
https://helda.helsinki.fi

Global health burden of ambient PM2.5 and the contribution of

anthropogenic black carbon and organic aerosols

Chowdhury, Sourangsu

2022-01-15

Chowdhury , S , Pozzer , A , Haines , A , Klingmueller , K , Münzel , T , Paasonen , P ,

Sharma , A , Venkataraman , C & Lelieveld , J 2022 , ' Global health burden of ambient

PM2.5 and the contribution of anthropogenic black carbon and organic aerosols ' ,

Environment International , vol. 159 , 107020 . https://doi.org/10.1016/j.envint.2021.107020

http://hdl.handle.net/10138/342183

https://doi.org/10.1016/j.envint.2021.107020

cc_by_nc_nd

publishedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.



Environment International 159 (2022) 107020

Available online 8 December 2021
0160-4120/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Global health burden of ambient PM2.5 and the contribution of 
anthropogenic black carbon and organic aerosols 

Sourangsu Chowdhury a,*, Andrea Pozzer a, Andy Haines b, Klaus Klingmüller a, 
Thomas Münzel c,d, Pauli Paasonen e, Arushi Sharma f, Chandra Venkataraman f, 
Jos Lelieveld a,g,* 

a Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, 55128 Mainz, Germany 
b Centre on Climate Change and Planetary Health, Department of Public Health, Environments and Society and Department of Population Health, London School of 
Hygiene and Tropical Medicine, London WC1 9SH, United Kingdom 
c University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany 
d German Center for Cardiovascular Research, 55131 Mainz, Germany 
e Institute for Atmospheric and Earth System Research (INAR) / Physics, Faculty of Science, University of Helsinki, 00560 Helsinki, Finland 
f Interdisciplinary Programme in Climate Studies, and Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India 
g Climate and Atmosphere Research Center, The Cyprus Institute, 1645 Nicosia, Cyprus   

A R T I C L E  I N F O   

Handling Editor: Xavier Querol  

Keywords: 
PM2.5 
BC 
aSOA 
POA 
Excess mortality 
Source sectors 

A B S T R A C T   

Chronic exposure to fine particulate matter (PM2.5) poses a major global health risk, commonly assessed by 
assuming equivalent toxicity for different PM2.5 constituents. We used a data-informed global atmospheric model 
and recent exposure–response functions to calculate the health burden of ambient PM2.5 from ten source cate
gories. We estimate 4.23 (95% confidence interval 3.0–6.14) million excess deaths annually from the exposure to 
ambient PM2.5. We distinguished contributions and major sources of black carbon (BC), primary organic aerosols 
(POA) and anthropogenic secondary organic aerosols (aSOA). These components make up to ~20% of the total 
PM2.5 in South and East Asia and East Africa. We find that domestic energy use by the burning of solid biofuels is 
the largest contributor to ambient BC, POA and aSOA globally. Epidemiological and toxicological studies indicate 
that these compounds may be relatively more hazardous than other PM2.5 compounds such as soluble salts, 
related to their high potential to inflict oxidative stress. We performed sensitivity analyses by considering these 
species to be more harmful compared to other compounds in PM2.5, as suggested by their oxidative potential 
using a range of potential relative risks. These analyses show that domestic energy use emerges as the leading 
cause of excess mortality attributable to ambient PM2.5, notably in Asia and Africa. We acknowledge the un
certainties inherent in our assumed enhanced toxicity of the anthropogenic organic and BC aerosol components, 
which suggest the need to better understand the mechanisms and magnitude of the associated health risks and 
the consequences for regulatory policies. However our assessment of the importance of emissions from domestic 
energy use as a cause of premature mortality is robust to a range of assumptions about the magnitude of the 
excess risk.   

1. Introduction 

The long-term exposure to ambient PM2.5 has been associated with a 
multitude of detrimental effects on human health, including excess 
deaths from cardiovascular diseases, cerebrovascular diseases, acute 
lower respiratory-tract infection, diabetes, lung cancer, adverse birth 
outcomes and neonatal diseases (Cohen et al., 2017; Lelieveld et al., 
2015; Murray et al., 2020; Schraufnagel et al., 2019a, 2019b). The 

disease risk following exposure to PM2.5 is influenced by multiple factors 
including size, mass and composition of PM2.5 (Schraufnagel et al., 
2019a, 2019b). Although the biological mechanisms are not yet fully 
elucidated, evidence suggests that inhalation of pro-oxidant chemical 
components of PM2.5, eg. anthropogenic secondary aerosols (aSOA), 
black carbon (BC) and primary organic aerosols (POA) (the latter two 
involving primary ultrafine combustion particles that can carry noxious 
species like polycyclic aromatic hydrocarbons), induce oxidative stress 
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and inflammation, leading to respiratory and cardiovascular diseases 
(Bates et al., 2019; Daellenbach et al., 2020; Huang et al., 2012; Liu 
et al., 2014; Weichenthal et al., 2016). Recent studies have found aSOA 
to be significantly more toxic compared to other components in PM2.5 
(Bates et al., 2019; Liu et al., 2014; Puthussery et al., 2020). Daellenbach 
and colleagues also found that the oxidative potential of aSOA, mainly 
from ageing of residential biomass burning emissions, to be at least three 
times higher than the oxidative potential of biogenic SOA and secondary 
inorganic aerosols. Other studies showed similarly enhanced health ef
fects for BC and POA, associated with combustion processes (Bates et al., 
2019; Niranjan and Thakur, 2017). Transition metals like soluble copper 
and iron (e.g. co-emitted by coal burning), although generally present at 
much lower concentrations, may have relatively high oxidative poten
tial compared to the organic species (Kajino et al., 2021; Park et al., 
2018). While clinical studies on mechanisms and impacts of chronic 
exposure to components of PM2.5 are still sparse, toxicological and 
epidemiological findings suggest that associations between adverse 
health effects and exposure to PM2.5 are significantly stronger for 
anthropogenic carbonaceous components than total PM2.5 mass (Gra
hame et al., 2014; Janssen et al., 2011; Lippmann et al., 2013; Mag
alhaes et al., 2018; Yang et al., 2021). 

