
Efficient Eigen-updating for Spectral Graph Clustering

Charanpal Dhanjal, Romaric Gaudel, Stéphan Clémençon

To cite this version:

Charanpal Dhanjal, Romaric Gaudel, Stéphan Clémençon. Efficient Eigen-updating
for Spectral Graph Clustering. Neurocomputing, Elsevier, 2014, 131, pp.440-452.
<10.1016/j.neucom.2013.11.015>. <hal-00770889v4>

HAL Id: hal-00770889

https://hal.archives-ouvertes.fr/hal-00770889v4

Submitted on 27 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL - Lille 3

https://core.ac.uk/display/51213231?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00770889v4


Efficient Eigen-updating for Spectral Graph

Clustering

Charanpal Dhanjal1, *, Romaric Gaudel2, and Stéphan Clémençon3

1LIP6, UPMC, 4 Place Jussieu, 75252 Paris Cedex 05, France
2Université Lille 3, Domaine Universitaire du Pont de Bois, 59653

Villeneuve d’Ascq Cedex, France
3Telecom ParisTech, 46 rue Barrault, 75634 Paris Cedex 13, France

January 27, 2014

Abstract

Partitioning a graph into groups of vertices such that those within
each group are more densely connected than vertices assigned to different
groups, known as graph clustering, is often used to gain insight into the or-
ganisation of large scale networks and for visualisation purposes. Whereas
a large number of dedicated techniques have been recently proposed for
static graphs, the design of on-line graph clustering methods tailored for
evolving networks is a challenging problem, and much less documented in
the literature. Motivated by the broad variety of applications concerned,
ranging from the study of biological networks to the analysis of networks of
scientific references through the exploration of communications networks
such as the World Wide Web, it is the main purpose of this paper to
introduce a novel, computationally efficient, approach to graph clustering
in the evolutionary context. Namely, the method promoted in this article
can be viewed as an incremental eigenvalue solution for the spectral clus-
tering method described by Ng. et al. (2001). The incremental eigenvalue
solution is a general technique for finding the approximate eigenvectors of
a symmetric matrix given a change. As well as outlining the approach in
detail, we present a theoretical bound on the quality of the approximate
eigenvectors using perturbation theory. We then derive a novel spectral
clustering algorithm called Incremental Approximate Spectral Clustering

(IASC). The IASC algorithm is simple to implement and its efficacy is
demonstrated on both synthetic and real datasets modelling the evolution
of a HIV epidemic, a citation network and the purchase history graph of
an e-commerce website.

1 Introduction

Graph-mining has recently received increasing attention in the machine-learning
literature, motivated by application domains such as the Internet, social net-

∗Author for correspondence (charanpal.dhanjal@lip6.fr)

1



works, epidemics of transmissible infectious diseases, sensor and biological net-
works. A crucial task in exploratory analysis and data visualisation is graph
clustering [32, 10], which aims to partition the vertices in a graph into groups
or clusters, with dense internal connections and few connections between each
other. There is a large body of work on graph clustering. A possible approach is
to consider a certain measure that quantifies community structure and formulate
the clustering issue as an optimisation problem (which is generally NP-hard),
for which fairly good solutions can be obtained recursively or by using adequate
metaheuristics, see [24, 22, 9, 31] for example. A variety of approaches to graph
clustering exist, such as those based on modularity maximisation for instance,
see [24, 23]. In this paper, focus is on the spectral clustering approach [37],
which performs well empirically, is often simple to implement and benefits com-
putationally from the availability of fast linear algebra libraries. The general
principle of spectral clustering is to compute the smallest eigenvectors of some
particular matrix L (refer to Section 2 for further details) and then cluster the
vertices based on their representation in the corresponding eigen-space. The
popularity of this approach arises from the fact that the obtained clustering of
vertices is closely connected to the spectral relaxation of the minimisation of
the normalised cut criterion, see [34].

In many applications such as communications networks (e.g. the Web and
Internet), biological networks (of proteins, metabolic reactions, etc.), social net-
works or networks of scientific citations for instance, the graphs of interest
slowly change with time. A naive approach to this incremental problem is to
cluster each graph in the sequence separately, however this is computationally
expensive for spectral clustering as the cost of solving the eigenvalue problem
is O(n3) at each iteration, where n is the number of vertices. There has been
some previous work on the incremental spectral clustering problem, for example
[36, 27, 26, 16] however only [27, 26] update the eigen-system. In this paper we
propose an efficient method for clustering a sequence of graphs which leverages
the eigen-decomposition and the clustering on the previous graph to find the
new clustering. Firstly, a fast approximation of a rank-k eigen-decomposition
of Lt+1 knowing that of Lt is derived from the Singular Value Decomposition
(SVD) updating approach used for Latent Semantic Indexing in [42]. Here,
the update is efficient to compute when the change (defined in the subsequent
analysis) between Lt and Lt+1 is small. Secondly the clustering of vertices is
updated according to the new eigen-space. The efficiency of the complete ap-
proach, in terms of clustering accuracy, is demonstrated on synthetic and real
data. We point out that the clustering approach was first outlined in [5]. Here
we provide a theoretical analysis on the quality of the eigen-approximation, as
well as a more extensive empirical study of the algorithm.

The paper is organised as follows. Standard spectral clustering and SVD
updating approaches are recalled in Sections 2 and 3. Then Section 4 details
the proposed eigen-decomposition update and Section 5 studies the accuracy of
the resulting approximate eigenvectors using perturbation theory. In Section
6 we show how the eigen-decomposition updates can be applied to spectral
clustering. Numerical results are gathered in Section 7, and the paper ends
with Section 8 discussing results and planned future work.

Notation: A bold uppercase letter represents a matrix, e.g. X, and a column
vector is displayed using a bold lowercase letter, e.g. x. The transpose of

2



a matrix or vector is written XT . The concatenation of the columns of two
matrices A and B is written [A B]. A[I, I] represent the submatrix of A
formed using the row and columns indexed by I, and A[I, :] and A[:, I] are
submatrices formed using the rows and columns I respectively. The matrix Ak

is that formed using the largest k eigenvectors and eigenvalues of A, however
Ip is the p× p identity matrix.

2 Graph Clustering

Consider an undirected graph G = (V,E), composed of a set of vertices V =
{v1, . . . , vn} and edges E ⊆ V × V such that for every edge (vi, vj) there is also
an edge (vj , vi). One way of representing the edges of G is using an adjacency
matrix A ∈ {0, 1}n×n which has Aij = 1 if there is an edge from the i-th
to the j-th vertex and Aij = 0 otherwise. More generally, the weight matrix
W ∈ R

n×n allows one to assign nonzero numerical values on edges, and thus
Wij 6= 0 when there is an edge from the i-th to the j-th vertex.

In the perspective of spectral clustering, a useful way of representing G is
through its Laplacian matrix [3]. There are several definitions of the Laplacian
matrix, however we are interested in the normalised Laplacian matrix, which is
symmetric and positive semi-definite. We recall its definition below for clarity.

Definition 2.1. The unnormalised Laplacian matrix of a graph G is defined as
L = D−W where D is the degree matrix with supposedly nonzero diagonal en-
tries Dii = deg(vi), denoting by deg(vi) =

∑
j Wij the degree of the i-th vertex,

and zeros elsewhere, and W is the weight matrix. The normalised Laplacian
matrix of a graph G is then defined as

L̃ = D−
1

2LD−
1

2 .

The normalised Laplacian matrix is used in the spectral clustering approach
of Ng et al. [25]. The algorithm computes the Laplacian and then finds the
k smallest eigenvectors which are used for clustering in conjunction with the
k-means algorithm, see Algorithm 1. The Laplacian matrix is often sparse and
one can use power or Krylov subspace methods such as the Lanczos method to
find the eigenvectors. There are several variants of Algorithm 1, such as that
of [34] which uses the so-called random walk Laplacian and clusters the small-
est eigenvectors in a similar way. One of the motivations for these clustering
methods is from the spectral relaxation of the minimisation of the normalised
cut criterion.

Algorithm 1 Spectral Clustering using the Normalised Laplacian [25]

Require: Graph G with weight matrix W ∈ R
n×n, number of clusters k

1: Find k smallest eigenvectors Vk = [v1, . . . ,vk] of normalised Laplacian L̃

2: Normalise the rows of Vk, i.e. Vk ← diag(VkV
T
k )

−
1

2Vk

3: Cluster rows of Vk with the k-means algorithm
4: return Cluster membership vector c ∈ {1, . . . , k}n

A naive approach to spectral clustering on a sequence of graphs has a large
update cost due to the computation of the eigen-decomposition of L̃t at each

3



iteration t. A more efficient approach is to update relevant eigenvectors from
one iteration to the next. In [36] the authors use the spectral clustering of
[25] however they do not update the eigenvectors incrementally but instead the
clustering directly. In [16] the authors cluster using the unnormalised Lapla-
cian matrix. Eigenvalues are updated and then clusters are modelled using a
set of representative points (a similar strategy is used in [40] for example to
cluster points in R

d). The algorithm is potentially costly since it uses the full
eigen-decomposition in conjunction with the eigen-gap heuristic to estimate the
number of clusters. Furthermore, the solution is updated with the addition of
vertices only, and not edges. The iterative clustering approach of Ning et al.
[27, 26] uses the spectral clustering method given in [34] and updates eigen-
vectors incrementally. The algorithm incrementally updates the solution of the
generalised eigenproblem Lv = λDv by finding the derivatives on the eigen-
values/vectors with perturbations in all of the quantities involved. An iterative
refinement algorithm is given for the eigenvalues and eigenvectors given a change
in the edges or vertices of a graph. One then clusters the resulting k smallest
eigenvectors using k-means clustering. In order to limit errors which can build
up cumulatively the authors recompute the eigenvectors after every R-th graph
in the sequence.

