
Using Bounded Model Checking to Focus Fixpoint

Iterations

David Monniaux, Laure Gonnord

To cite this version:

David Monniaux, Laure Gonnord. Using Bounded Model Checking to Focus Fixpoint Iter-
ations. Eran Yahav. Static analysis symposium (SAS), Sep 2011, Venezia, Italy. Springer,
6887, pp.369-385, 2011, Lecture notes in Computer Science. <10.1007/978-3-642-23702-7 27>.
<hal-00600087>

HAL Id: hal-00600087

https://hal.archives-ouvertes.fr/hal-00600087

Submitted on 13 Jun 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Using Bounded Model Checking
to Focus Fixpoint Iterations∗

David Monniaux† Laure Gonnord‡

June 13, 2011

Abstract

Two classical sources of imprecision in static analysis by abstract inter-
pretation are widening and merge operations. Merge operations can be done
away by distinguishing paths, as in trace partitioning, at the expense of enu-
merating an exponential number of paths.

In this article, we describe how to avoid such systematic exploration by
focusing on a single path at a time, designated by SMT-solving. Our method
combines well with acceleration techniques, thus doing away with widenings
as well in some cases. We illustrate it over the well-known domain of convex
polyhedra.

1 Introduction

Program analysis aims at automatically checking that programs fit their specifica-
tions, explicit or not — e.g. “the program does not crash” is implicit. Program
analysis is impossible unless at least one of the following holds: it is unsound
(some violations of the specification are not detected), incomplete (some correct
programs are rejected because spurious violations are detected), or the state space
is finite (and not too large, so as to be enumerated explicitlyor implicitly). Ab-
stract interpretationis sound, but incomplete: it over-approximates the set of be-
haviours of the analysed program; if the over-approximatedset contains incorrect
behaviours that do not exist in the concrete program, then false alarms are pro-
duced. A central question in abstract interpretation is to reduce the number of false
alarms, while keeping memory and time costs reasonable [8].

Our contribution is a method leveraging the improvements inSMT-solving to
increase the precision of invariant generation by abstractfixpoint iterations. On
practical examples from the literature and industry, it performs better than previ-
ous generic technique and is less “ad-hoc” than syntactic heuristics found in some
pragmatic analyzers.

∗This research was partially funded by ANR project “ASOPT”.
†CNRS, VERIMAG, Gières, France
‡Université Lille 1, LIFL, Villeneuve d’Ascq, France
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Listing 1: C implementation ofy = sin(x)/x − 1, with the−0.01 ≤ x ≤ 0.01
range implemented using a Taylor expansion around zero in order to avoid loss of
precision and division by zero as sin(x) ≃ x→ 0.

i f ( x >= 0) { xabs = x ; } else { xabs = −x ; }
i f ( xabs >= 0 . 0 1 ) {

y = s in ( x ) / x − 1 ;
} else {

xsq = x∗x ; y = xsq ∗( −1/6. + xsq / 1 2 0 . ) ;
}

The first source of imprecision in abstract interpretation is the choice of the
set of properties represented inside the analyser (theabstract domain). Obviously,
if the property to be proved cannot be reflected in the abstract domain (e.g. we
wish to prove a numerical relation but our abstract domain only considers Boolean
variables), then the analysis cannot prove it.

In order to prove that there cannot be a division by zero in thefirst branch
of the second if-then-else of Listing 1, one would need the non-convex property
that x ≥ 0.01∨ x ≤ −0.01. An analysis representing the invariant at that point
in a domain of convex properties (intervals, polyhedra, etc.) will fail to prove the
absence of division by zero (incompleteness).

Obviously, we could represent such properties using disjunctions of convex
polyhedra, but this leads to combinatorial explosion as thenumber of polyhedra
grows: at some point heuristics are needed for merging polyhedra in order to limit
their number; it is also unclear how to obtain good widening operators on such
domains. The same expressive power can alternatively be obtained by considering
all program paths separately (“merge over all paths”) and analysing them indepen-
dently of each other. In order to avoid combinatorial explosion, thetrace partition-
ing approach [36] applies merging heuristics. In contrast, ourmethod relies on the
power of modern SMT-solving techniques.

The second source of imprecision is the use ofwidening operators[14]. When
analysing loops, static analysis by abstract interpretation attempts to obtain anin-
ductive invariantby computing an increasing sequenceX1,X2, . . . of sets of states,
which are supersets of the sets of states reachable in at most1, 2, . . . iterations. In
order to enforce convergence within finite time, the most common method is to
use a widening operator, which extrapolates the first iterates of the sequence to a
candidate limit. Optional narrowing iterations may regainsome precision lost by
widening.