In spite of new insights into the major sources of PM2.5, which can 
vary greatly by region (Health Effects Institute, 2019; Lelieveld et al., 
2015; Silva et al., 2016), little is known about the global distribution of 
the potentially more harmful components (anthropogenic BC and or
ganics) of PM2.5 and their sources. Policies aiming at reducing the total 
PM2.5 mass by targeting source sectors, not accounting for the specific 
emissions and toxicity of its components, may not optimally reduce the 
health burden caused by air pollution. We used a global atmospheric 
chemistry - general circulation model (Joeckel et al., 2010, 2005) to 
simulate near-surface concentrations of PM2.5 and exposure–response 
functions for defined health outcomes (Murray et al., 2020) to estimate 
excess mortality among adults (>25 years), children (<5 years) and 
neonates (0–27 days). We expand upon our earlier work (Lelieveld et al., 
2015), where we determined the impact of seven source sectors on 
excess deaths associated with exposure to PM2.5, by using an updated 
emission inventory (Hoesly et al., 2018; Venkataraman et al., 2020), an 
improved version of the atmospheric chemistry model to identify the 
health impacts of ten source categories, and for the first time explicitly 
compute the exposure to BC, aSOA and POA and their major sources. 
Considering the uncertainties about the magnitude of the increased ef
fect size of these anthropogenic organic aerosols compared with other 
ambient PM2.5 pollution it is important to assess the policy implications 
of different plausible assumptions about relative toxicity. We performed 
sensitivity studies using a range of relative risk estimates based on the 
evidence of increased toxicity, including the high oxidative potential of 
the carbonaceous components of PM2.5, that reflect the uncertainties in 
the magnitude of the effect. 

2. Methods 

2.1. Model setup and emission inventory 

We used the ECHAM/MESSy atmospheric chemistry (EMAC) general 
circulation model at T106 horizontal spectral resolution (about 1.1◦×

1.1◦ latitude × longitude) with 31 vertical hybrid terrain-following 
pressure levels up to 10 hPa in the lower stratosphere (Joeckel et al., 
2016, 2005; Kerkweg et al., 2006; Lelieveld et al., 2015; Pozzer et al., 
2012; Sander et al., 2005, p. 2). The core atmospheric model employed 
is the upgraded 5th generation European Centre Hamburg (ECHAM5) 
general circulation model. EMAC includes sub-models that represent 
tropospheric and stratospheric processes and their interaction with 
oceans, land and human influences. We used the Modular Earth Sub
model System (MESSy, v.2.54 (Beer et al., 2020; Joeckel et al., 2010)) to 
link submodels that describe emissions, atmospheric chemistry, aerosol 
and deposition processes. The gas phase and heterogeneous chemistry 

was simulated through the MECCA submodel (Sander et al., 2019, 
2011), which accounts for the photochemical oxidation of natural and 
anthropogenic emissions, as well as for volatile organic compounds. The 
GMXe submodel (Pringle et al., 2010) was used to simulate the gas/ 
aerosol portioning and the microphysical processes in aerosols. GMXe 
also computes the aerosol size distribution into four hydrophilic and 
three hydrophobic modes. 

The hydrophilic mode encompasses the entire aerosol size spectrum 
(i.e. nucleation, Aitken, accumulation and coarse) whereas the hydro
phobic mode does not consider the nucleation mode. For this study, we 
updated the GMXe submodel by accounting for black and organic carbon 
in the accumulation and Aitken modes according to source sectors 
following a recent study (Paasonen et al., 2016). The fractions of black 
and organic carbon emissions in these modes by anthropogenic source 
sectors are presented in Table S1. The ORACLE submodel (Tsimpidi 
et al., 2018, 2014) was used to simulate the atmospheric evolution and 
composition of the organic aerosols. It computes the contributions of 
POA, aSOA and biogenic SOA to the total organic aerosols (OA) by ac
counting for emissions from combustion products from biofuel, fossil 
fuel, biomass burning and other biogenic sources. The EMAC global 
simulations were nudged towards ERA-Interim meteorological rean
alysis data, and performed for two years: 2014 and 2015, with the first 
year dismissed as spin-up for the model. 

We used the monthly varying Community Emissions Data System 
(CEDS) anthropogenic emission inventory (Hoesly et al., 2018) at 0.5◦×

0.5◦ resolution for the primary emitted species like SO2 (sulfur dioxide), 
NOx (oxides of nitrogen), CO (carbon monoxide), BC (black carbon), OC 
(organic carbon), NH3 (ammonia) and speciated NMVOCs (non- 
methane volatile organic compounds). For India, we augmented the 
CEDS anthropogenic emissions data with a regional emission inventory 
(Venkataraman et al., 2020). Biomass burning emissions were obtained 
from the Global Fire Assimilation System (GFAS) inventory (Kaiser et al., 
2012). The emission data were then pre-processed by distributing them 
over six emission heights as described elsewhere (Pozzer et al., 2009). 
Concentrations of ambient PM2.5, BC, POA and aSOA were first esti
mated by simulating EMAC with all emission sources, and then the ten 
source sectors were removed one at a time, and the results linearized, to 
determine their contribution to ambient PM2.5, BC, POA and aSOA, with 
the caveat that non-linearities in atmospheric chemistry can cause de
viations from an additive response. Comparison of aerosol optical depth 
(AOD) and concentrations of PM2.5, BC and OA simulated by EMAC with 
those from satellite retrievals, in-situ measurements and reanalyses data 
are discussed in SI Text. 

The sectors considered are (a) land transportation (TRA) which in
cludes emissions from road transportation, railways and other non-road 
transport, (b) industries (IND) which includes emissions from iron and 
steel, paper and pulp, chemical, food, solvent and other manufacturing, 
oil refineries and fuel production, (c) domestic energy use (DOM), i.e. 
the burning of solid fuels (biofuels) in households for cooking, lighting, 
heating and the use of liquid fuels in distributed generators, (d) energy 
generation (ENE) by power plants, (e) agricultural soils (AGR) that cause 
ammonia emissions from manure and fertilizer application and culti
vation practices, (f) agricultural waste and residue burning (AWB), (g) 
emissions from ships and other water navigation (SHP), (h) biomass 
burning (BMB), which includes tropical, savanna, middle and high 
latitude forest fires, deforestation, peat fires, savanna and shrub fires 
and (i) biogenic and natural emissions from soils and plants, natural dust 
and sea salt (NAT). We note that BMB, which is a major emitter of black 
and organic carbon (2.1 teragram/year of BC and 19 teragram/year of 
organic carbon, which is ~ 25% of the total emission of black and 
organic carbon globally) are not necessarily located adjacent to major 
conurbations, while DOM, TRA, IND, ENE and AWB are mostly collo
cated with the population centers. The modelling of transition metals 
and their health impacts is beyond the scope of the current analysis, but 
we suggest that their role in the oxidative potential of PM2.5 is addressed 
in future work. 