A disadvantage of the approach of [27, 26] lies in the fact that, to update
an eigenvector, one must invert a small matrix for each weight change in the
graph which makes updates costly. The size of this matrix is proportional to
the number of neighbours of the vertices incident to the changed edge. To be
more precise, the cost of updating an eigenvector in [27] is O(N̄2n + N̄3) in
which N̄ is the average size of the “spatial neighbourhood” of an edge, i.e. the
average number of rows/columns incident to the edge. It follows that to update
k eigenvectors following r edge changes, the complexity is O(rk(N̄2n + N̄3)).
In contrast, the approach presented in our paper has a smaller update cost for
a set of vertex or edge weight changes between Lt and Lt+1, since changes are
considered in a batch fashion, as will later become clear. A further problem
with the Ning et al. approach is that eigenvectors are updated independently
of one another and hence one loses the orthogonality vT

i Dvj = δ(i, j), where δ
is the Kronecker delta function (taking the value 1 if i = j and 0 otherwise),
and vectors can become correlated for example.

Another way of improving the efficiency of spectral clustering is to com-
pute approximate eigen-decompositions at each iteration, for example by using
the Nyström approach [39]. The Nyström method is used for spectral graph
clustering in [11] in conjunction with image segmentation. To estimate the
eigenvalues and eigenvectors of A ∈ R

n×n, one first finds a matrix A[I, I] in
which I ∈ {1, . . . n}m is a set of indices selected uniformly at random. If we
assume that A[I, I] is positive definite, we can take its square root A[I, I]1/2.
One then defines

S = A[I, I] +A[I, I]−1/2A[I, Ī]A[I, Ī]TA[I, I]−1/2,

where Ī is the complement of I, and diagonalises S using the eigen-decomposition
S = UΛUT . Let V = A[:, I]A[I, I]−1/2UΛ−1/2, then it can be shown that the
Nyström approximation of A, given by ÃI = A[:, I]A[I, I]−1A[I, :], is equiv-
alent to VΛVT . If A is indefinite a more complicated two-step procedure is
required, see [11] for details. The resulting approximation is applied to find

4



the first few eigenvectors of the normalised Laplacian matrix at a total cost of
O(nm2 +m3). Several efficiency improvements based on this approach are pro-

posed in [20] which finds the largest k approximate eigenvectors of D−
1

2WD−
1

2

at a reduced time and space complexity.
The quality of the resulting approximation is determined by the extent the

submatrix A[Ī , Ī] is spanned by A[I, :]. One would naturally expect a good ap-
proximation for example when A[I, :] spans the space of A. The choice of sam-
pling of I also affects approximation quality, and empirical and theoretical work
in [17] suggests random sampling without replacement over the non-uniform
sampling in [7, 6]. Hence for our later empirical work, we will use uniform ran-
dom sampling without replacement. In addition to [17], error bounds for the
Nyström method are presented in [7, 21] in terms of the matrix approximation

error using the Frobenius or spectral norm (given by ‖A‖F =
√
tr(ATA) and

‖A‖2 =
√
λmax(A

TA) respectively). One of the disadvantages of applying the

Nyström based approaches of [11, 20] on graphs is that by sampling only a subset
of columns of the normalised Laplacian one can exclude important edges which
help define clusters. These approaches are naturally more effective when a set
of points {x1, . . . ,xn} ∈ R

d is mapped into a weighted graph using for example
the Gaussian weighted distance Wi,j = exp(−‖xi − xj‖

2)/2σ2, for σ ∈ R
+,

which is very informative about the relative positions of the points.
Another class of algorithms which are potentially useful for spectral cluster-

ing is the randomised SVD [14]. Notice that the SVD of a symmetric positive
semi-definite matrix is identical to its eigendecomposition and hence SVD al-
gorithms can be applied to spectral clustering. We recount an algorithm from
[14] which is used in conjunction with kernel Principal Components Analysis
(KPCA, [33]) in [41]. Algorithm 2 provides the associated pseudo-code. The
purpose of the first three steps is to find an orthogonal matrix Q such that the
projection of A onto Q is a good approximation of Y, whose columns are ran-
dom samples from the range of A, under a rank-k projection. This projection
is then used in conjunction with Q so that one need only find the SVD of the
smaller matrix B. The complexity of this approach is O((qr + r2)(m + n)),
which for a square matrix of size n collapses simply to O((qr + r2)n)

Algorithm 2 Randomised SVD [14]

Require: Matrix A ∈ R
m×n, number of projection vectors r, exponent q

1: Generate a random Gaussian matrix Ω ∈ R
n×r

2: Create Y = (AAT )qAΩ by alternative multiplication with A and AT

3: Compute Y = QR using the QR-decomposition
4: Form B = QTA and compute SVD B = ÛΣVT

5: Set U = QÛ

6: return Approximate SVD A ≈ UΣVT

3 SVD Updating

An important aspect of the incremental clustering method described later lies
in its ability to efficiently compute the eigenvectors of a matrix from the eigen-

5



vectors of a submatrix, and for clarity’s sake, we outline the SVD-updating
algorithm of [42]. The SVD of A ∈ R

m×n is the decomposition

A = PΣQT ,

where P = [p1, . . . ,pm], Q = [q1, . . . ,qn] and Σ = diag(σ1, . . . , σr) are respec-
tively the orthogonal matrices of left and right singular vectors and a diagonal
matrix of singular values σ1 ≥ σ2 ≥, . . . ,≥ σr, with r = min(m,n).

In [42], the authors use the SVD of A to approximate the SVD of [A B],
with B ∈ R

m×p, without recomputing the SVD of the new matrix. It is known
that the best k-rank approximation of A, using the Frobenius norm error, is
given by its SVD, namely

Ak = PkΣkQ
T
k ,

where Pk, Qk, Σk correspond to the k largest singular values. The general idea
of the algorithm is to write

[Ak B] = SΛRT ,

in which S and R are matrices with orthonormal columns. One then takes the
rank-k SVD Λ = GkΓkH

T
k and (SGk)Γk(RHk)

T is the rank-k approximation
for [A B]. The dimensionality of Λ is generally much smaller than that of
[Ak B] and hence the corresponding SVD approximation is computationally
inexpensive.

This approach is more accurate than those presented in [2, 28], however it
comes at additional computational cost. Furthermore, the authors prove that
when the matrix [A B]T [A B] has the form X+α2I in which X is symmetric
positive semi-definite with rank-k then the rank-k approximation of [A B] is
identical to that of [Ak B].

4 Incremental Eigen-approximation

In this section we address three types of updating problem upon the largest
k eigenvectors of a symmetric matrix. The updates are general operations,
however they will be explained in the context of spectral clustering later in
Section 6. Assuming that Y1,Y2 ∈ R

n×p and one does not have direct access
to A ∈ R

m×n and B ∈ R
m×p but only to the matrices C = ATA, ATB and

BTB, the updates are:

1. Addition of a low-rank symmetric matrix C→ C+U where U = Y1Y
T
2 +

Y2Y
T
1

2. Addition of rows and columns ATA→ [A B]T [A B]

3. Removal of rows and columns [A B]T [A B]→ ATA

We have written the updates above in terms of a symmetric matrix ATA

to improve notation. Note that any positive semi-definite symmetric matrix M

can be decomposed into the form M = ATA, where A has real entries, for
example by using an eigen-decomposition or incomplete Cholesky factorisation.

6



4.1 Addition of a Low-rank Symmetric Matrix

The first type of eigen-approximation we are interested in is the addition of a
low-rank symmetric matrix. One computes the eigen-decomposition of C and
then approximates the rank-k decomposition of Ck + U where U = Y1Y

T
2 +

Y2Y
T
1 and Ck is the approximation of C using the k largest eigenvectors (also

known as the best k-rank approximation of C). A similar but not applicable
update is considered for the SVD case in [42] in which the rank-k approximation

ofAk+Ŷ1Ŷ
T

2 is found fromAk in which Ŷ1 ∈ R
m×j and Ŷ2 ∈ R

n×j for some j.
The general idea in our case is to find a matrix with orthonormal columns Q̃ such

that Ck+U = Q̃∆Q̃
T
for a square matrix ∆. To this purpose, we first project

the columns of Y1 into the space orthogonal to the k largest eigenvectors Qk of
C (note the deviation from standard notation), a process known as deflation.
Assuming that eigenvectors have unit norm, the matrix Y1 is thus deflated as
follows:

Ȳ1 = (I−QkQ
T
k )Y1,

at a cost of O(npk). Note that Ȳ1Θ1 for some Θ1, is orthogonal to Qk since

QT
k Ȳ1Θ1 = (QT

kY1 − QT
k Y1)Θ1 = 0. If we take the SVD Ȳ1 = P̄1Σ̄1Q̄

T
1

then P̄1 is orthogonal to Qk since P̄1 = Ȳ1Q̄1Σ̄
−T
1 assuming Σ̄1 has nonzero

diagonal entries.
At the next stage we would like to orthogonalise the columns of Y2 with

respect to both Qk and P̄1. Hence we deflate Y2 in the following way:

Ȳ2 = (I− P̄1P̄
T
1 −QkQ

T
k )Y2,

at cost O(npk), where we have used the fact that P̄1 is orthogonal to Qk.
Proved in a similar way to the step used earlier, the matrix in the column space
of Ȳ2, Ȳ2Θ2 for some Θ2, is orthogonal to Qk and P̄1. Hence, we compute the

SVD Ȳ2 = P̄2Σ̄2Q̄
T
2 and note that the matrices P̄1, P̄2 and Qk are mutually

orthogonal and span the space spanned by Ck +U. This allows one to write

Ck +U = Q̃∆Q̃
T

as required with Q̃ = [Qk P̄1 P̄2] ∈ R
n×(k+2p) and ∆ = Q̃

T
(Ck + U)Q̃, or

equivalently

∆ =




Ωk +QT
kUQk QT

kUP̄1 QT
kY1Q̄2Σ̄2

P̄
T
1 UQk P̄

T
1 UP̄1 Σ̄1Q̄

T
1 Q̄2Σ̄2

Σ̄2Q̄
T
2 Y

T
1 Qk Σ̄2Q̄

T
2 Q̄1Σ̄1 0


 ,

in which ∆ ∈ R
(k+2p)×(k+2p). We take the rank-k eigen-decomposition ∆k =

HkΠkH
T
k and then the final eigen-approximation is given by (Q̃Hk)Πk(Q̃Hk)

T

in which it is easy to verify that the columns of Q̃Hk are orthonormal.
The deflation and SVD of Ȳ1 and Ȳ2 cost O(npk) and O(np2) respectively

and the eigen-decomposition of ∆ is O((k + 2p)3). In order to compute ∆

one can reuse the computations of QT
kY1, Q

T
k Y2, P̄

T
1 Y2 which are used for

deflations and also the matrices used for the SVD decompositions. Thus ∆

is found in O(p3 + p2k + pk2), and the overall complexity of this algorithm is

7



O((k2 + p2)(p+ k) +np(p+ k)). Of note here is that n scales the complexity in
a linear fashion, however costs are cubically related to k and p.

4.2 Addition of Rows and Columns

In correspondence with the SVD-updating method given above we consider the
case in which one has the eigen-decomposition of C and then wants to find the
rank-k approximation of E = [A B]T [A B]. Such a process is useful not
just in incremental clustering but also in incrementally solving kernel Principal
Components Analysis (KPCA, [33]) for example. This update can be written
in terms of that described above. This is seen by writing the former update
ATA→ [A B]T [A B] in terms of the latter:

[
ATA 0

0 0

]
→

[
ATA 0

0 0

]
+

[
0 ATB

BTA BTB

]
.

The second term on the right-hand side can be written as Y1Y
T
2 +Y2Y

T
1

where Y1 = [0 Ip]
T and Y2 = [BTA 1

2B
TB]T . The eigenvectors of the first

matrix on the right-hand side are found from those of ATA by simply adding
p zero rows to the existing eigenvectors, and the corresponding eigenvalues are
identical. Additional eigenvectors are standard unit vectors spanning the p new
rows with corresponding eigenvalues as zero. A useful insight is that the deflated
matrix Ȳ1 = Y1 and hence its SVD decomposition can be written directly as
Ȳ1 = [0 Ip]

T IpIp.

4.2.1 Alternative Approach

Here we outline a simpler and more direct approach for the addition of rows and
columns to a matrix. First letC = QΩQT in whichQ is a matrix of eigenvectors
and Ω is a diagonal matrix of eigenvalues. Note that Ê = [Ak B]T [Ak B]

can be written as Q̃∆Q̃
T
for a square matrix ∆. In our case we have

Q̃ =

[
Qk 0

0 Ip

]
and ∆ =

[
Ωk QT

kA
T
k B

BTAkQk BTB

]
,

noting that AkQkQ
T
k = QkΩkQ

T
kQkQ

T
k = Ak since QT

kQk = I. Furthermore,
note that QT

kA
TB = QT

kQΣPTB = QT
kQkΣkP

T
kB = QT

kA
T
kB and calculating

QT
kA

T
k B is O(npk). It follows that ∆ ∈ R

(k+p)×(k+p) can be found using Qk,
ATA, and ATB and BTB. In the final step, and analogous to the SVD case
we take the rank-k eigen-decomposition ∆ = HkΠkH

T
k at a cost of O((k+ p)3)

and then the rank-k eigen approximation of Ê is given by (Q̃Hk)Πk(Q̃Hk)
T .

Notice that this eigen-update almost follows directly from the SVD update
in [42] however one need not use the QR decomposition of the deflated B.
Furthermore, the eigen-approximation above is identical to that at the start of
Section 4.2 with Y1 = [0 Ip]

T and Y2 = [BTAk
1
2B

TB]T . The difference
between the method above and that of Section 4.2 is the former uses Ak as
opposed to A in Y2 which results in a greater error.

8



4.3 Removing Rows and Columns

Observe that removing rows and columns is equivalent to zeroing the corre-
sponding rows/columns:

Ĉ =

[
ATA ATB

BTA BTB

]
→

[
ATA ATB

BTA BTB

]
−

[
0 ATB

BTA BTB

]
,

and in this form one can see the connection to Section 4.2. Again, one can write
the second term on the right-hand side as Y1Y

T
2 +Y2Y

T
1 where Y1 = [0 Ip]

T

and Y2 = −[B̂
T
Â 1

2 B̂
T
B̂]T where B̂

T
Â and B̂

T
B̂ are found using the rank-k

approximation of Ĉ. Since we are updating the rank-k approximation of Ĉ, the
final eigen-approximation will have zero elements in the eigenvectors at rows
corresponding to those row/columns that are deleted.

4.4 Discussion

A similar eigen-update to that of Section 4.2.1 is considered in [18] and used in
conjunction with PCA [15] and KPCA in [43]. In PCA, one starts with a set
of examples T = {x1,x2, . . . ,xn} where xi ∈ R

d. These examples are centred,
and then one finds the k largest eigenvectors u1, . . . ,uk of the covariance matrix
C = 1/n

∑n
i=1 x̃ix̃

T
i , where x̃ is a centred example. KPCA functions similarly,

except that one finds the largest eigenvectors of a kernel matrix K ∈ R
n×n

which is computed using the centred examples. In the incremental setting one
approximates the eigenvectors of the covariance or kernel matrix on the addition
of a new set of examples. In [43] the authors phrase the problem as a series
of SVD updates, and we use a more direct approach in Section 4.2.1. Further-
more, whereas [43] examines the addition of rows and columns to a positive
semi-definite matrix, our work is more general in that we additionally consider
removal of rows and columns and addition of a low-rank symmetric matrix.
One key novelty of this paper is the update of Section 4.1 which encapsulates
all three of these updates and yet does not simply follow from the SVD updating
work of [42].

To formalise this notion, the updates outlined above can be written in terms
of the addition of a low-rank symmetric matrix U to a positive semi-definite
matrix C. Our approximation method computes Ck +U via its expression as

Q̃HkΠkH
T
k Q̃

T
where Q̃ is a matrix with orthogonal columns spanning Ck +U

and Hk and Πk represent the largest k eigenvector and eigenvalues of a matrix

∆ = Q̃
T
(Ck +U) Q̃. The following lemma shows the consequence of this

approach.

Lemma 4.1. Decompose a matrix Z = FΛFT where F is any matrix with or-
thonormal columns FTF = I. For some k find the best rank-k eigen-approximation
Λk = HkΠkH

T
k in which Hk and Πk are the largest k eigenvectors and eigenval-

ues of Λ, and let Ẑ = FHkΠkH
T
kF

T . Then the best rank-k eigen-decomposition
of Z is given by:

Zk = UkSkU
T
k = Ẑ.

9



Proof. Note that Λ = FTZF due to the orthogonality of F. Let u, s be the
eigenvectors and eigenvalues of Z, and define u = Fv for some v then FTZFv =
sv. This implies that the eigenvalues of Λ are the same as those of Z and the
eigenvectors are related by U = FV. Hence we have V = H and S = Π which
implies Ẑ = FHkΠkH

T
kF

T = UkSkU
T
k = Zk as required. The only condition

on F is that the eigenvectors of Z are in the column space of F. This must be
the case however since Z = USUT = FVSVTFT .

Hence, the update Ck + U of Section 4.1 is identical to the best rank-k
approximation of Ck +U.

5 Eigen-approximation Quality

This section aims to bound the quality of the proposed eigen-approximation
approach. As mentioned in Section 4.4, the proposed approach replaces the
expected best rank-k approximation of a matrix A + B by the best rank-k
approximation of Ak + B, where Ak denotes the best rank-k approximation
of A. Hence, our objective is to control the difference between (A + B)k and
(Ak +B)k.

The result in Section 4.4 gives us a first insight into the approximation
error of the updates described: the residual matrix is that corresponding to the
eigenvectors and eigenvalues after k. One can see that for any matrix C

‖C−Ck‖
2
F = ‖Ck⊥‖2F =

n∑

i=k+1

ω2
i ,

where ωi is the ith eigenvalue of C (unless otherwise stated eigenvalues are
always given in descending order) and Ck⊥ is the approximation of C using
eigenvectors/eigenvalues after k. This implies that C is well approximated by
the largest k eigenvectors if the sum of the square of the remaining eigenvalues
is small.