Illustrating Example Consider Listing 2, a simplification of a fragment of an
actual industrial reactive program: indexing of a circularbuffer used only at certain
iterations of the main loop of the program, chosen non-deterministically. If the
non-deterministic choicenondet() is replaced bytrue, analysis with widening
and narrowing finds [0, 99]. Unfortunately, the “narrowing” trick is brittle, and on
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Listing 2: Circular buffer indexing

i n t x = 0 ;
while ( true ) {

i f ( nondet ( ) ) {
x = x +1;
i f ( x >= 100) x = 0 ;

} }

Listing 2, widening yields [0,+∞), and this is not improved by narrowing!1 In
contrast, our semantically-based method would compute the[0, 99] invariant on
this example by firstfocusingon the following path inside the loop:

Listing 3: Example focus path

assume ( nondet ( ) ) ; x = x +1; assume ( x < 1 0 0 ) ;

If we wrap this path inside a loop, then the least inductive invariant is [0, 99]. We
then check that this invariant is inductive for the originalloop.

This is the basic idea of our method: it performs fixpoint iterations by focusing
temporarily on certain paths in the program. In order to obtain the next path, it
performs bounded model checking using SMT-solving.

2 Background and Notations in Abstract Interpretation
p1

p2

p3

x := 0

x := x+ 1
x ≥

100
x := 0

x < 100

(a) With original variables

p1

p2 : x2 = φ(x1, x2, x3, x4)

p3

x1 = 0

x3 := x2 + 1x3 ≥

100
x4 = 0

x3 < 100

(b) SSA version.x = φ(e1,e2, . . . ) denotes
a SSAφ-node: x takes valuee1 if control
flows from the first incoming edge,e2 from
the second. . .

Figure 1: Control flow graph corresponding to listing 2.

We consider programs defined by a control flow graph: a setP of control points,
for each control pointp ∈ P a (possibly empty) setIp of initial values, a setE ⊆
P × P of directed edges, and the semanticsτe : P(Σ) → P(Σ) of each edgee ∈ E

1On this example, it is possible to compute the [0, 99] invariant by so called “widening up-to”
[28, Sec. 3.2], or with “thresholds” [8]: essentially, the analyser notices syntactically the comparison
x < 100 and concludes that 99 is a “good value” forx, so instead of widening directly to+∞, it first
tries 99. This method only works if the interesting value is asyntactic constant.
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whereP(Σ) is the set of possible values of the tuple of program variables. τe thus
maps a set of states before the transition expressed by edgee to the set of states
after the transition.

To each control pointp ∈ P we attach a setXp ⊆ Σ of reachable values of
the tuple of program variables at program pointp. The concrete semantics of
the program is the least solution of a system of semantic equations [14]: Xp =

Ip ∪
⋃

(p′,p)∈E τ(p′,p)(Xp′).
Abstract interpretation replaces the concrete sets of states inP(Σ) by elements

of an abstract domainD. In lieu of applying exact operationsτ to sets of concrete
program states, we apply abstract counterpartsτ♯.2 An abstractionτ♯ of a concrete
operationτ is deemed to be correct if it never “forgets” states:

∀X ∈ D τ(X) ⊆ τ♯(X) (1)

We also assume an “abstract union” operation⊔, such thatX ∪ Y ⊆ X ⊔ Y. For
instance,Σ can beQn, D can be the set of convex polyhedra and⊔ the convex hull
operation [27, 17, 3].

In order to find an inductive invariant, one solves a system ofabstract semantic
inequalities:















∀p Ip ⊆ Xp

∀(p′, p) ∈ E τ
♯
(p′,p)(Xp′) ⊆ Xp.

(2)

Since theτ♯e are correct abstractions, it follows that any solution of such a system
defines an inductive invariant; one wishes to obtain one thatis as strong as possible
(“strong” meaning “small with respect to⊆”), or at least sufficiently strong as to
imply the desired properties.

Assuming that all functionsτ♯e are monotonic with respect to⊆, and that⊔ is
the least upper bound operation inD with respect to⊆, one obtains a system of
monotonic abstract equations:Xp = Ip ⊔

⊔

(p′,p)∈E τ
♯
(p′,p)(Xp′). If (D,⊆) has no

infinite ascending sequences (d1 ( d2 ( . . . with d1, d2, · · · ∈ D), then one can
solve such a system by iteratively replacing the contents ofthe variable on the left
hand side by the value of the right hand side, until a fixed point is reached. The
order in which equations are iterated does not change the final result.

Many interesting abstract domains, including that of convex polyhedra, have
infinite ascending sequences. One then classically uses an extrapolation operator
known aswideningand denoted by▽ in order to enforce convergence within finite
time. The iterations then follow the “upward iteration scheme”:

Xp := Xp▽



















Xp ⊔
⊔

(p′,p)∈E

τ
♯
(p′,p)(Xp′)



















(3)

where the contents of the left hand side gets replaced by the value of the right hand
side. The convergence property is that any sequenceun of elements ofD of the

2Many presentations of abstract interpretation distinguish the abstract elementx♯ ∈ D from the
set of statesγ(x♯) it represents. We opted not to, for the sake of brevity.
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form un+1 = un▽ vn, wherevn is another sequence, is stationary [14]. It is sufficient
to apply widening only at a set of program control nodesPW such that all cycles in
the control flow graph are cut. Then, through a process ofchaotic iterations[13,
Def. 4.1.2.0.5, p. 127], one converges within finite time to an inductive invariant
satisfying Rel. 2.