S. Chowdhury et al.                                                                                                                                                                                                                            



Environment International 159 (2022) 107020

3

2.2. Estimation of excess mortality 

Calculating the burden of disease due to exposure to ambient PM2.5 
(Chowdhury et al., 2020; Lelieveld et al., 2015; Lelieveld et al., 2019; 
Lelieveld et al., 2020; Pandey et al., 2020) is achieved using exposure 
(dose) response relationships (Burnett et al., 2018, 2014; Murray et al., 
2020) which assume that the harmfulness of PM2.5 is determined solely 
by the inhaled mass of PM2.5 and not by its composition. We use the 
recently formulated MR-BRT (meta-regression—Bayesian, regularized, 
trimmed) exposure–response function for the most recent Global Burden 
of Disease (Murray et al., 2020) to estimate the age-dependent relative 
risk (RR) from exposure to ambient air pollution. MR-BRT includes 
cause-specific risk expressions for ischemic heart disease, stroke 
(ischemic and hemorrhagic), chronic obstructive pulmonary disease, 
lung cancer and Type II diabetes among adults (population with age >
25 years), acute lower respiratory tract infection among children (pop
ulation under the age of 5). 

In addition to the risk expressions for adults and children, the MR- 
BRT also includes risk functions for excess mortality from low-birth 
weight and short gestation among neonates (population with age 
0–27 days). The outcomes of low birth weight and short gestation 
include increased risk of mortality due to diarrheal diseases, upper 
respiratory tract infections, otitis media, meningitis, encephalitis, 
neonatal preterm birth, neonatal encephalopathy due to birth asphyxia 
and trauma, neonatal sepsis and other neonatal infections, neonatal 
jaundice, and other neonatal disorders. 

The MR-BRT splines were fitted to relative risk and PM2.5 exposure 
estimates from studies of ambient PM2.5, household solid fuel use and 
secondhand smoking. Unlike the Integrated Exposure-Response func
tions (IER, (Burnett et al., 2014; Stanaway et al., 2018)), the MR-BRT 
functions were built by including multiple recent studies in high expo
sure settings (Hystad et al., 2019; Li et al., 2018; Yang et al., 2018; Yin 
et al., 2017; Yusuf et al., 2020) and excluding the active smoking-based 
studies. The excess mortality burden (M(γt , age, disease)) over a 5x5 km 
global grid, due to exposure to total concentration of ambient PM2.5 (γt, 
where γ is the concentration and ‘t’ denotes ‘total PM2.5

′), was estimated 
by age and disease category, as in our earlier studies (Chowdhury et al., 
2020; Lelieveld et al., 2019; Lelieveld et al., 2020) by 

M(γt,age,disease)=P(age)×BM(age,country,disease)

×
RR(γt,age,disease)− 1

RR(γt,age,disease)
(1)  

where, RR (γt,age,diseases) was obtained using MR-BRT functions for all 
diseases by age. For IHD and stroke, age specific RRs are obtained using 
MR-BRT, for LC, T2-DM and COPD uniform RRs (γt,diseases) were used 
across all age groups among adults. BM (age,country,diseases) is the 
baseline mortality rate per 100,000 population, obtained from the GBD 
(http://ghdx.healthdata.org/gbd-results-tool) for all countries and kept 
uniform within a country at 5x5km resolution by age and disease. P 
(age) is the exposed population in a grid by age; the age distributions at 
5-year intervals (adults > 25 years), 0–27 days for neonates and < 5 
years for children were obtained from the Global Burden of Disease 
(GBD) datasets (http://ghdx.healthdata.org/record/ihme-data/gbd-20 
19-population-estimates-1950–2019), merged with the SEDAC popula
tion data at about 5x5 km horizontal resolution to obtain the age-specific 
population (P(age)) at the 5x5 km grid. Excess mortality M(γt , age,
disease) for the total mass (t) of PM2.5 was estimated separately by age 
for adults (at 5 year intervals for population > 25 years), neonates and 
children (under 5 years of age). PM2.5, BC, POA and aSOA simulated by 
EMAC were statistically down-scaled, and all further analyses were 
performed at ~5 km spatial resolution. Subsequently, the results were 
aggregated and presented at the country level. For comparison, we also 
used the Global Exposure Mortality Model (GEMM (Burnett et al., 
2018)) to estimate age-dependent hazard ratio (relative risk) functions 
and excess mortality for exposure to PM2.5 for all non-communicable 

diseases (NCD) and lower respiratory infection (NCD + LRI) among 
adults (>25 years) and children (<5 years) to test the sensitivity of re
sults to different exposure–response functions. The GEMM exposur
e–response function and associated results are described in the SI Text. 

The exposure to ambient PM2.5 can result in a chronic oxidant/ 
antioxidant imbalance in the respiratory system, causing oxidative stress 
and inflammatory responses, with implications for the etiology of 
several common respiratory and cardiovascular diseases in humans. 
Oxidative stress might occur directly by inhalation of reactive oxygen 
species in PM2.5, or indirectly from their catalytic generation within the 
body upon inhalation of toxic PM2.5 compounds, eg. co-emitted by 
combustion sources. Recent studies have assessed the short-term expo
sure to aSOA, BC and POA to be significantly more hazardous than 
unpolluted desert dust, biogenic SOA and many inorganic species (Bates 
et al., 2019; Baumgartner et al., 2014; Cho et al., 2005; Chung et al., 
2006; Daellenbach et al., 2020; Fang et al., 2017; Lin and Yu, 2011; Park 
et al., 2018; Puthussery et al., 2020; Verma et al., 2015; Wang et al., 
2018), resulting from their enhanced oxidative potential. While aSOA is 
formed photochemically within the atmosphere, the primary BC and 
POA particles may carry harmful combustion products, including PAHs 
and transition metals (Bates et al., 2019; Charrier and Anastasio, 2011; 
Cho et al., 2005; Chung et al., 2006), to a large degree emitted in the 
ultrafine size mode (<100 nm), with the potential to directly translocate 
into the bloodstream upon inhalation (Miller et al., 2017). 