This certainly gives us insight into when our eigen-updating approach will
be accurate, however the kind of matrices we will work with do not have this
property in general. We now turn to matrix perturbation theory [35] in order
to learn more about the approximated eigenvectors of the updated matrix. In
a nutshell, it lies in controlling the angle between two invariant subspaces. Be-
fore giving the corresponding theorem, the following subsection introduces the
necessary notions of invariant subspaces of a matrix and of the canonical angles
between subspaces.

5.1 Invariant Subspaces and Canonical Angles

We begin by introducing the simple concept of an invariant subspace.

Definition 5.1. The subspace X is an invariant subspace of A if AX ⊂ X .

It can also be shown that if the columns of X form a basis for X of A

then there is a unique matrix L such that AX = XL. The matrix L is a
representation of A with respect to the basis X, and it has identical eigenvalues
to A. A useful decomposition in perturbation theory is to reduce A to a block
diagonal form. Let X1 be an orthogonal matrix which spans the invariant

10



subspace of A, X1, and assume that we have a matrix Y2 such that [X1Y2] is
unitary and Y2 spans the space orthogonal to X1, then this allows us to write

[X1Y2]
TA[X1Y2] =

[
L1 H

0 L2

]
, (1)

in which L1 = XT
1 AX1, L2 = YT

2 AY2 and H = XT
1 AY2. The above equation

is known as the reduced form ofA with respect to [X1Y2]. The proof of why the
bottom left block of this matrix is zero is straightforward, see [35] for details.
This gives us the knowledge to define a simple invariant subspace.

Definition 5.2. Let X be an invariant subspace of A and consider the reduced
form of Equation (1), then X is a simple invariant subspace of A if there are
no common eigenvalues between L1 and L2.

Notice that a simple invariant subspace has a complementary space, defined
as follows.

Definition 5.3. Let the simple invariant subspace X1 have the reduced form of
Equation (1) with respect to the orthogonal matrix [X1Y2]. Then there exist X2

and Y1 such that [X1X2]
−1 = [Y1Y2]

T and

A = X1L1Y
T
1 +X2L2Y

T
2 , (2)

where Li = YT
i AXi, i = 1, 2. This form of A is known as the spectral resolu-

tion of A along X1 and X2.

This allows us to introduce a theorem essential to our main result. However,
first we must define the notion of angle between two subspaces.

Theorem 5.1. Let X1,Y1 ∈ R
n×ℓ with XT

1 X1 = I and YT
1 Y1 = I. If 2ℓ ≤ n,

there are unitary matrices Q,U11,V11 such that

QX1U11 =




Iℓ
0

0


 and QY1V11 =




Γ

Σ

0


 ,

in which Γ = diag(γ1, . . . , γℓ) with 0 ≤ γ1 ≤ . . . ≤ γℓ, Σ = diag(σ1, . . . , σℓ) with
σ1 ≥ · · · ≥ σℓ ≥ 0, and γ2

i + σ2
i = 1, i = 1, . . . , ℓ. If 2ℓ > n then Q,U11,V11

can be chosen so that

QX1U11 =




In−ℓ 0

0 I2ℓ−n

0 0


 and QY1V11 =




Γ 0

0 I2ℓ−n

Σ 0


 ,

in which Γ = diag(γ1, . . . , γn−ℓ) with 0 ≤ γ1 ≤ . . . ≤ γn−ℓ, Σ = diag(σ1, . . . , σn−ℓ)
with σ1 ≥ · · · ≥ σn−ℓ ≥ 0, and γ2

i + σ2
i = 1, i = 1, . . . , n− ℓ.

Geometrically, let X1 and Y1 be subspaces of dimension ℓ and Q be a unitary
transformation. Then the matrices QX1U11 and QY1V11, with X1 ∈ X1,
X2 ∈ X2, Q ∈ Q , form bases of QX 1 and QY1 and σi and γi can be regarded
as sines and cosines of the angles between the bases. We now define a measure
of similarity between subspaces.

11



Definition 5.4. Let X and Y be subspaces of the same dimension, then the
canonical angles between the subspaces are the diagonal entries of the matrix
sin−1 Σ = diag(sin−1(σ1), . . . , sin

−1(σn−ℓ)) where Σ is the matrix defined in
Theorem 5.1.

It follows that Σ is a measure of how two subspaces differ.

5.2 Angle Between Exact and Updated rank-k Approxi-

mations

We are now ready to state the main theorem required for our result.

Theorem 5.2. Let A be a Hermitian matrix with spectral resolution given by
[X1X2]

TA[X1X2] = diag(L1,L2) where [X1X2] is unitary. Let Z ∈ R
n×k have

orthonormal columns, M be any Hermitian matrix of order k and define the
residual matrix as R = AZ−ZM. Let λ(A) represent the set of eigenvalues of
A and suppose that λ(M) ⊂ [α, β] and for some δ > 0, λ(L2) ⊂ R\ [α−δ, β+δ].
Then, for any unitary invariant norm, we have:

‖ sinΘ(R(X1),R(Z))‖ ≤
‖R‖

δ
, (3)

where R(·) is the column space of a matrix.

Before we introduce the main result we present a result by Weyl [38] which
characterises the perturbation in the eigenvalues of a matrix.

Theorem 5.3 (Weyl, [38]). Define A ∈ R
n×n and let Ã = A + E be its

perturbation. The eigenvalues of A and E are given by λi and ǫi, i = 1, . . . , n,
respectively. Then the eigenvalues of Ã are, for i = 1, . . . , n, λ̃i ∈ [λi + ǫn, λi +
ǫ1].

We can now present our main result which is closely related to the Davis-
Kahan theorem [4].

Theorem 5.4. Consider a positive semi-definite matrix A ∈ R
n×n with eigen-

values ω1, . . . , ωn and corresponding eigenvectors Q = [q1, . . . , qn]. Let B ∈
R

n×n be symmetric with eigenvalues ǫi and (A + B) be positive semi-definite
with eigen-decomposition UΓUT where γi are eigenvalues, i = 1, . . . , n. Fix
integer k, let Ak + B have decomposition VΠVT with eigenvalues π1, . . . , πn

and assume γk 6= γk+1. Then the following bounds hold on the canonical angles
between the subspaces defined by Uk and Vk, assuming πk > γ̂k+1,

‖ sinΘ(R(Uk),R(Vk))‖F ≤

√
tr(VT

k A
2
k⊥Vk)

πk − γ̂k+1
, (4)

‖ sinΘ(R(Uk),R(Vk))‖2 ≤

√
λmax(V

T
kA

2
k⊥Vk)

πk − γ̂k+1
, (5)

where γ̂k+1 = ωk+1 + πk+1.

12



Proof. We will start by considering the first bound. It is clear that Uk is
a simple invariant subspace for (A + B). The spectral resolution of A + B is
given by [UkUk⊥ ] since this matrix is unitary and we have A+B = UkU

T
k (A+

B)UkU
T
k + Uk⊥UT

k⊥(A + B)Uk⊥UT
k⊥ . In the reduced form L1 = Γk and

L2 = Γk⊥ . Furthermore, we set M = Πk and Z = Vk. The residual matrix is
given by R = (A+B)Vk −VkΠk = Ak⊥Vk and

‖R‖F =

√
tr(VT

kA
2
k⊥Vk). (6)

We know that the eigenvalues of M fall within the range [πk, π1] and those
of L2 are bounded using Theorem 5.3 in the range γi ∈ [πi + ωn, πi + ωk+1]
for i = k + 1, . . . , n. Considering also the perturbation of eigenvalues of A

we can write γi ≤ γ̂i = min(ωk+1 + πk+1, ωk+1 + ǫ1) = ωk+1 + πk+1 given
πk+1 ≤ ωk+1 + ǫ1. It follows that δ = πk − γ̂k+1 and plugging into Theorem 5.2
gives the required result.

The second bound is proved similarly except in this case we have

‖R‖2 =

√
λmax(V

T
k A

2
k⊥Vk).

Thus we have a bound on the angle between the subspace of the first k
eigenvectors of Ak + B and the corresponding eigenvectors of it perturbation
A+B without explicitly requiring the eigen-decomposition of A+B. Provided
the eigenvalues of VT

kA
2
k⊥Vk are small and the eigengap πk − γ̂k+1 is large one

can be sure that the two subspaces have small canonical angles. One can see
that under small perturbations Vk is close to Qk and hence VT

kQk⊥ is small,
resulting in tight bounds in the angles. In the case that the matrices involved
correspond to normalised Laplacians this result corresponds well with similar
results outlining a perturbation-based motivation of spectral cluster (see e.g.
[37]) which state that if the value of γk−γk+1 is large then one might reasonably
expect a good clustering. The bound becomes loose when this eigengap is small,
however in this case the clusters are less distinct even when computing the exact
eigenvectors.