Once an inductive invariant is found, it is possible to improve it by iterating
theψ♯ function defined asY = ψ♯(X), noting X = (Xp)p∈P andY = (Yp)p∈P, with

Yp = Ip⊔
⊔

(p′,p)∈E τ
♯
(p′,p)(Xp′). If X is an inductive invariant, then for anyk, ψ♯

k
(X)

is also an invariant. This technique is an instance ofnarrowing iterations, which
may help recover some of the imprecision induced by widening[14, §4].

Algorithm 1 Classical Algorithm
1: A← ∅;
2: for all p ∈ P such thatIp , ∅ do
3: A← A∪ {p}
4: end for; ⊲ Initialise A to the set of all non empty initial nodes
5: while A is not emptydo ⊲ Fixpoint Iteration
6: Choosep1 ∈ A
7: A← A \ {p1}

8: for all outgoing edge (e) fromp1 do
9: Let p2 be the destination ofe :

10: if p2 ∈ PW then
11: Xtemp← Xp2 ▽

(

Xp2 ⊔ τ
♯
e(Xp1)

)

⊲ Widening node;
12: else
13: Xtemp← Xp2 ⊔ τ

♯
e(Xp1) ;

14: end if
15: if Xtemp* Xp2 then ⊲ The value must be updated
16: Xp2 ← Xtemp;
17: A← A∪ {p2};
18: end if
19: end for;
20: end while; ⊲ End of Iteration
21: Possibly narrow
22: return all Xpi s;

A naive implementation of the upward iteration scheme described above is to
maintain a work-list of program pointsp such thatXp has recently been updated
and replaced by a strictly larger value (with respect to⊆), pick and remove the
foremost memberp, apply the corresponding ruleXp := . . . , and insert into the
work-list all p′ such that (p, p′) ∈ E (This algorithm is formally described in Al-
gorithm 1).
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Example of Section 1 (Cont’d) Figure 1(a) gives the control flow graph obtained
by compilation of Listing 2. Nodep2 is the unique widening node.

The classical algorithm (with the interval abstract domain) performs on this
control flow graph of the following iterations :

• Initialisation : Xp1 ← (−∞,+∞), Xp2 ← Xp3 ← Xp4 ← ∅.

• Step 1:Xp2 ← [0, 0], then the transition top3 is enabled,Xp3 ← [1, 1], then
the return edge top2 gives the new pointx = 1 to Xp2, the new polyhedron
is thenXp2 = [0, 1] after performing the convex hull. Widening gives the
polyhedronXp2 = [0,∞).

(The widening operator on intervals is defined as [xl , xr ] ▽[x′l , x
′
r ] = [x” l , x” r ]

wherex” l = xl if xl = x′l else−∞, andx” r = xr if xr = x′r else+∞.)

• Step 2:Xp3 becomes [1,+∞). The second transition fromp3 to p2 is thus
enabled, and the back edge top2 gives the pointx = 0 to Xp2. At the end of
step 2 the convergence is reached.

• If we perform a narrowing sequence, there is no gain of precision because of
the simple loop over the control pointp2.

3 Our Method

We have seen two examples of programs where classical polyhedral analysis fails
to compute good invariants. How could we improve on these results?

• In order to get rid of the imprecision in Listing 1, one could “explode” the
control-flow graph: in lieu of a sequence ofn if-then-else, withn merge
nodes with 2 input edges, one could distinguish the 2n program paths, and
having a single merge node with 2n input edges. As already pointed out, this
would lead to exponential blowup in both time and space.

• One way to get rid of imprecision of classical analysis (Sec.2) on the pro-
gram from Fig. 1(a) would be to consider each path through theloop at a
time and compute a local invariant for this path. Again, the number of such
paths could be exponential in the number of tests inside the loop.

The contribution of our article is a generic method that addresses both of these
difficulties.

3.1 Reduced Transition Multigraph and Path Focusing

Consider a control flow graph (P,E) with associated transitions (τe)e∈E, a set of
widening points PW ⊆ P such that removingPW cuts all cycles in the graph, and
a setPR of abstraction points, such thatPW ⊆ PR ⊆ P (On the figures, the nodes
in PR are in bold). We make no assumption regarding the choice ofPW; there are
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classical methods for choosing widening points [9, §3.6].PR can be taken equal to
PW, or may include other nodes; this makes sense only if these nodes have several
incoming edges. Including other nodes will tend to reduce precision, but may
improve scalability. We also make the simplifying assumption that the set of initial
valuesIp is empty for all nodes inP \ PR — in other words, the set of possible
control points at program start-up is included inPR.

We construct (virtually) the reduced control multigraph (PR,ER), with edges
ER consisting of the paths in (P,E) that start and finish on nodes inPR, with associ-
ated semantics the composition of the semantics of the original edgesτe1→···→en =

τen ◦ · · · ◦ τe1. There are only a finite number of such edges, because the origi-
nal graph is finite and removingPR cuts all cycles. There may be several edges
between two given nodes, because there may exist several control paths between
these nodes in the original program. Equivalently, this multigraph can be obtained
by starting from the original graph (P,E) and by removing all nodesp in P \ PR as
follows: each couple of edgese1, from p1 to p, ande2, from p to p2, is replaced by
a single edge fromp1 to p2 with semanticsτp2 ◦ τp1.