The difference between excess mortality associated with exposure to 
the total PM2.5 (γt) and (γt - γx), where, γ is the concentration and ×
=(BC,POA,aSOA) was attributed based on the exposure to species x. We 
note that, similar to the Integrated Exposure-Response function (IER)5 

and GEMM4, the MR-BRT was also formulated by assuming equal 
toxicity among the different constituents of PM2.5. With this assumption, 
we hypothesize that the toxicity increases with the inhaled dose (we 
assume inhaled dose ∝ exposure). Hence to assume a species x to be n 
times more toxic, the concentration of the species was multiplied by n 
and the concentrations of the remaining species in PM2.5 were decreased 
accordingly. The excess mortality (Mx(γx, γt , age, disease)) that can be 
attributed to species x being considered n times more toxic is written as 
in Eq. (2) 

Mx(γx, γt, age, disease) = M(γt, age, disease) − M(γt − (nγx), age, disease)
(2) 

The total excess mortality burden (M(γt , age, disease)) was prescribed 
to remain identical, while the sector attribution to PM2.5 related mor
tality burden changes, i.e. the sectors which contribute to excess mor
tality from species x amplifies by proportion of their contribution to 
Mx(γx, γt ,age,disease), compared to the other sectors. As there are limi
tred cohort studies of the long-term health burden from BC, POA and 
aSOA, based on recent evidence about their higher oxidative potential 
from toxicological studies and epidemiological findings of short-term 
health impacts, we assess the implications of assuming them to be 
more harmful compared to other PM2.5 species. Therefore we include 
five sensitivity tests: (a) we have assumed these anthropogenic carbo
naceous species to be about twice as hazardous per μg/m3 as other 
components of PM2.5 (2BSP) (b) 1p5BS BC and aSOA were assumed to be 
1.5 times (50%) more hazardous than the other species including POA, 
(c) 2BS - BC and aSOA were assumed to be twice (100%) as hazardous as 
the other species including POA, (d) 3BS - BC and aSOA were assumed to 
be three times (200%) as harmful as the other species including POA, 
and (e) 1p5BSP - BC, aSOA and POA were assumed to be 1.5 times (50%) 
more hazardous than the other species. Though we use the 2BSP 
assumption to discuss the relative health impacts based on recent toxi
cological and short-term epidemiological health impact studies, we 
emphasize that this should be further investigated in extended epide
miological cohort studies that link the exposure of different PM2.5 
components to chronic health outcomes. The present work does not 
provide evidence for the level of harmfulness of individual PM2.5 com
ponents, but illustrates the important role of differential toxicities in the 
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assessment of health effects as a basis for policy making. 

3. Results 

3.1. Excess mortality from ambient PM2.5 

We used the EMAC global atmospheric chemistry model (Joeckel 
et al., 2010, 2005; Lelieveld et al., 2015), evaluated against multiple 
measurement datasets, to simulate surface concentrations of PM2.5, 
organic aerosols and BC (SI Text, Fig. S1-S5). We estimate 4.23(95% 
confidence intervals 3.0–6.14) million excess deaths per year from 
exposure to ambient PM2.5 globally using the the MR-BRT (meta- 
regression—Bayesian, regularized, trimmed) splines which were also 
used in the most recent Global Burden of Disease (GBD) study (Murray 
et al., 2020), of which 92%, 5%, and 3% occur among adults, neonates 
and children, respectively (Fig. S6). Fig. 1 depicts the excess mortality 
burden from exposure to ambient PM2.5 by country. China (1.44 
(1.1–1.89 CI:95%) million) is estimated to have the highest annual 
excess mortality followed by India (0.85(0.63–1.19) million) and 
Pakistan (0.15(0.1–0.25) million). Table 1 lists the health burden among 
adults, neonates and children for the top ten countries ranked by total 
excess mortality. Results for all countries are presented in SI DataS1. 

We estimate that globally 91(66–126) adults per 100,000 and 49 
(23–111) neonates and children per 100,000 die prematurely each year 
from the exposure to ambient PM2.5, respectively (See Fig. S7 for results 
by country). Globally, ischemic heart disease (IHD(38%)) and stroke 
(32%) are the leading causes of death in adults followed by chronic 
obstructive pulmonary disease (COPD(15%)), lung cancer (LC(8%)) and 
type-2 diabetes mellitus (T2-DM(7%)). The distribution of excess mor
tality by adults, neonates and children can vary tremendously by 

country with a high proportion of neonatal and child mortality in 
emerging and middle income countries in Africa and South Asia (Fig. 1). 
For example, in the African countries Niger, Chad and Nigeria (SI 
DataS1), 59%, 55% and 54% of the total excess mortality occurs among 
children and neonates, and in India and Pakistan the corresponding 
percentages are 10% and 26%, respectively. India has the largest ab
solute excess neonatal and child mortality burden, accounting for 30% 
and 25% of the global total neonatal and child mortality from ambient 
air pollution, respectively. For China and high-income countries in 
North America, Western Europe, <1% of the total excess mortality from 
ambient PM2.5 occurs among children and neonates (SI DataS1,S2). Our 
global estimates for disease-specific causes agree with the recent GBD 
study (Murray et al., 2020), but are considerably lower than those by 
studies using the Global Exposure Mortality Model (GEMM) (Burnett 
et al., 2018; Chowdhury et al., 2020; Lelieveld et al., 2019; Lelieveld 
et al., 2020) to estimate excess mortality resulting from all NCDs. The 
estimates using GEMM is presented as sensitivity analysis (discussed in 
the SI Text). 