6 Incremental Cluster Membership

We now return to the eigenproblem of Algorithm 1, L̃v = λv, in which we are
interested in the eigenvectors with the smallest eigenvalues. Define the shifted
Laplacian as

L̂ = 2I− L̃ = I+D−
1

2WD−
1

2 ,

which is positive semi-definite since L̃ is positive semi-definite with largest eigen-
value 2. Note that by negating a matrix one negates the eigenvalues, leaving the
eigenvectors the same, and similarly an addition of σI increases the eigenvalues
by σ leaving the eigenvectors intact. Since we are interested in the smallest
eigenvectors of L̃ they correspond exactly to the maximum eigenvectors of L̂
and we can use the eigen-update methods described above. Observe that the

13



shifted Laplacian is a normalised version of the signless Laplacian [13] defined as

L+ = D+W, and this can be seen from L̂ = D−
1

2 (D+W)D−
1

2 = D−
1

2L+D−
1

2 .
Putting the ingredients together allows us to outline an efficient incremental

method for performing graph clustering called Incremental Approximate Spec-
tral Clustering (IASC), see Algorithm 3. At a high level the algorithm is quite
simple: in the initialisation steps one computes the shifted Laplacian matrix
for the first graph L̂1 and then performs k-means clustering using the largest
k eigenvectors of this matrix. For the t-th successive graph, t > 1, we use the
eigen-update methods above to approximate the largest eigenvectors of L̂t using
the approximate eigenvectors computed at the previous iteration in step 10. For
these updates, it is simple to recover the matrices Y1 and Y2 given a change
in edge weights. Note that we use the first method of Section 4.2 to compute
eigenvector upon the addition of row and columns. Furthermore, we store the
first ℓ eigenvectors of L̂1, with ℓ ≥ k, and recompute eigenvectors every T itera-
tions in order to reduce cumulative errors introduced in the loop at the expense
of increased computation. When ℓ = n one recovers the exact eigenvectors at
each iteration and Algorithms 3 and 1 become nearly equivalent. In the case
that there is a significant eigengap between eigenvalues, one can fix both ℓ and
k according to Theorem 5.4.

Algorithm 3 Incremental Approximate Spectral Clustering

Require: Graphs G1, . . . , GT of sizes n1, . . . , nT , no. clusters k, approximation
rank ℓ ≥ k, eigen-decomposition recomputation step R

1: Compute the shifted Laplacian for G1, L̂1

2: Find ℓ largest eigenvectors of L̂1, V
(1)
ℓ , let V

(1)
k be the first k cols of V

(1)
ℓ

3: Normalise the eigenvector rows, V
(1)
k ← diag(V

(1)
k (V

(1)
k )T )−

1

2V
(1)
k

4: Use k-means on rows of V
(1)
k and store indicators c1 ∈ {1, . . . , k}

n1

5: for t = 2→ T do

6: Compute shifted Laplacian for Gt, L̂t

7: if i % R = 0 then

8: Recompute eigenvectors of L̂t

9: else

10: Use rank-ℓ eigen-approximation of Section 4
11: end if

12: Normalise rows of V
(t)
k , V

(t)
k ← diag(V

(t)
k (V

(t)
k )T )−

1

2V
(t)
k

13: Use k-means on V
(t)
k with initial centroids ct−1, store ct ∈ {1, . . . , k}

nt

14: end for

15: return Cluster membership c1 ∈ {1, . . . , k}
n1 , . . . , cT ∈ {1, . . . , k}

nT

The complexity of Algorithm 3 is dictated by the sparsity of the graphs
and the extent of the change between successive graphs. We ignore the steps
before the for-loop since in general they do not impact the overall complexity.
At iteration t and step 6 one can compute L̂t from the weight and degree
matrix at a cost of O(nt + |Et|). In the following step if there is a change
between edges incident to vertices S = {vI1 , . . . , vIℓ} then the rows and columns
corresponding to the union of the neighbours of S, n(S), will change in the
corresponding shifted Laplacian. In this case p = |n(S)| in Y1,Y2 ∈ R

n×p

and if the neighbourhood of the vertices with changed edges n(S) is small, this

14



update can be efficiently computed as outlined in Section 4. The cost of k-means
is O(k2ns) where s is the number of iterations required for convergence.

7 Computational Results

In this section we study the clustering quality of five incremental strategies:
the naive one which computes the exact eigenvectors at each iteration, denoted
Exact, Ning et al.’s method (Ning) since it is a competing incremental strat-
egy, IASC, Nyst, which uses the Nyström eigen-decomposition approximation of
the shifted Laplacian, since it is often used in spectral clustering, and likewise
the Randomised SVD method of Algorithm 2 denoted RSVD. First, however we
observe the quality of the eigenvectors found using our eigen-updating approach.

7.1 Quality of Approximate Eigenvectors

We compare Nyström and RSVD approximations with our eigen-updating meth-
ods on a synthetic dataset generated in the following way: The initial graph
contains 4 clusters of size 250 which are generated using an Erdös-Rényi [8]
process with edge probability p = 0.1. The Erdös-Rényi process creates edges
independently randomly with a fixed probability p for all pairs of vertices. For
each successive graph we then add 50 random edges to simulate “noise” in
the clusters for a total of 100 graphs. We then compute the largest k = 4
eigenvectors of the shifted Laplacian using the full eigen-decomposition, the
Nyström method, RSVD and the eigen-updating approach of Section 4. For the
Nyström method we use m = 900 randomly selected columns, for RSVD we
use r = {100, 900} random projections, and for the eigen-updating approach
we update based on ℓ = {4, 300} approximate eigenvectors and eigenvalues
found for the previous graph. The quality of the approximations is measured
by ‖ sinΘ(R(Uk),R(Vk))‖F where Uk stands for the exact eigenvectors and
Vk corresponds to the eigenvectors returned by one of the three considered
eigen-approximation strategies. Applying Corollary I.5.4 of [35], this norm is
equal to ‖Uk⊥Vk‖F . The experiment is repeated with results averaged over 20
iterations.

Observe that the quality of the approximation decreases with the noise am-
plitude, see Figure 1(a). For the three approximation strategies, the more eigen-
vectors/columns/random projection they consider, the smaller the canonical an-
gles with the exact decomposition as one might expect. Nyström leads to a poor
approximation whilst using 90% of the columns. RSVD has poor results with 100
random projections, but is close to the exact decomposition with 900 random
projections. The eigen-update strategy always does a better job than keeping
the initial decomposition, and in this case there does not appear to be a large
gain when moving from 300 eigenvectors to just 4. In the case in which we use
the complete set of eigenvectors we would expect IASC to coincide with exact
eigen-decomposition.

7.1.1 Perturbation Bound

We now turn to demonstrating the effectiveness of the bound of Theorem 5.4
on a synthetic dataset containing 150 vertices. The initial graph contains 3

15



clusters of size 50 which are generated using an Erdös-Rényi process with edge
probability p = 0.3, resulting in 1092 edges. For each successive graph we add 10
random edges and in total there is a sequence of 80 graphs. We then compute
the bound of Theorem 5.4 to measure the difference between the canonical
angles of the real and approximated eigenvectors of the shifted Laplacian. We
compare the results to the bound using the real eigenvalues of the Laplacian,
i.e. δ = πk − γk+1. This process is repeated 50 times with different random
seeds and the results are averaged.

0 20 40 60 80 100
Graph no.

0.0

0.1

0.2

0.3

0.4

0.5

||s
in

Θ
(R

(U
k
),
R(

V
k
))
|| F

Eigen-update 4
Eigen-update 300
Initial solution

Nyst 900
RSVD 100
RSVD 900

0 10 20 30 40 50 60 70 80
Graph no.

0.0

0.5

1.0

1.5

2.0

2.5

||s
in

Θ
(R

(U
k
),
R(

V
k
))
||

Frobenius approx
2-norm approx
Frobenius precise
2-norm precise

Figure 1: The left plot compares the canonical angles of the largest eigenvectors
found using the approximation methods with the equivalent real eigenvectors.
On the right we compare the perturbation bounds of Theorem 5.4. By “precise”
we mean that we use δ = πk − γk+1 in the theorem.

Figure 1(b) shows the resulting bounds for this sequence of graphs. The
bound diverges slowly from the precise bound for many of the initial graphs, for
example ‖ sinΘ(R(Uk),R(Vk))‖F is bounded by 0.616± 0.106 versus 0.352±
0.024 at the 50th graph and the equivalent results for the 2-norm are 0.434 ±
0.007 and 0.248 ± 0.02. Soon after this point, we see a large divergence in
the precise and approximate bounds, although the approximate bounds become
trivial after the 78th graph for the Frobenius norm and the 73rd for the 2-norm
corresponding to the addition of 770 and 730 edges respectively to the initial
graph. When we look at the precise bound, one can see that at the last graph
‖ sinΘ(R(Uk),R(Vk))‖2 ≤ 0.39 despite nearly doubling the number of edges
which points to the precision of the eigen-approximation in this case.

7.2 Clustering on Synthetic Data

To evaluate the clustering approaches, two separate synthetic datasets are con-
sidered, both of which are generated by an Erdös-Rényi process. The first
dataset, called 3clust, is based on a graph of 3 clusters of 60 vertices each.
This dataset allows us to compare the clustering quality as the clusters become
more/less distinct and also the addition and removal of edges. In the corre-
sponding graph, any possible edge between two points from the same cluster
occurs with probability pc = 0.3 and the probability of edges between vertices
in different clusters is selected from pg ∈ {0.1, 0.2}. To generate a sequence of
graphs we first allow only 20 vertices per cluster and then add 5 vertices to each
cluster at a time until each one is of size 60. We then reverse the process so that

16



the 10th graph is the same as the 8th, and the 11th is the same as the 7th etc.,
which allows us to test the clustering methods upon the removal of vertices.