Example of Section 1 (Cont’d) The reduced control flow graph obtained for our
running example is

loop

x := 0
guardx ≥ 99
x := 0

guardx < 99
x := x+ 1

Our analysis algorithm performs chaotic iterations over that reduced multi-
graph, without ever constructing it explicitly. We start from an iteration strategy,
that is, a method for choosing which of the equations to applynext; one may for
instance take a variant of the naive “breadth-first” algorithm from §2, but any iter-
ation strategy [9, §3.7] befits us (see also Alg. 1). An iteration strategy maintains a
set of “active nodes”, which initially contains all nodesp such thatIp , ∅. It picks

one edgee from an active nodep1 to a nodep2, and appliesXp2 := Xp2⊔τ
♯
e(Xp1) in

the case of a nodep2 ∈ PR\PW, and appliesXp2 := Xp2 ▽(Xp2⊔τ
♯
e(Xp1)) if p2 ∈ PW;

thenp2 is added to the set of active nodes if the value ofXp2 has changed.
Our alteration to this algorithm is that we only pick edgese from p1 to p2 such

that there existx1 ∈ Xp1, x2 ∈ τe({x1}) and x2 < Xp2 with the current values of
Xp1 and Xp2. In other words, going back to the original control flow graph, we
only pick paths that add new reachable states to their end node, and we temporarily
focuson such a path.

How do we find such edgese out of potentially exponentially many? We ex-
press them as the solution of abounded reachabilityproblem — how can we go
from control statep1 with variable state inXp1 to control statep2 with variable state
in Xp2 —, which we solve using satisfiability modulo theory (SMT). (See Alg. 2)
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3.2 Finding Focus Paths

We now make the assumption that both the program transition semanticsτe and
the abstract elementsx♯ ∈ D can be expressed within a decidable theoryT (this
assumption may be relaxed by replacing the concrete semantics, including e.g.
multiplicative arithmetic, by a more abstract one through e.g. linearization [30]).

Such is for instance the case if the program operates on rational values, so a
program state is an element ofΣ = Qn, all operations in the program, including
guards and assignments, are linear arithmetic, and the abstract domain is the do-
main of convex polyhedra overQn, in which caseT can be the theory of linear
real arithmetic (LRA). If program variables are integer, with program state space
Σ = Zn, but still retaining the abstract domain of convex polyhedra overQn, then
we can takeT to be the theory of linear integer arithmetic (LIA). Deciding the sat-
isfiability of quantifier-free formulas in either LIA or LRA,with atoms consisting
in propositional variables and in linear (in)equalities with integer coefficients, is
NP-complete. There however exist efficient decision procedures for such formu-
las, known as SMT-solvers, as well as standardised theoriesand file formats [6];
notable examples of SMT-solvers capable of dealing with LIAand LRA are Z3
and Yices. Kroening & Strichman [29] give a good introduction to the techniques
and algorithms in SMT solvers.

We assume that the program is expressed in SSA form, with eachprogram
variable being assigned a value at only a single point withinthe program [18];
standard techniques exist for converting to SSA. Figure 1 gives both “normal” and
SSA-form control-flow graphs for Listing 2.

We transform the original control flow graph (P,E) in SSA form by disconnect-
ing the nodes inPR: each nodepr in PR is split into a “source” nodeps

r with only
outbound edges, and a “destination” nodepd

r with only inbound edges. We call the
resulting graph (P′,E′). Figure 2(a) gives the disconnected SSA form graph for
Listing 2 wherep1 andp2 have been split.

We consider execution traces starting from aps
r node and ending in apd

r node.
We define them as for doing bounded model checking [2]. To eachnodep ∈ P′

we attach a Booleanbp or reachability predicate, expressing that the trace goes
through program pointp. For nodesp′ not of the formps

r , we have a constraint
bp′ =

∨

p ep,p′ , for ep,p′ ranging over all incoming edges. To each edgep → p′

we attach a Booleanep,p′ , and a constraintep,p′ = bp ∧ τp,p′ . The conjunctionρ of
all these constraints, expresses the transition relation between theps

r andpd
r nodes

(with implicit existential quantification).
If the transitionsτ(p,p′) are non-deterministic, a little care must be exercised for

the path obtained from thebp to be unique. For instance, if from program pointp1

one can move non-deterministically top2 or p3 through edgese2 ande3 an incorrect
way of writing the formula would be (b2 = e2)∧(b3 = e3)∧(e2 = b1)∧(e3 = b1), in
which caseb2 andb3 could be simultaneously true. Instead, we introduce special
“choice” variablesci that model non-deterministic choices (Fig. 2).