3.2. Source attribution 

We determined the relative contributions of ten source categories, 
using the updated EMAC model and applying the improved global 
emission inventory. The sectoral contributions indicate the potential 
health benefits from their phase-out (in terms of avoidable excess 
deaths). The ten countries with highest numbers of excess deaths 
attributable to ambient air pollution are listed in Table 1 along with the 
source sectors. DOM is the leading anthropogenic sector worldwide, 
accounting for about 20% of the total excess mortality burden from 
ambient air pollution (Fig. 2, Fig. S7). DOM is a large contributor to 

Fig. 1. Excess mortality due to the long-term exposure to ambient PM2.5. Pie charts for ten countries identified by their ISO codes are depicted: USA (United States of 
America), DEU (Germany), CHN (China), PHL (Philippines), IND (India), PAK (Pakistan), COD (Democratic Republic of Congo), NGA (Nigeria), BRA (Brazil), and 
MEX (Mexico). Pie charts depicting percentage total excess mortality among adults, neonates, and children are presented in Supplementary Data 1. Pie charts show 
the global distribution of excess mortality burden from stroke, ischemic heart disease (IHD), chronic obstructive pulmonary disease (COPD), lung cancer (LC), and 
type-2 diabetes mellitus (T2 DM) among adults (>25 years), acute lower respiratory tract infections (ALRI) in children (<5 years), and diseases related to preterm 
birth and low birth weight among neonates (0–27 days). Pie charts for all the countries are presented in SI Data 2. 
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ambient air pollution in populous countries of South Asia where solid 
fuel use in households is prevalent. In Nepal, Bangladesh and India DOM 
accounts for 34%, 30% and 27% of the mortality burden. It is also 
predominant in the African countries Rwanda (44%), Burundi (44%) 
and Nigeria (35%), for example. In countries where domestic solid fuel 
burning is important, the child and neonatal mortality from ambient air 
pollution is highest. In Europe and North America the contribution of 
DOM is typically around 15%, while in Germany and Poland contribu
tions are 19% and 26%, respectively. Fig. 2 depicts the sectoral contri
butions to ambient PM2.5 by country, and data for all countries are listed 
in SI DataS3. IND is the second largest contributor (nearly 12% globally) 
to ambient PM2.5 related excess mortality, with large contributions in 
East Asian countries such as China (20%), South Korea (20%) and 
Taiwan (21%). IND is also a large contributor in Europe and North 
America where it contributes > 8% to excess mortality from ambient air 
pollution. 

Fine particulate constituents formed through ammonia emissions 
from AGR account for>11% of the global mortality burden (Fig. S8), 
being a major source in Korea and most of Europe (where AGR is the 
leading contributor). In China and India, AGR accounts for 20% and 7% 
of the total mortality burden, respectively. ENE is also a main contrib
utor to the ambient PM2.5 related mortality burden (>11% globally). In 
the East Asian countries Taiwan, Japan, Korea and China its contribu
tion is > 16%. ENE is the largest anthropogenic source in the USA (15%). 
NAT is the largest contributor worldwide, accounting for 33% of the 
total deaths from ambient PM2.5 exposure. NAT is the leading source in 
North African countries where desert dust levels are high. Our calcula
tions suggest that TRA is an intermediate contributor to excess mortality 
burden (5% globally); however, in Europe and North America it ac
counts for>10%. On the other hand, nitrogen oxides from traffic are a 
main cause of pediatric asthma (Chowdhury et al., 2021) and strongly 

contribute to tropospheric ozone formation, not considered here. BMB is 
a relatively small contributor globally (5%), but with major local health 
impacts. It is the leading source in Central and East African and South- 
East Asian countries where it contributes > 40% to the mortality 
burden. BMB is also a large contributor in South American countries. 
SHP, AWB and WST together account for ~2% of the global excess 
mortality from ambient PM2.5 exposure. In Scandinavian countries SHP 
accounts for > 12% of the excess mortality. 

3.3. Black carbon 

Global population-weighted mean BC exposure was estimated at 1.4 
µg/m3, with the highest level in China (2.8 µg/m3), South Korea (2.7 µg/ 
m3), Nigeria (2.3 µg/m3) and India (2.0 µg/m3). In high-income coun
tries in North America and Europe, the population-weighted BC expo
sure is relatively lower (<0.5 µg/m3). The spatial distribution of global 
BC concentrations from the EMAC model is depicted in Fig. 3A. Globally, 
out of 1,000 excess deaths from exposure to PM2.5, 35(24–49) are 
attributed to exposure to BC alone. We estimate about 150,000 
(106,000–214,000) excess deaths per year from exposure to BC under 
assumption of no increase in toxicity compared with undifferentiated 
PM2.5, 94% of which occurs among adults and 3% each among neonates 
and children. About 38% and 22% of the global excess deaths from BC 
exposure occur in China and India, respectively (see also Table S2 and 
Fig. 4A, and data for all countries in SI DataS4). The rate was estimated 
to be considerably higher in Argentina and South Africa, being 94 
(60–151) and 83(55–132), respectively per 1,000 deaths from PM2.5 
exposure. For China and India the corresponding rates are 40(30–52) 
and 38(28–53), respectively. DOM and TRA were estimated to be the 
largest sources of BC (Fig. 4B, S9, Table S2, sector contributions by 
country are listed in SI Data S4) which agrees with previous findings 

Table 1 
Excess annual adult, neonatal and child mortality for the top ten countries, ranked by total mortality burden, and sector contributions from BMB(biomass burning), 
AWB(agricultural waste burning), IND(industries), ENE(energy), DOM(domestic), SHI(ships), WST(waste incineration), TRA(transportation), AGR(agricultural soils) 
and NAT(natural and biogenic) to total excess mortality associated with exposure to ambient PM2.5, the second row for each country shows results for the 2BSP 
scenario.  

Country Excess Mortality Sector contributions  
Burden (95 %CI) * (%) 

Adults Neonates Children BMB AWB IND ENE DOM SHI WST TRA AGR NAT 

China 14.31(10.95–18.74) 6.8(3.3–14) 4.5(3.1–6.7) 3 <1 20 17 22 <1 <1 4 20 13     
4 1 22 21 35 1 <1 5 7 5 

India 7.66(5.82–10.1) 56.5(24.1–135.8) 33.1(21.2–51.8) 1 3 10 9 27 <1 <1 5 7 38     
1 5 12 10 46 <1 <1 7 3 16 

Pakistan 1.15(0.83–1.61) 27.4(11.1–67.6) 13.1(8.2–20.4) <1 2 3 1 16 <1 <1 3 3 70     
<1 4 4 2 25 <1 <1 4 3 58 

Indonesia 1.13(0.78–1.67) 3.2(1.1–9.9) 1.1(0.6–1.9) 33 <1 5 7 25 1 <1 10 3 17     
38 <1 5 7 36 1 <1 12 <1 <1 

