the original STM protocol in
a few ways. However, some tricky details remain to be finalized,
such as the definitive error handling procedure. We hope to
complete a first draft of the extended STM protocol soon, and
hopefully some of the ideas would be suitable for incorporation
in COQ upstream.

• Principled data API: COQ internally stores many useful data,
however there is no principled interface for access. We believe
however that for the most part, the ML API is not so far from it.
We hope we can contribute to improve and uniformize COQ’s
upstream API too, covering some important use cases such as
efficient search and completion.
A medium term goal is to improve the COQ’s printing system

so tools can offer a richer interpretation of notations (see for
example [6]). Some preliminary work is already in place but more
research is needed before completing a fully-functioning prototype.

Acknowledgements: We would like to thank Clément Pit–Claudel,
Valentin Robert, and Enrico Tassi for very valuable feedback and
testing.

References
[1] E. J. G. Arias. Coq Serializable Protocol (SerAPI). https:

//github.com/ejgallego/coq-serapi. Accessed: 2016-
09-13.

[2] D. Aspinall. “Proof General: A Generic Tool for Proof De-
velopment”. In: Tools and Algorithms for Construction and
Analysis of Systems, 6th International Conference, TACAS
2000, Held as Part of the European Joint Conferences on
the Theory and Practice of Software, ETAPS 2000, Berlin,
Germany, March 25 - April 2, 2000, Proceedings. Vol. 1785.
Springer, 2000, pp. 38–42.

[3] B. Barras, C. Tankink, and E. Tassi. “Asynchronous Process-
ing of Coq Documents: From the Kernel up to the User In-
terface”. In: Interactive Theorem Proving - 6th International
Conference, ITP 2015, Nanjing, China, August 24-27, 2015,
Proceedings. Vol. 9236. Springer, 2015, pp. 51–66.

[4] A. Faithfull et al. “Coqoon: An IDE for interactive proof
development in Coq”. In: TACAS. Eindhoven, Netherlands,
Apr. 2016.

[5] E. J. Gallego Arias, B. Pin, and P. Jouvelot. “jsCoq: towards
hybrid theorem proving interfaces”. In: Proceedings of the
12th Workshop on User Interfaces for Theorem Provers. 2016.

[6] C. Pit-Claudel and P. Courtieu. “Company-Coq: Taking Proof
General one step closer to a real IDE”. In: CoqPL’16: The
Second International Workshop on Coq for PL. Jan. 2016.

[7] P. Steckler. Proof General with XML Protocol Support. https:
/ / github . com / psteckler / ProofGeneral. Accessed:
2016-09-13.

[8] J. Vouillon and V. Balat. “From bytecode to JavaScript: the
Js_of_ocaml compiler”. In: Softw., Pract. Exper. 44.8 (2014),
pp. 951–972.

1 https://x80.org/rhino-hawk/

https://github.com/ejgallego/coq-serapi
https://github.com/ejgallego/coq-serapi
http://dx.doi.org/10.1007/3-540-46419-0_3
http://dx.doi.org/10.1007/3-540-46419-0_3
http://dx.doi.org/10.1007/978-3-319-22102-1
http://dx.doi.org/10.1007/978-3-319-22102-1
http://dx.doi.org/10.1007/978-3-319-22102-1
https://hal.inria.fr/hal-01242295
https://hal.inria.fr/hal-01242295
https://github.com/ejgallego/jscoq
https://github.com/ejgallego/jscoq
http://dx.doi.org/10.5281/zenodo.44331
http://dx.doi.org/10.5281/zenodo.44331
https://github.com/psteckler/ProofGeneral
https://github.com/psteckler/ProofGeneral
http://dx.doi.org/10.1002/spe.2187
http://dx.doi.org/10.1002/spe.2187
https://x80.org/rhino-hawk/

[9] M. Wenzel. “Asynchronous User Interaction and Tool Integra-
tion in Isabelle/PIDE”. In: Interactive Theorem Proving - 5th
International Conference, ITP 2014, Held as Part of the Vi-
enna Summer of Logic, VSL 2014, Vienna, Austria, July 14-17,
2014. Proceedings. Vol. 8558. Springer, 2014, pp. 515–530.

[10] M. Wenzel. “PIDE as front-end technology for Coq”. In:
CoRR abs/1304.6626 (2013).

http://dx.doi.org/10.1007/978-3-319-08970-6_33
http://dx.doi.org/10.1007/978-3-319-08970-6_33
http://arxiv.org/abs/1304.6626

	Introduction
	SerAPI overview
	A Data-Centric View
	Current Status and Goals