In order to find a path from program pointp1 ∈ PR, with variable statex1,
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ps
1 ps

2

p3

pd
2 : x′2 = φ(x1, x4, x3, x2)

e3x3 = x2 + 1

e5

x3 ≥

100
x4 = 0

e4 x3 < 100
e2

e1x1 = 0

(a) Disconnected (SSA) CFG

ps
1 ps

2

p3

pd
2 : x′2 = φ(x1, x4, x3, x2)

e3x3 = x2 + 1

e5

x3 ≥

100
x4 = 0

e4 x3 < 100
e2e1x1 = 0

(b) With a focus path (solid edges) fromx2 = 0 at
program point 2 tox′2 = 1 at the same program point

(e1 = (x1 = 0) ∧ bs
1) ∧ (e3 = (x3 = x2 + 1) ∧ bs

2 ∧ cs
2) ∧ (e2 = bs

2 ∧ ¬cs
2) ∧

(e5 = b3∧x3 ≥ 100∧x4 = 0)∧(e4 = b3∧x3 < 100)∧(b3 = e3)∧(bd
2 = e1∨e4∨e5∨e2)

∧ (x′2 = ite(e1, x1, ite(e5, x4, ite(e4, x3, x2))))

Figure 2: Disconnected version of the SSA control flow graph of Fig. 1(b), and the
corresponding SMT formula.ite(b, e1, e2) is a SMT construct whose value is “ifb
then the value ofe1 else the value ofe2”. To each nodepx corresponds a Boolean
bx and an optional choice variablecx; to each edge, a Booleaney.

to program pointp2 ∈ PR, with variable statex2, we simply conjoinρ with the
formulasx1 ∈ Xp1 and x2 < Xp2, with x1, x2, x1 ∈ Xp1 and x2 < Xp2 expressed
in terms of the SSA variables.3 For instance, ifXp1 andXp2 are convex polyhedra
defined by systems of linear inequalities, one simply writesthese inequalities using
the names of the SSA-variables at program pointsp1 andp2.

We apply SMT-solving over that formula. The result is either“unsatisfiable”,
in which case there is no path fromp1, with variable valuesx1, to p2, with variable
valuesx2, such thatx1 ∈ Xp1 and x2 < Xp2, or “satisfiable”, in which case SMT-
solving also provides a model of the formula (a satisfying assignment of its free
variables); from this model we easily obtain such a path, unique by construction
of ρ.

Indeed, a model of this formula yields a trace of execution: thosebp predicates
that are true designate the program points through which thetrace goes, and the
other variables give the values of the program variables.

Example of Section 1 (Cont’d) The SSA form of the control flow graph of Fig-
ure 1(a) is depicted in Figure 1(b). Fig. 2 shows the disconnected version of the
SSA Graph (the nodep2 is now split), and the formulaρ expressing the semantics
is shown beneath it.

Then, consider the problem of finding a path starting in control point 2 inside
polyhedronx = 0 and ending at the same control point but outside of that polyhe-

3The formula defining the set of values represented by an abstract elementX has sometimes been
denoted by ˆγ [34].
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dron. Note that because there are two outgoing transitions from nodeps
2, which are

chosen non-deterministically, we had to introduce a Boolean choice variablecs
2.

The focus path of Fig. 2(b) was obtained by solving the formula ρ ∧ bs
1 =

false∧ bs
2 = true∧ bd

2 = true∧ (x2 = 0) ∧ ¬(x′2 = 0): we impose that the path
starts at pointps

2 (thus forcingbs
1 = false∧bs

2 = true) in the polyhedronx = 0 (thus
x2 = 0) and ends at pointpd

2 (thus forcingbp
2 = true) outside of that polyhedron

(thus¬(x2 = 0)).

3.3 Algorithm

Algorithm 2 consists in the iteration of the path finding method of Sec. 3.2, coupled
with forward abstract interpretation along the paths foundand, optionally, path
acceleration.

3.4 Correctness and Termination

We shall now prove that this algorithm terminates, and that the resultingXp define
an inductive invariant that contains all initial statesIp. The proof is a variant of the
correctness proof of the chaotic iterations.

The invariant maintained by this algorithm is that all nodesp1 ∈ PR\A are such
that there is no execution trace starting at pointp1 in a statex1 ∈ Xp1 and ending
at pointp2 in a statex2 < Xp2. Evidently, if A becomes empty, then this condition
means thatXp is an inductive invariant.

Termination is ensured by the classical argument of termination of chaotic iter-
ations in the presence of widening: they always terminate ifall cycles in the control
flow graph are broken by widening points [13, Th. 4.1.2.0.6, p. 128]. In short, an
infinite iteration sequence is bound to select at least one node p in PW an infinite
amount of times, becausePW breaks all cycles, but due to the properties of widen-
ing, Xp should be stationary, which contradicts the infinite numberof selections.
Our comment at line 20 of Alg. 2 is important for termination:it ensures that for
any widening nodep, the sequence of values taken byXp when it is updated and
reinserted into setA is strictly ascending, which ensures termination in finite time.

3.5 Self-Loops

The algorithm in the preceding subsection is merely a “clever” implementation of
standard polyhedral analysis [17, 27] on the reduced control multigraph (PR,ER);
the difference with a naive implementation is that we do not have to explicitly
enumerate an exponential number of paths and instead leave the choice of the focus
path to the SMT-solver. We shall now describe an improvementin the case of self-
loops, that is, single paths from one node to itself.