The second dataset, discrepancy, aims to examine the clustering methods
on a more complex set of hierarchical clusters. Here, 180 vertices are split into
3 clusters of equal size, and inside each cluster there are 3 sub-clusters. The
initial graph is empty, and at each iteration t ∈ {1, . . . , T }, T = 23, an edge
{vi, vj} is added with a probability pε + (p − pε)ℓt/T , where ℓ is set to 1 if vi
and vj are in the same subgroup, 0.5 if vi and vj are in the same group, and 0
otherwise. In our case we set pε = 0.0005 and p = 0.01.

For both datasets and the clustering approaches, k-means is run with k
corresponding to the number of clusters (3 and 9 for 3clust and discrepancy

respectively). For IASC we fix the number of eigenvectors ℓ ∈ {3, 6, 12, 24}
with the 3clust dataset and ℓ ∈ {9, 72} with discrepancy in order to test
the approximation quality as this parameter varies. With Nyström we sample
m = 90 columns of the Laplacian matrix to find the approximate eigenvectors
on 3clust and select m ∈ {9, 72} for discrepancy. RSVD uses r = 24 random
projections on 3clust and r ∈ {9, 72} for discrepancy. On discrepancy,
the approximation methods start with the 3rd graph in the sequence to allow
the initial graph to contains enough edges. The experiments are repeated 50
times with different random graphs constructed using the methods described
above, and the results are averaged. Clustering accuracy is measured through
the Rand Index [29] between the finest true clustering C and the learned one Ĉ.
Rand Index corresponds to the proportion of true answers to the question “Are
vertices vi and vj in the same cluster ?”. More formally, it is given by

RandIndex(C, Ĉ) =

∣∣∣
{
vi, vj ∈ V : vi 6= vj , δ(C(vi), C(vj)) 6= δ(Ĉ(vi), Ĉ(vj))

}∣∣∣
|{vi, vj ∈ V : vi 6= vj}|

,

where C(vi) stands for the cluster index of vertex vi after clustering C, δ is the
Kronecker delta function and |E| denotes the cardinality of any finite set E .
The evaluation is completed by the computation of ‖ sinΘ(R(Uk),R(Vk))‖F ,
see Section 7.1 for more details. The canonical angles for Ning are not given
as Ning uses the random-walk Laplacian which (i) differs from the normalised
Laplacian used with other approaches and (ii) is not symmetric, leading to
non-orthogonal eigenvectors.

The errors on 3clust are shown in Figure 2. The first point to note is
that the errors decrease as the cluster size increases up until graph 8 and then
increase again as vertices are removed. This is explained by the fact that as the
cluster size increases there are more edges within each cluster relative to those
between clusters, hence they becomes easier to identify. Notice also that the
approximation methods perform worse (in terms of Rand Index) than exact

except for Ning and IASC ℓ = 3 when vertices are removed. This exception is
due to a coincidence: for any iteration i ∈ 8, ..., 16, clustering results are better
when using the eigen-decomposition at time 8 as they are based on more data.
On the other hand, Ning and IASC, ℓ = 3, do not accurately update the eigen-
decomposition and hence the eigenvectors are close to those at graph 8. As a
consequence, both approaches lead to better results than exact. Apart from this
exception, IASC, ℓ = 24, and RSVD have results close to exact, while Nyström

leads to a bad Rand Index score for p = 0.2. Ning has non-smooth behaviour
for any value of p. Lastly, the results of Nyström when p = 0.1 demonstrate the

17



0 2 4 6 8 10 12 14 16
Graph no.

0.34

0.36

0.38

0.40

0.42

0.44

Ra
nd

 In
de

x

IASC 3
IASC 6
IASC 12
IASC 24
Exact
Ning
Nyst 90
RSVD 24

(a) Rand Index, p = 0.1

0 2 4 6 8 10 12 14 16
Graph no.

0.34

0.36

0.38

0.40

0.42

0.44

Ra
nd

 In
de

x

IASC 3
IASC 6
IASC 12
IASC 24
Exact
Ning
Nyst 90
RSVD 24

(b) Rand Index, p = 0.2

0 2 4 6 8 10 12 14 16
Graph no.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

||s
in

Θ
(R

(U
k
),
R(

V
k
))
|| F

IASC 3
IASC 6
IASC 12

IASC 24
Nyst 90
RSVD 24

(c) Canonical angles, p = 0.1

0 2 4 6 8 10 12 14 16
Graph no.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

||s
in

Θ
(R

(U
k
),
R(

V
k
))
|| F

IASC 3
IASC 6
IASC 12

IASC 24
Nyst 90
RSVD 24

(d) Canonical angles, p = 0.2

Figure 2: The mean Rand Index error of the learned clustering on 3clust. The
numbers after IASC denote the number of eigenvectors computed.

limit of canonical angles to measure the clustering quality of an approximation
approach: having large canonical angles values does not necessarily imply a
Rand Index score far from exact.

It is worth noting that since ℓ is a fixed value for IASC, the approximation
of the largest eigenvectors of the shifted Laplacian represents a smaller fraction
of the total sum of eigenvalues as the cluster size increases. When using 24
eigenvectors for the approximation on the 2nd largest graph one requires ap-
proximately 14.5% of the dimensionality of the Laplacian, yet Rand Index is
close to that of exact.

The results on discrepancy (Figure 3) show that Ning generally does not
generate accurate clustering until the 12th graph when eigenvectors are recom-
puted, however it becomes competitive after this point. This is partly due to
the fact that one solves a different eigen-system to the other methods which is
not as effective at clustering for the initial graphs. As we increase the number of
columns used for the Nyström approach or the random projections used by RSVD,
the Rand Index values improve for the first few graphs in which the clusters are
generally not well defined. In contrast, IASC results are relatively accurate with
72 eigenvectors. Surprisingly at the final graph we see that with just 9 eigenvec-
tors IASC results in the most accurate clustering. At this point more eigenvectors

18



5 10 15 20
Graph no.

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ra
nd

 In
de

x

IASC 9
IASC 72
Exact
Ning
Nyst 9
Nyst 72
RSVD 9
RSVD 72

(a) Rand Index

5 10 15 20
Graph no.

2

4

6

8

10

12

||s
in

Θ
(R

(U
k
),
R(

V
k
))
|| F

IASC 9
IASC 72
Nyst 9

Nyst 72
RSVD 9
RSVD 72

(b) Canonical angles

Figure 3: The mean Rand Index of the learned clusterings on discrepancy. For
IASC and Nyström the numbers in the legend indicates the number of eigenvec-
tors and columns sampled at each iteration.

seem to make the solution worse, with the exact eigen-decomposition being less
accurate than IASC with 72 eigenvectors. One explanation is that an accurate
eigen-decomposition fits “noise” in the Laplacian which is excluded with IASC

and a low value of ℓ.

7.3 Real-world Graphs

We now apply the clustering methodology analysed previously on several real
datasets.

7.3.1 Setup

Here we use the clustering methods on three real datasets. The first one repre-
sents individuals in Cuba who are detected as HIV positive between the period
1986 and 2004, see [1] for details of the related database. Edges in the graph in-
dicate the occurrence of a sexual contact between two individuals as determined
using contact tracing, whereby contacts of an infected person are identified and
tested. The full sexual contact graph at the end of 2004 consists of 5389 people
however it is strongly disconnected and we consider the growth of the largest
component of size 2387. We find graphs of detected individuals at 1 month in-
tervals, starting when the graph contains at least 500 vertices. At any particular
time point, we consider the component containing first person detected in the
largest component at the end of the recorded epidemic.

The next dataset is the high energy physics theory citation network from
the Arxiv publications database [12] for the period February 1992 to March
2002. The full dataset contains 27,770 papers with 352,807 edges and a graph is
generated as follows: if a paper cites another, an edge is made from the former
to the latter. Not all of the papers present in the dataset have publication dates
and hence we use only those with dates and label cited papers with the date of
the oldest citing paper. Taking the largest component, the final resulting graph
consists of 15,112 vertices and 193,826 edges. To track the evolution of the

19



connected component we start with the oldest paper, and consider the graphs
of connected papers at 1 month intervals, starting with a graph of at least 500
vertices.

The final dataset, called Bemol, was first introduced in [30] and corresponds
to the purchase history of an e-commerce website over a period of almost two
years. The initial dataset is a bipartite graph between users and products com-
posed of more than 700,000 users and 1,200,000 products. In the current ex-
periment we focus on the first 10,000 users, and a graph is constructed between
users with edge weights corresponding to the number of commonly purchased
products between two users. Taking a maximum of 500 purchases per iteration
in the graph sequence we focus on graphs 500 to 600.

To test the clustering methods we run each on the sequences of evolving
graphs under a variety of parameters. As the selection of the number of clus-
ters is a complex issue and outside the scope of this paper and we manually
choose this value for each dataset. The experiment is run using k = 25 clus-
ters for HIV, k = 50 for Citation and k = 100 for Bemol. For HIV and IASC,
ℓ ∈ {25, 50, 100} and R = 10 and for Ning we recompute exact eigenvectors
after every 10 iterations. When using Citation and Bemol, eigenvector re-
computations are performed every 20 iterations and ℓ ∈ {100, 200, 500}. With
Nyström the number of columns is chosen from m ∈ {1000, 1500} for HIV and
m ∈ {2000, 5000} for the other datasets. Finally, we apply the randomised SVD
method with q = 2 and r ∈ {1000, 1500} for HIV and r ∈ {2000, 5000} for the
remaining datasets. Note that in our implementation of k-means clustering, k
represents an upper bound on the number of clusters found. To evaluate the
learned clusters we use measures of modularity and k-way normalised cut. Let
di =

∑
j Wij and r =

∑
i di, then the modularity is defined as

Q =
1

2r

∑

i,j

(
Wij −

didj

2r

)
δ(ci, cj),

where c ∈ R
n is the cluster indicator vector and δ is the Kronecker delta func-

tion. Intuitively modularity is the difference in the sum of edges weights within
a cluster and the expected edge weights assuming the same weight distribution
d for each vertex. The k-way normalised cut is

N =
1

k

k∑

ℓ=1

∑
ij Wijδ(ci, cℓ)(1 − δ(cj , cℓ))∑

ij Wijδ(ci, cℓ)
.