Russian 1.15(0.8–1.64) 0.2(0.09–0.7) 0.12(0.07–0.18) 8 3 8 17 14 1 <1 5 11 33 
Federation    12 4 8 18 19 1 <1 7 8 24 
Nigeria 0.42(0.28–0.62) 21.9(9.3–52.3) 28.1(17.3–45.5) 7 <1 2 <1 35 <1 <1 2 11 53     

11 1 2 1 62 <1 <1 3 <1 21 
Bangladesh 0.81(0.54–1.24) 5.1(1.7–15.6) 3.1(1.8–5.2) 2 <1 9 16 30 <1 <1 8 13 20     

4 1 10 17 53 <1 <1 10 2 3 
USA 0.85(0.58–1.24) 0.5(0.2–1.4) 0(0–0.05) 12 <1 10 15 13 3 <1 11 12 24     

18 1 11 16 20 3 <1 13 6 12 
Egypt 0.73(0.53–1.01) 0.8(0.3–2.9) 2.4(1.4–4) <1 <1 2 5 3 <1 <1 4 3 83     

<1 <1 2 5 4 1 <1 6 2 79 
Japan 0.48(0.34–0.70) 0.03(0–0.08) 0(0–0) 5 <1 20 20 6 2 <1 8 18 19     

6 1 21 24 9 3 <1 9 13 14 
EU-27# 1.8(1.2–2.5) 0.4(0.1–1.1) 0.07(0.04–0.1) 1 

2 
<1 
<1 

6 
7 

12 
14 

19 
27 

4 
4 

<1 
<1 

10 
12 

18 
12 

27 
20 

Rest of the World 8.5(5.7–12.7) 72(25–219) 51(29–90) 10 
14 

<1 
1 

6 
7 

7 
7 

13 
19 

1 
1 

<1 
<1 

4 
6 

5 
3 

53 
41 

World 39(28.3–54.1) 195.5(77–521) 136.5(83–226) 5 
7 

1 
2 

12 
13 

11 
13 

20 
32 

1 
1 

<1 
<1 

5 
6 

11 
5 

33 
20 

*Age-adjusted adult excess mortality x100,000. Neonatal and child excess mortality x 1,000. 
#EU-27 includes Austria, Belgium, Bulgaria, Croatia, Cyprus, Czechia, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, 
Luxemburg, Malta, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, and Sweden. 
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(Anenberg et al., 2011; Janssen et al., 2011; Li et al., 2016), accounting 
for 62% and 18%, respectively, of the global excess mortality (ie. out of 
35 (24–49). BC related excess deaths per 1,000 due to PM2.5 exposure, 
28 (19–39) can be attributed to these two sectors globally. DOM was 
found to account for 63% and 76% of the total BC related excess deaths 
in China and India, respectively, while the contribution of TRA is 13% in 
both these countries. 

In the UK and the USA, TRA is the largest source sector, accounting 
for 45% and 41% of the total number of excess deaths from BC. TRA is 
also the largest sector for BC related excess deaths in West Asian and 
North African countries, where dust levels are relatively high (>70%). 
ENE accounts for 8% of the total excess deaths from BC exposure. It is a 
large source of BC related deaths in the East Asian countries Taiwan 
(30%), Japan (24%), South Korea (20%) and China (17%). In the West 
European countries Germany, Belgium and France the contribution is 
~10%. IND accounts for a comparably small proportion of BC related 
deaths globally (6%); however, it is a significant source in Brazil (14%), 
Japan (13%), the Philippines (12%) and the United Kingdom (12%). 
BMB is the largest source of BC-related excess deaths in West and Central 
African countries where it accounts for > 50% of the total BC-related 
health burden. AWB, SHP and WST were identified as relatively small 
sources, although AWB is a significant source in Ukraine (20%), the 
Russian Federation (11%), and Pakistan (7%). The contribution of SHP 
to BC-related excess deaths is estimated to be relatively high (>30%) in 
island nations and Scandinavian countries. 

3.4. Primary organic aerosols 

Organic aerosol (OA) particles in the atmosphere were partitioned 
into POA, aSOA and biogenic SOA using the ORACLE submodel in EMAC 
(Tsimpidi et al., 2018, 2014). The spatial distribution of total OA is 

depicted in Fig. S5a. Population-weighted mean global exposure to POA, 
which is directly emitted into the atmosphere from fossil and solid fuel 
combustion and biomass burning was estimated at 1.9 µg/m3 (the 
spatial distribution of POA is depicted in Fig. 3B). The estimated POA 
concentrations estimated were lower than those in earlier studies (David 
et al., 2018) possibly arising from significant re-partitioning of POA 
compounds to the gas phase computed by the ORACLE submodel 
(Tsimpidi et al., 2018), with dilution during the transport of air masses 
(Robinson et al., 2007; Tsimpidi et al., 2018). The largest population- 
weighted POA exposure was estimated to occur in the West and Cen
tral African countries of Sierra Leone (7 µg/m3), Nigeria (5 µg/m3) and 
Democratic Republic of Congo (5 µg/m3) where biomass burning ac
tivity is high. China (4 µg/m3), Pakistan (3 µg/m3), Indonesia (3 µg/m3) 
and India (2 µg/m3) were also estimated to have high population 
weighted POA exposure. We calculated 206,000(146,000–305,000) 
excess deaths per year from POA exposure globally, of which 38% and 
15% occur in China and India (Fig. 5A), respectively. Globally, DOM and 
BMB were identified as the leading sources of POA-related deaths 
(Fig. 5B, S10, Table S3 and sector contributions by country are listed in 
SI DataS5). Out of the 48(34–72) per 1,000 excess deaths from exposure 
to PM2.5, DOM and BMB were found to be responsible for 29(20–44) and 
11(7–16) deaths. The other sectors together account for 8(5–11) deaths. 