Algorithm 3 is a variant of Alg. 2 where self-loops are treated specially:

• The loopiter(τ♯,X) function returns the result of a widening/ narrowing it-
eration sequence for abstract transformerτ♯ starting inX; it returnsX′ such
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Algorithm 2 Path-focused Algorithm
1: Compute SSA-form of the control flow graph.
2: ChoosePR, compute the disconnected graph (P′,E′) accordingly.
3: ρ← computeFormula(P′,E′) ⊲ Precomputations
4: A← ∅;
5: for all p ∈ PR such thatIp , ∅ do
6: A← A∪ {p}
7: end for;
8: while A is not emptydo ⊲ Fixpoint Iteration on the reduced graph
9: Choosep1 ∈ A

10: A← A \ {p1}

11: repeat

12: res← SmtSolve



















ρ ∧ bp1 ∧ x1 ∈ Xp1 ∧
∨

p2|(p1,p2)∈E′

(

bp2 ∧ x2 < Xp2

)



















13: if res is not “unsat”then
14: Computee′ ∈ E′ from res ⊲ Extraction of path from the model

(§3.2)
15: Y← τ

♯
e′(Xp1)

16: if p2 ∈ PW then
17: Xtemp← Xp2 ▽

(

Xp2 ⊔ Y
)

⊲ Final pointp2 is a widening point
18: else
19: Xtemp← Xp2 ⊔ Y
20: end if

⊲ at this pointXtemp* Xp2 otherwisep2 would not have been chosen
21: Xp2 ← Xtemp

22: A← A∪ {p2}

23: end if
24: until res=“unsat”
25: end while ⊲ End of Iteration
26: Possibly narrow (see Sec. 4.1)
27: ComputeXpi for pi < PR

28: return all Xpi

thatX ⊆ X′ andτ♯(X′) ⊆ X′.

• In order not to waste the precision gained byloopiter, the first time we con-
sider a self-loope′ we apply a union operation instead of a widening; set
U records the self-loops that have already been visited. Thisis a form of
delayed widening [28].

Termination is still guaranteed, because the inner loop cannot loop forever: it
can visit any self-loop edgee′ at most once before applying widening.
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Algorithm 3 Path-focused Algorithm with Self-Loops. marks changes from
Alg. 2.

1: Compute SSA-form of the control flow graph.
2: ChoosePR, compute the disconnected graph (P′,E′) accordingly.
3: ρ← computeFormula(P′,E′) ⊲ Precomputations
4: A← ∅;
5: for all p ∈ PR such thatIp , ∅ do
6: A← A∪ {p}
7: end for;
8: while A is not emptydo ⊲ Fixpoint Iteration on the reduced graph
9: Choosep1 ∈ A

10: A← A \ {p1}

11: U = ∅ ⊲ U is a set of “already seen” edges
12: repeat

13: res← SmtSolve



















ρ ∧ bp1 ∧ x1 ∈ Xp1 ∧
∨

p2|(p1,p2)∈E′

(

bp2 ∧ x2 < Xp2

)



















14: if res is not “unsat”then
15: Computee′ ∈ E′ from res
16: if p1 = p2 then

17: Y← loopiter(τ♯e′ ,Xp1)
18: else
19: Y← τ

♯
e′(Xp1)

20: end if
21: if p2 ∈ PW and (p1 , p2 ∨ e′ ∈ U) then
22: Xp2 ← Xp2 ▽

(

Xp2 ⊔ Y
)

⊲ Final pointp2 is a widening point
23: else
24: Xp2 ← Xp2 ⊔ Y

25: U ← U ∪ {e′}
26: end if
27: A← A∪ {p2}

28: end if
29: until res=“unsat”
30: end while ⊲ End of Iteration
31: ComputeXpi s for pi < PR

32: return all Xpi s

Example of Section 1 (Cont’d) Let us perform our algorithm on our example :

• Step 1 : Is there a path from control pointp1 to control pointp2 feasible
(without additional constraint) ? Yes. On Figure 2, the obtained model cor-
responds to the transition fromps

1 to pd
2, and leads to the intervalXp2 = [0, 0].

• Step 2 : Is there a path fromp2 with x = 0 to p2 with x , 0 ? The answer
to this query is depicted in Figure 2(b): there is such a path,on which we
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now focus. This path is considered as a loop and we therefore do a local
iteration with widenings (loopiter). Xp2 becomes [0, 1], then after widening
[0,∞]. A narrowing step gives finallyXp2 = [0, 99], which is thus the result
of loopiter.

• Step 3 : Is there a path fromp2 with x ∈ [0, 99] to p2 with x′ < [0, 99] ? No.

The iteration thus ends with the desired invariant.