A cut between two clusters A and B is the sum of the weights between the
clusters and the normalised cut is this sum divided by the sum of the weights
of all edges incident to vertices in cluster A. Hence the k-way normalised cut is
the mean normalised cut between each cluster and its complementary vertices.
To summarise, the greater the modularity, the better, and the lower the k-way
normalised cut the better.

All experimental code is written in Python and we use an Intel Core i7-2600K
at 3.40GHz with 16GB of RAM to conduct the simulations. The Laplacian
matrices are stored in compressed sparse row representation and eigenvectors
are found using Implicitly Restarted Lanczos Method in ARPACK [19] which
computes only the required eigenvectors and not the full eigen-decomposition.

20



7.3.2 Results

Figure 4 shows the resulting modularities and k-way normalised cuts for all
datasets however we begin by studying HIV. For both IASC and Ning, since
eigenvectors are recomputed every 10 iterations, this can manifest itself as sud-
den changes in the modularities and k-way normalised cuts. These changes
are more pronounced with Ning. We see a close correspondence of IASC and
exact for both the modularity and normalised cut. As we observed with the
toy datasets, a lower value of ℓ seems to improve results with the final graph
having a cut of 0.09 with IASC ℓ = 100 versus 0.10 for exact. Notice that IASC
matches or improves results on exact, while keeping only 5% or fewer of the
final number of eigenvectors. Ning fares badly in terms of the modularity of the
resulting clustering with a value of 0.73 versus 0.82 for the exact approach at
the final graph. However, with the cut measure Ning provides the best cluster-
ing, albeit with a more unstable curve than the other methods. Nyström does
not provide a good approximation of the largest eigenvectors when the rank of
the Laplacian exceeds the number of columns sampled. In contrast, RSVD is
broadly competitive with IASC when using 1500 random projections. One of
the reasons for the effectiveness of RSVD is Step 2 of Algorithm 2 which helps
to ensure the column space of Y is close to that generated using the largest
eigenvectors of A, see [14] for further details.

A similar picture emerges with Citation and we see again that IASC is close
to exact in terms of both measures. Note that it was too costly to compute
clustering using Ning on this dataset and Bemol. We ran Ning on Citation for
337,920s before terminating the experiment: a computational time of at least 7.5
times more than the next most costly approach of RSVD, r = 5000, which took
44,880s. On Citation, when ℓ ∈ {200, 500} we obtain a close match to exact in
general. The results are impressive when we consider the change in the graphs
between eigenvector recomputations: the first graph is of size 555, and the 19th
is 2855, an increase of 2300. With the 60th graph there are 10,063 vertices
and 12,135 at the 79th. Looking at the Nyström curves, we again observe poor
clustering performance even when m = 5000. Furthermore, RSVD r = 5000
can compete well with the exact method particularly when considering the cut
measure although the modularity using RSVD suffers after approximately the
60th graph.

Finally consider the Bemol graphs in which it is difficult to find clear clusters,
although they become more distinct over time. This is evident when looking
at the exact curves for example: the modularity increases slightly from 0.27 to
0.32 whereas the k-way normalised cut falls from 0.74 to 0.65 from beginning
to end. In contrast to the other datasets exact is improved upon by both
IASC and Nyström (when m = 5000) respectively. One of the reasons that the
Nyström and RSVD methods are effective on this data is because there are many
edges and one can sample them out without affecting the clustering significantly.
Note however that as we have seen in the other plots, Nyström is rather unstable
compared to the other methods. Furthermore, the eigenvector updates every 20
iterations are noticeable in the cluster measures with IASC.

To conclude the analysis, Figure 5 shows the timings of the eigenvector com-
putations of the clustering methods for the datasets. With HIV we can make a
comparison with Ning and one can see that a cost of the method is a computa-
tion time which exceeds that of exact. IASC has a cumulative computation time

21



0 20 40 60 80 100 120 140
Graph no.

0.55

0.60

0.65

0.70

0.75

0.80

0.85

M
o
d
u
la
ri
ty

IASC 50
IASC 100
Exact
Ning

Nyst 1000
Nyst 1500
RSVD 1000
RSVD 1500

(a) HIV modularity

0 20 40 60 80 100 120 140
Graph no.

0.05

0.10

0.15

0.20

0.25

0.30

0.35

k-
w
a
y
 n
o
rm

a
lis
e
d
 c
u
t

IASC 50
IASC 100
Exact
Ning

Nyst 1000
Nyst 1500
RSVD 1000
RSVD 1500

(b) HIV k-way normalised cut

0 20 40 60 80 100
Graph no.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
o
d
u
la
ri
ty

IASC 100
IASC 200
IASC 500
Exact

Nyst 2000
Nyst 5000
RSVD 2000
RSVD 5000

(c) Citation modularity

0 20 40 60 80 100
Graph no.

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

k-
w
a
y
 n
o
rm

a
lis
e
d
 c
u
t

IASC 100
IASC 200
IASC 500
Exact

Nyst 2000
Nyst 5000
RSVD 2000
RSVD 5000

(d) Citation k-way normalised cut

0 20 40 60 80 100
Graph no.

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

M
o
d
u
la

ri
ty

IASC 100
IASC 200
IASC 500
Exact

Nyst 2000
Nyst 5000
RSVD 2000
RSVD 5000

(e) Bemol modularity

0 20 40 60 80 100
Graph no.

0.55

0.60

0.65

0.70

0.75

0.80

0.85

k-
w
a
y
 n
o
rm

a
lis
e
d
 c
u
t

IASC 100
IASC 200
IASC 500
Exact

Nyst 2000
Nyst 5000
RSVD 2000
RSVD 5000

(f) Bemol k-way normalised cut

Figure 4: The performance of the clustering methods on the sequences of chang-
ing graphs.

22



0 20 40 60 80 100 120 140
Graph no.

10-2

10-1

100

101

102

103

C
u
m
u
la
ti
v
e
 c
o
m
p
u
ta
ti
o
n
 t
im

e
 (
s)

IASC 50
IASC 100
Exact
Ning

Nyst 1000
Nyst 1500
RSVD 1000
RSVD 1500

(a) HIV

0 20 40 60 80 100
Graph no.

10-1

100

101

102

103

104

105

C
u
m
u
la
ti
v
e
 c
o
m
p
u
ta
ti
o
n
 t
im
e
 (
s)

IASC 100
IASC 200
IASC 500
Exact

Nyst 2000
Nyst 5000
RSVD 2000
RSVD 5000

(b) Citation

0 20 40 60 80 100
Graph no.

101

102

103

104

105

C
u
m

u
la

ti
v
e
 c

o
m

p
u
ta

ti
o
n
 t
im

e
 (
s)

IASC 100
IASC 200
IASC 500
Exact

Nyst 2000
Nyst 5000
RSVD 2000
RSVD 5000

(c) Bemol

Figure 5: The cumulative times taken by the eigenvector computations of the
clustering methods.

of 62.0s, exact took 256.4s compared to 382.1s for Ning. With the Bemol and
Citation datasets the Nyström approach costs the least in terms of computa-
tion when m = 2000 however exceeds the time taken for exact when m = 5000.
In this case the time is dominated by the eigen-decomposition of a matrix in
R

m×m. Of note also is that RSVD with r = 5000 exceeds the time required for
exact yet this was the number of random projections required for competitive
performance. IASC improves over exact over the whole sequence of graphs as
one does not recompute the eigenvectors at every iteration. Notice that the
“staircase” effect in the IASC curves correspond the computation of the exact
eigenvectors. Observe that on Bemol, IASC ℓ = 200 takes 4,956 seconds in total
for eigenvector computations versus 31,182 for exact, a speedup factor of 6.29
for a similar cluster quality. The equivalent improvement is 2.26 on Citation.

To emphasise the conditions in which IASC can be effective, we again cluster
over the Citation data however graphs are recorded at 5 day intervals. The
parameters are identical to those used above except we set R = 50. Figure
6 shows the resulting clustering qualities and eigenvector computation timings
for IASC and RSVD. As one might expect we observe that RSVD is competitive
to IASC, ℓ = 100, when r = 5000, and only competitive with r = 2000 until
approximately the 400th graph. The timings however show that IASC is faster

23



0 100 200 300 400 500 600
Graph no.

0.15

0.20

0.25

0.30

0.35

0.40

k-
w

a
y
 n

o
rm

a
lis

e
d
 c

u
t

IASC 100
IASC 200
IASC 500

RSVD 2000
RSVD 5000

(a) k-way normalised cut

0 100 200 300 400 500 600
Graph no.