In India and China, 80% and 68%, respectively, of the total excess 
deaths from POA exposure are attributed to DOM. It is also a major 
source sector in (>40%) in North America and Europe. In Central, West 
and East African countries, BMB is the largest source (>80%). BMB is the 
largest contributor to POA-related deaths in the USA (47%). ENE con
tributes 7% to the total POA related number of excess deaths globally. It 
is a major source of POA-related deaths in the East Asian countries 
Taiwan (32%), South Korea (25%), and China (16%). IND and TRA 
contribute 4% and 3% to global POA related deaths, respectively. TRA is 

Fig. 2. Percentage contribution by source sectors (A) BMB, (B) AWB, (C) IND, (D) ENE, (E) DOM, (F) SHP, (G) WST, (H) TRA, (I) AGR, and (J) NAT to excess 
mortality from ambient PM2.5 exposure. Data for all countries are listed in SI Data 3. 
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estimated to be the largest source of POA-related excess death in the dust 
dominated West Asian and North African countries (>40%). In the 
United Kingdom and Germany, TRA was found to account for 30% and 
12% of the total POA related excess deaths, respectively. AWB, SHP, and 
WST together account for ~2% of the total POA related deaths. AWB is a 
major source in Ukraine (20%), Pakistan (12%) and India (8%). SHP is 
only a very small contributor to POA-related mortality, even in island 
countries. 

3.5. Anthropogenic secondary organic aerosols 

SOA is formed in the atmosphere from the oxidation of gas-phase 
precursors, ie. volatile organic compounds (VOC). The ORACLE sub
model (Tsimpidi et al., 2018, 2014) in EMAC differentiates between SOA 
formed from VOCs, semivolatile organic compounds and intermediate- 
volatility organic compounds; the submodel also tracks SOA 

concentrations from anthropogenic and biogenic emissions, which fa
cilitates the distinction of aSOA (from fossil and solid fuel burning and 
biomass burning) from biogenic SOA. The ORACLE submodel also tracks 
how SOA concentrations are affected by emissions, and can be used to 
evaluate the effects of photochemical aging and long-range transport on 
the organic aerosol budget. As the POA upon emission is highly sensitive 
to ambient conditions, including dilution and temperature, ORACLE 
also accounts for the volatility of POA emissions and evaporation of POA 
to form SOA (Robinson et al., 2007; Tsimpidi et al., 2014). Population- 
weighted global mean aSOA was estimated at 2.2 µg/m3 (the spatial 
distribution is depicted in Fig. 3C). Nepal (5 µg/m3), India (4.5 µg/m3), 
Bangladesh (4.5 µg/m3) and Pakistan (4 µg/m3) were estimated to have 
the largest population-weighted aSOA exposure. Globally, we estimated 
260,000(183,000–384,000) excess deaths per year due to exposure to 
aSOA. India and China have the largest mortality burden due to aSOA 
(Fig. 6A, 30% and 24% of the global total, respectively). Table S4 lists 
the excess mortality from aSOA exposure for the countries with the 
highest mortality burdens from PM2.5 (see Fig. 6A for the distribution by 
country, and data for all countries are provided in SI DataS6). Globally, 
out of 1,000 excess deaths from PM2.5 exposure, 61(43–90) are attrib
uted to aSOA exposure. 

In Malaysia, Indonesia and Thailand the corresponding rates are 205 
(129–327), 193(130–292) and 173(110–273), respectively. In the USA 
(73(50–107)), China (43(33–57)) and Germany (28(19–42)), these rates 
are relatively lower. DOM is the largest contributor to SOA related 
excess mortality in South Asia (>60%), China (>40%) as well as West 
and East European countries (Fig. 6B, Fig. S11). ENE is the second 
largest source, accounting for 13% of the total aSOA-related deaths. ENE 
is the largest contributor in the East Asian countries Korea (44%), Japan 
(41%) and Taiwan(41%). It is also a significant contributor in China 
(31%), Germany (27%), the UK (27%) and the USA (18%). BMB is the 
next largest contributor, accounting for 12% of the total aSOA-related 
deaths. It is the leading contributor in Central and West Africa, South 
America, and Southeast Asia. IND accounts for ~10% of the total aSOA 
related excess deaths with large contributions in the South American 
countries Brazil (41%) and Uruguay (33%). It is also a significant 
contributor in China and India (>10%). In West Asia and North Africa, 
TRA (global contribution 9%) is the largest source. AWB is a relatively 
small source (~6%), however, with a sizable share in Ukraine (23%), 
Pakistan (14%), the Russian Federation (13%) and India (11%). SHP and 
WST together account for < 1% of the total aSOA related deaths. 

3.6. Sensitivity study on relatively high toxicity of BC, POA, aSOA 

Based on recent evidence about their higher oxidative potential from 
toxicological studies, and epidemiological findings of short-term health 
impacts, we assess the implications by assuming BC, POA and aSOA to 
be about twice as harmful compared to other PM2.5 species (2BSP). We 

Fig. 3. Spatial distribution of (A) black carbon, (B) primary organic aerosols 
and (C) anthropogenic secondary organic aerosols. 

Fig. 4. (A) Spatial distribution of annual excess mortality from ambient BC exposure. (B) Global source contribution to excess mortality from ambient BC exposure.  
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also present calculations with alternative assumptions, showing that the 
policy implications of our results are not sensitive to the exact magni
tude of harmfulness of carbonaceous species. If we assume that all 
species in PM2.5 are equally health hazardous (EqT, Fig. S8, Fig. 7), we 
attribute 144(101–211) out of 1,000 excess deaths from exposure to 
PM2.5 to BC, POA, and aSOA globally, which increases to 364(257–533) 
and further to 380(274–552) with the 2BSP and 3BS assumptions 
respectively. Globally, DOM contributes 58% to the total excess mor
tality from BC, POA, and aSOA followed by BMB (13%), ENE (9.5%), 
TRA (9%), IND (7%), and AWB (3.5%), and SHP and WST together 
contribute < 1%. Therefore, under all the five sensitivity assumptions 
the contribution of these sectors to PM2.5 mortality increases substan
tially, while the contributions of NAT and AGR (with limited impact on 
the atmospheric concentrations of BC/POA/aSOA) decrease steeply. 