4 Extensions

4.1 Narrowing

Narrowing iterations can also be applied within our framework. Let us assume that
some inductive invariantXp∈PR has been computed; it satisfies the relationψ(X) ⊆
X component-wise, notingX = (X1, . . . ,X|P|), andψ(X) denotes (Y1, . . . ,Y|P|) de-
fined as

Yp2 = Ip2 ∪
⋃

e∈ER e from p1 to p2

τe

(

Xp1

)

(4)

The abstract counterpart to this operator isψ♯, defined similarly, replacingτ by τ♯

and∪ by⊔. It satisfies the correctness condition (see Rel. 1)∀X ∈ D ψ(X) ⊆ ψ♯(X).
As per the usual narrowing iterations, we compute a narrowing sequenceX(k) =

ψ♯
k
(X). It is often sufficient to stop atk = 1; otherwise one may stop whenX(k+1) *

X(k). Let us now see a practical algorithm for computingY = ψ♯(X):
For all p ∈ PR, we initialiseYp := Ip. For all p2 ∈ PR, we consider all paths

e ∈ ER from p1 ∈ PR to p2 such that there existx1 ∈ Xp1, x2 ∈ Xp2, x2 ∈ τe({x1}) as

explained in §3.2. We then updateYp2 := Yp2 ⊔ τ
♯
e(Xp1).

4.2 Acceleration

In Sec. 3.5, we have describedloopiter function that performs a classical widening
/ narrowing iteration over a single path. In fact, the only requirement over it is that
loopiter(τ♯,X) returnsX′ such thatX ⊆ X′ andτ♯(X′) ⊆ X′. In other words,X′ is
an over-approximation ofτ♯

∗
(X), notingR∗ the transitive closure ofR.

In some cases, we can compute directly such an over-approximation, some-
times even obtainingτ♯

∗
(X) exactly; this is known asaccelerationof the loop.

Examples of possible accelerations include the case whereτe is given by a differ-
ence bound matrix [12], an octagon [10], ultimately periodic integer relations [11]
or certain affine linear relations [23, 22, 1].

For instance, the focus path of Fig. 2(b) consists in the operations and guards
x = x+ 1; x < 100; instead of iterating that path, we can compute its exactacceler-
ation, yieldingx ∈ [0, 99].
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4.3 Partitioning

It is possible to partition the states at a given program point according to some
predicate or a partial history of the computation [36]. Thisamounts to introducing
several graph nodes representing the same program point, and altering the transi-
tion relation.

4.4 Input-Output Relations

As with other analyses using relational domains, it is possible to obtain abstrac-
tions of the input-output relation of a program block or procedure instead of an
abstraction of the set of states at the current point [1]; this also allows analyzing
recursive procedures [27, Sec. 7.2]. It suffices to include in the set of variables
copies of the variables at the beginning of the block or procedure; then the abstract
value obtained at the end of the block or procedure is the desired abstraction.

5 Implementation and Preliminary Results

Our algorithm has been implemented as an option for Aspic, that computes invari-
ants from counter automata with Linear Relation Analysis ([20]). We wrote an
Ocaml interface to the Yices SMT-solver ([19]), and modifiedthe fixpoint compu-
tation inside Aspic to deal with local iterations of paths. The implementation still
needs some improvements, but the preliminary results are promising, and we de-
scribe some of them in Table 1. We provide no timing results since we were unable
to detect any overcost due to the method. These two examples show that since we
avoid (some) convex hulls, the precision of the whole analysis is improved.

The rate limiter example is particularly interesting, since, like the one in List-
ing 1 (which does not include a loop), it will be imprecisely analyzed by any
method enforcing convex invariants at intermediate steps.

6 Related Work

Our algorithm may be understood as a form ofchaotic iterations[13, §2.9.1, p. 53]
over a certain system of semantic questions; we use SMT as an oracle to know
which equations need propagating. The choice of widening points, and the order
in which to solve the abstract equations, have an impact on the precision of the
whole analysis, as well as its running time. Even though there exist few hard
general results as to which strategy is best [13, §4.1.2, p. 125], some methods tend
to experimentally behave better [9].

“Lookahead widening” [24] was our main source of inspiration: iterations and
widenings are adapted according to the discovery of new feasible paths in the pro-
gram. This approach avoids loss of precision due to wideningin programs with
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Table 1: Invariant generation on two simple challenging programs

Program Automaton Result and notes

Listing 4: Boustrophedon

void boustrophedon ( ) {
i n t x ;
i n t d ;
x = 0 ;
d = 1 ;
while ( 1 ) {

i f ( x == 0) d=1;
i f ( x == 1000) d=−1;
x += d ;

}
}

The compilation of the
program gives an ex-
panded control structure
where some paths are
“clearly” unfeasible
(e.g. imposing both
x < 0 and x > 1000),
thus the only feasi-
ble ones are guarded
by x < 0, x = 0,
0 < x < 1000,x = 1000
andx > 1000.
The tool finds
the invariant
{0 ≤ x ≤ 1000,−1 ≤ d ≤ 1}
Classical Analysis with
widening “upto” gives
{d ≤ 1, d + 1999 ≥ 2x}
and Gopan and Reps’
improvement is not able
to find x ≥ 0.

Listing 5: Rate limiter

void main ( ) {
f l o a t x_old , x ;
x_old = 0 ;
while ( 1 ) {

x = input ( −1000 ,1000) ;
i f ( x >= x_old +1)

x = x_old +1;
i f ( x <= x_old −1)

x = x_old −1;
x_old = x ;

}
}

Source : [32]

In order to properly
analyse such a program,
Astrée distinguishes
all four execution paths
inside the loop through
trace partitioning [36],
which is triggered by
ad hoc syntactic criteria
(e.g. two successive
if-then-else). Our algo-
rithm finds the invariant
{−1000 ≤ xold ≤ 1000},
which is not found by
classical analysis.
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multiple paths inside loops. It has proved its efficacy to suppress some gross over-
approximations induced by naive widening. However, it doesnot solve the impre-
cisions introduced by convex hull (e.g. it produces false alarms on Listing 1).