10-1

100

101

102

103

104

105

106

C
u
m

u
la

ti
v
e
 c

o
m

p
u
ta

ti
o
n
 t
im

e
 (
s)

IASC 100
IASC 200
IASC 500

RSVD 2000
RSVD 5000

(b) Cumulative time

Figure 6: The k-way normalised cut and cumulative times taken by the eigen-
vector computations on Citation using 5 day intervals.

than RSVD for all values of ℓ over all graphs. Furthermore, when ℓ = 100 IASC

took 9640 seconds compared to 32,006 and 158,510 seconds with RSVD using r
values for 2000 and 5000 respectively.

8 Discussion

We have presented a novel incremental method for spectral graph clustering
which updates the eigenvectors of the Laplacian in a computationally efficient
way. Such an algorithm is useful for finding clusterings in time evolving graphs
such as biological and social networks, and the Internet. A key part of the
algorithm is a general way to approximate the first k eigenvectors of a perturbed
symmetric matrix given the eigenvectors of the original matrix. The resulting
clustering algorithm, IASC, can be easily implemented using a standard linear
algebra library.

We analysed IASC in both theoretical and empirical respects. Using pertur-
bation theory, we showed when the canonical angles between the real and ap-
proximate subspaces generated by our update algorithm are close. Furthermore,
IASC is examined empirically relative to the computation of exact eigenvectors
for each graph, the method of Ning et al., randomised SVD, and the Nyström
approach. On 2 toy and 3 real datasets we show that IASC can often match
the cluster accuracy of the exact approach using a small fraction of the total
number of eigenvectors and at a much reduced computational cost.

This work has opened up several perspectives for further study. The first
is the analysis of the update of eigenvectors for a modularity matrix and other
cluster quality criteria. As we have shown, the quality of the updates would
depend on the spectrum of the matrices in question. Another interesting line of
research is the issue of how to choose the number of clusters in the time evolving
graphs.

24



References

[1] B. Auvert, H. de Arazoza, S. Clémençon, J. Perez, and R. Lounes. The
HIV/AIDS epidemic in Cuba: description and tentative explanation of its
low HIV prevalence. BMC Infectious Diseases, 7(30), November 2007.

[2] M.W. Berry, S.T. Dumais, and G.W. O’Brien. Using linear algebra for
intelligent information retrieval. SIAM review, 37(4):573–595, 1995.

[3] F.R.K. Chung. Spectral graph theory. Amer Mathematical Society, 1997.

[4] C. Davis and W.M. Kahan. The rotation of eigenvectors by a perturbation.
iii. SIAM Journal on Numerical Analysis, 7(1):1–46, 1970.

[5] Charanpal Dhanjal, Romaric Gaudel, and Stéphan Clémençon. Incremental
spectral clustering with the normalised laplacian. In 3rd NIPS Workshop
on Discrete Optimization in Machine Learning, 2011.

[6] P. Drineas, R. Kannan, and M.W. Mahoney. Fast monte carlo algorithms
for matrices ii: Computing a low-rank approximation to a matrix. SIAM
Journal on Computing, 36(1):158–183, 2006.

[7] P. Drineas and M.W. Mahoney. On the nyström method for approximating
a gram matrix for improved kernel-based learning. The Journal of Machine
Learning Research, 6:2153–2175, 2005.

[8] Paul Erdős and Alfréd Rényi. On random graphs. Publicationes Mathe-
maticae, 6:290–297, 1959.

[9] G.W. Flake, R.E. Tarjan, and K. Tsioutsiouliklis. Graph clustering and
minimum cut trees. Internet Mathematics, 1(4):385–408, 2004.

[10] S. Fortunato. Community detection in graphs. Physics Reports, 486(3-
5):75–174, 2010.

[11] C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spectral grouping using
the nystrom method. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 26(2):214–225, 2004.

[12] J. Gehrke, P. Ginsparg, and J. Kleinberg. Overview of the 2003 kdd cup.
ACM SIGKDD Explorations Newsletter, 5(2):149–151, 2003.

[13] W.H. Haemers and E. Spence. Enumeration of cospectral graphs. European
Journal of Combinatorics, 25(2):199–211, 2004.

[14] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding struc-
ture with randomness: Probabilistic algorithms for constructing approxi-
mate matrix decompositions. SIAM review, 53(2):217–288, 2011.

[15] Harold Hotelling. Analysis of a complex of statistical variables into principle
components. Journal of Educational Psychology, 24:417–441 and 498–520,
1933.

25



[16] T. Kong, Y. Tian, and H. Shen. A fast incremental spectral clustering for
large data sets. In Parallel and Distributed Computing, Applications and
Technologies (PDCAT), 2011 12th International Conference on, pages 1–5.
IEEE, 2011.

[17] S. Kumar, M. Mohri, and A. Talwalkar. Sampling techniques for the
nyström method. In Conference on Artificial Intelligence and Statistics,
pages 304–311, 2009.

[18] James T. Kwok and Zhao Haitao. Incremental eigen-decomposition . In
Proceedings of the International Conference on Artificial Neural Networks
(ICANN), pages 270–273, 2003.

[19] R.B. Lehoucq, D.C. Sorensen, and C. Yang. ARPACK users’ guide: so-
lution of large-scale eigenvalue problems with implicitly restarted Arnoldi
methods, volume 6. Siam, 1998.

[20] M. Li, X.C. Lian, J.T. Kwok, and B.L. Lu. Time and space efficient spectral
clustering via column sampling. In Computer Vision and Pattern Recogni-
tion (CVPR), 2011 IEEE Conference on, pages 2297–2304. IEEE, 2011.

[21] M. Mahdavi, T. Yang, and R. Jin. An improved bound for the nystrom
method for large eigengap. arXiv preprint arXiv:1209.0001, 2012.

[22] M. E. J. Newman. Fast algorithm for detecting community structure in
networks. Physical Review E, 69(6):066133, Jun 2004.

[23] M.E.J. Newman. Modularity and community structure in networks. Pro-
ceedings of the National Academy of Sciences, 103(23):8577–8582, 2006.

[24] M.E.J. Newman and M. Girvan. Finding and evaluating community struc-
ture in networks. Physical review E, 69(2):026113, 2004.

[25] A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and
an algorithm. In Advances in Neural Information Processing Systems 14:
Proceeding of the 2001 Conference, pages 849–856, 2001.

[26] H. Ning, W. Xu, Y. Chi, Y. Gong, and T. Huang. Incremental spectral
clustering with application to monitoring of evolving blog communities. In
SIAM Int. Conf. on Data Mining. Citeseer, 2007.

[27] H. Ning, W. Xu, Y. Chi, Y. Gong, and T.S. Huang. Incremental spectral
clustering by efficiently updating the eigen-system. Pattern Recognition,
43(1):113–127, 2010.

[28] G.W. O’Brien. Information management tools for updating an svd-encoded
indexing scheme. Master’s thesis, The University of Knoxville, Tennessee,
Knoxville, TN, 1994.

[29] W. Rand. Objective criteria for the evaluation of clustering methods. Jour-
nal of the American Statistical Association, 66(336):846–850, 1971.

26



[30] Emile Richard, Nicolas Baskiotis, Theodoros Evgeniou, and Nicolas Vay-
atis. Link discovery using graph feature tracking. In J. Lafferty, C. K. I.
Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta, editors, Proceedings
of the 23rd Annual Conference on Neural Information Processing Systems
(NIPS’10), pages 1966–1974, 2010.

[31] V. Satuluri and S. Parthasarathy. Scalable graph clustering using stochastic
flows: applications to community discovery. In Proceedings of the 15th
ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 737–746. ACM, 2009.

[32] S.E. Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64,
2007.

[33] Bernhard Schölkopf, Alex J. Smola, and Klaus-Robert Müller. Nonlinear
component analysis as a kernel eigenvalue problem. Neural Computation,
10(5):1299–1319, 1998.

[34] J. Shi and J. Malik. Normalized cuts and image segmentation. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 22(8):888–905,
2000.

[35] G.W. Stewart and J. Sun. Matrix perturbation theory, volume 175. Aca-
demic press New York, 1990.

[36] C. Valgren, T. Duckett, and A. Lilienthal. Incremental spectral clustering
and its application to topological mapping. In Robotics and Automation,
2007 IEEE International Conference on, pages 4283–4288. IEEE, 2007.

[37] U. Von Luxburg. A tutorial on spectral clustering. Statistics and Comput-
ing, 17(4):395–416, 2007.

[38] H. Weyl. Das asymptotische verteilungsgesetz der eigenwerte linearer par-
tieller differentialgleichungen (mit einer anwendung auf die theorie der
hohlraumstrahlung). Mathematische Annalen, 71(4):441–479, 1912.

[39] Christopher K. I. Williams and Matthias Seeger. Using the Nyström
method to speed up kernel machines. In Todd K. Leen, Thomas G. Di-
etterich, and Volker Tresp, editors, Advances in Neural Information Pro-
cessing Systems 13, pages 682–688, Cambridge, MA, 2000. MIT Press.

[40] D. Yan, L. Huang, and M.I. Jordan. Fast approximate spectral cluster-
ing. In Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 907–916. ACM, 2009.

[41] Jeong-Min Yun and Seungjin Choi. Nyström approximations for scalable
face recognition: A comparative study. In Neural Information Processing,
pages 325–334. Springer, 2011.

[42] H. Zha and H.D. Simon. On updating problems in latent semantic indexing.
SIAM Journal on Scientific Computing, 21:782, 1999.

[43] H. Zhao, P.C. Yuen, and J.T. Kwok. A novel incremental principal compo-
nent analysis and its application for face recognition. Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on, 36(4):873–886,
2006.

27