Our method analyzes separately the paths between cut-nodes. We have pointed
out that this is (almost) equivalent to considering finite unions of elements of
the abstract domain, known as thefinite powersetconstruction, between the cut-
nodes.4 The finite powerset construction is however costly even for loop-free
code, and it is not so easy to come up with widening operators to apply it to
codes with loops or recursive functions [4]; for limiting the number of elements
in the unions, some may be lumped together (thus generally introducing further
over-approximation) according to affinity heuristics [37, 33].

Still, in the recent years, much effort has been put into the discovery ofdis-
junctive invariants, for instance in predicate abstraction [25]. Of particularnote is
the recent work by Gulwani and Zuleger on inferring disjunctive invariants [26] for
finding bounds on the number of iterations of loops. We improve on their method
on two points:

• In contrast to us, they assume that the transition relation is given in disjunc-
tive normal form [26, Def. 5], which in general has exponential size in the
number of tests inside the loop. By using SMT-solving, we keep the DNF
implicit and thus avoid this blowup.

• By using acceleration, we may obtain more precise results than using widen-
ing, as they do for lattices that do not satisfy the ascendingchain condition.

Nevertheless, their method allows expressing disjunctiveinvariants at loop
heads, and not only at intermediate points, as we do. However, we think it is
possible to get the best of both worlds and combine our methodwith theirs. In or-
der to obtain a disjunctive invariant, they first choose a “convexity witness” (given
that the number of possible witnesses is exponential, they choose it using heuris-
tics) [26, p. 7], and then they compute a “transitive closure” [26, Fig. 6], which is
a form of fixed point iteration of input-output relations (asin our Sec. 4.4) over an
expanded control-flow graph. The choice of the convexity witness amounts to a
partitioning of the nodes and transition (Sec. 4.3). Thus, it seems to possible to ap-
ply their technique, but replace their fixed point iteration[26, Fig. 6] by one based
on SMT-solving and path focusing, using acceleration if possible.

In recent years, because of improvement in SMT-solving, techniques such as
ours, distinguishingpathsinside loops, have become tractable [31, 7, 32, 21]. An
alternative to using SMT-solving is to limit the number and length of traces to
consider, as intrace partitioning[36], used in the Astrée analyzer [16, 15, 8], but

4It is equivalent if the only source of disjunctions are the splits in the control flow, and not atomic
operations. For instance, if the test|x| ≥ 1 is considered an atomic operation, then we could take the
disjunctionx ≥ 1 ∨ x ≤ −1 as output. We can rephrase that as a control flow problem by adding
a testx ≥ 0, otherwise said to express|x| as a piecewise linear function with explicit tests for splits
between the pieces.

16



the criteria for limitation tend to be ad hoc. In addition, methods for abstracting the
sets of paths inside a loop, weeding out infeasible paths, have been introduced [5].

With respect to optimality of the results, our method will generate the strongest
inductive invariant inside the abstract domain if the domain satisfies the ascending
chain condition and no widening is used; for other domains, like all methods using
widenings, it may or may not generate it. In contrast, some recent works [21]
guarantee to obtain the strongest invariant for the same analysis problem, at the
expense of restriction to template linear domains and linear constructions inside
the code.

7 Conclusion and future work

We have described a technique which leverages the bounded model checking ca-
pacities of current SMT solvers for guiding the iterations of an abstract inter-
preter. Instead of normal iterations, which “push” abstract values along control-
flow edges, including control-flow splits and merges, we consider individual paths.
This enables us, for instance, to use acceleration techniques that are not available
when the program fragment being considered contains control-flow merges. This
technique computes exact least invariants on some exampleson which more con-
ventional static analyzers incur gross imprecision or haveto resort to syntactic
heuristics in order to conserve precision.

We have focused on numerical abstractions. Yet, one would like to use similar
techniques for heap abstractions, for instance. The challenge will then be to use
a decidable logic and an abstract domain such that both the semantics of the pro-
gram statements and the abstract values can be expressed in this logic. This is one
direction to explore. With respect to the partitioning technique, 4.3, we currently
express the partition as multiple explicit control nodes, but it seems desirable, for
large partitions (e.g. according to Boolean values, as in B.Jeannet’s BDD-Apron
library) to represent them succinctly; this seems to fit nicely with our succinct en-
coding of the transition relation as a SMT-formula.

Another direction is to evaluate the scalability of these methods on larger pro-
grams. The implementation needs to be tested more to evaluate the precision of
our method on middle-sized programs, the main advantage is that Aspic imple-
ments some of the acceleration techniques. Analyzers such as Astrée scale up to
programs running a control loop several hundreds of thousands of lines long; trans-
lating such a loop to a SMT formula and solving for this formula and additional
constraints does not seem tractable. It is possible that semantic slicing techniques
[35] could help in reducing the size of the generated SMT problems.
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