Under the 2BSP and the 3BS assumptions (Fig. 7), DOM emerges as 
the globally largest cause of excess mortality from ambient air pollution; 
completely mitigating DOM would avert 32% and 34.5% of the excess 
mortality from ambient PM2.5 under the 2BSP and 3BS assumptions, 
respectively, compared to 20% under EqT, besides controlling for 2.3 
(1.6–3.1) million excess mortality attributed to household air pollution 
exposure. The contributions of NAT and AGR decrease strongly, to 20% 
and 5% under the 2BSP, and 17.5% and 4% with the 3BS assumptions, 
respectively, more consistent with empirical data of the lower health 
risk by these sources (Table 1). With the 1p5BS, 2BS and 1p5BSP, NAT 
remains the largest source sector globally. The excess mortality from 
BMB and TRA, also being important sources of BC, POA and aSOA, 

increase significantly by about one third with the 2BSP assumption, 
while the contributions from IND and ENE (relatively smaller sources of 
BC, POA and aSOA) increase by 10% and 15%, respectively (Fig. 7). 
Note that these sector contributions vary with the major sources of BC, 
POA and aSOA, which can differ considerably by country (SIDataS1). 
For example, in the USA, ENE (14%) is the largest anthropogenic 
contributor to PM2.5-related excess mortality under the EqT assumption, 
whereas the strong emissions of BC, POA and aSOA from DOM (20%) 
make it the largest contributor under the 2BSP assumption. This corre
sponds with the increasing role of non-fossil fuel related emissions of 
organic compounds in the USA (McDonald et al., 2018). Consequently, 
the contributions of NAT and AGR decrease by a factor of two. Similarly, 
in West Europe, phasing out AGR emissions (which contribute 21% to 
PM2.5) would reduce excess mortality by 13%, while the phasing out of 
DOM and TRA emissions could avoid 41% of the excess mortality burden 
under the 2BSP assumption. 

Under the 2BSP assumption DOM becomes the largest contributor in 
India (46%), where the role of NAT declines by more than a factor of two 
relative to EqT. DOM also emerges as a leading contributor (>25%) in 
Germany and France, followed by ENE (>13%) and TRA (>12%). Under 
the 2BSP assumption, AGR remains important for excess mortality 
(~10%) in Europe, but its contribution decreases by nearly one third 
compared to EqT. In South Korea and Japan, ENE and IND remain the 
largest contributors (20% increase compared to EqT). In China, the 
contributions from NAT and AGR decrease to ~7%, while the contri
bution of DOM increases to 34%. In West Asia and North Africa, with 

Fig. 5. (A) Spatial distribution of annual excess mortality from ambient POA exposure. (B) Global source contribution to excess mortality from ambient 
POA exposure. 

Fig. 6. (A) Spatial distribution of annual excess mortality from ambient aSOA exposure. (B) Global source contributions to excess mortality from ambient 
aSOA exposure. 
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high levels of desert dust, NAT remains the largest source. In West, 
Central and East Africa BMB is the predominant source of excess mor
tality. Table 1 lists the sector contributions under the 2BSP assumption 
for the top ten countries with the largest excess mortality burdens (see 
Fig. S12, SI DataS3,S7 for all countries and major regions). The sensi
tivity calculations for the other four different assumptions show that 
these results are robust (SI Text, Fig. S13). Our results suggest that ac
counting for the toxicity of PM2.5 components has major policy 
implications. 

3.7. Limitations and uncertainties 

The 95% CI’s presented in this study are estimated by combining the 
uncertainties in baseline mortality rates obtained from the GBD and 
those for the MR-BRT splines used to obtain relative risk as in a previous 
study (Chowdhury et al., 2020). We acknowledge that the additional 
uncertainties associated with the modeling of BC, POA and aSOA are not 
included in the confidence intervals, but note that the comparison with 
measurements is generally favorable (SI Data). Here (Fig. S3) and in 
previous work (Lelieveld et al., 2019; Lelieveld et al., 2015) we have 
shown that our model captures PM2.5 concentrations well, and that 
especially the correlations with observed annual averages (which 
smooth variability related to the weather conditions) is very high, which 
is most relevant in the current application as we focus on chronic im
pacts of PM2.5, and this metric is applied in the the MR-BRT functions. A 
model comparison with ground-based remote sensing data from the 
global AERONET network indicated an R2 close to 0.8 and negligible 
bias (Fig. S1). The need to capture small-scale spatial and temporal 
variabilities from emissions in PM2.5 is limited, as the lifetime of the 
particles is about a week and secondary constituents, which often 
dominate the aerosol composition, are formed during atmospheric 
transport. This is evident from the small urban increments observed 
between PM2.5 at measurement sites in cities and their environment 
(Lelieveld et al., 2015). For this reason, we found in previous work that 
the resolution of PM2.5 calculations, varied between 10 km and 100 km 
(the latter comparable to our model results at 1.1◦× 1.1◦) does not 

significantly affect the PM2.5 exposure calculations, and that the un
certainties of excess mortality estimates are dominated by the parame
ters of the response functions (Kushta et al., 2018). Nevertheless, these 
studies have generally been performed for high- and middle-income 
countries that have access to air quality data, while emission in
ventories and the lack of measurement data in low-income countries are 
associated with much larger uncertainty (Crippa et al., 2019, 2018; 
Kushta et al., 2018), which is difficult to quantify. Recent comparisons 
with other emission data have shown that the CEDS emission inventory 
has slightly higher BC and organic carbon emissions, particularly for 
China and Africa (Crippa et al., 2019, 2018; McDuffie et al., 2020). 
While it should be noted that the emission estimates in general have 
similarly large uncertainties for organic carbon, BC and DOM emissions, 
we acknowledge that the use of different emission inventories will in
fluence the calculated BC, aSOA and POA exposures, which has not been 
accounted for in this work. 

Multiple recent studies have indicated that exposure to primary and 
secondary organic particles is more hazardous to human health than the 
total mass of inorganic PM2.5 (Bates et al., 2019; Baumgartner et al., 
2014; Daellenbach et al., 2020; Fang et al., 2017; Lin and Yu, 2011; Park 
et al., 2018; Puthussery et al., 2020; Verma et al., 2015). To account for 
this in our sensitivity calculations, we adopted a range of relative health 
impacts. Daellenbach and colleagues (Daellenbach et al., 2020) estab
lished that exposure to anthropogenic SOA (aSOA) causes three times 
higher oxidative stress than exposure to secondary inorganic aerosols 
and biogenic SOA. Some studies (Bates et al., 2019; Charrier and 
Anastasio, 2011; Cho et al., 2005; Chung et al., 2006) indicated that 
oxidative stress might occur by the inhalation of reactive oxygen species 
deposited on primary emitted particles (POA or BC), or the catalytic 
generation of reactive oxygen species within the body upon inhalation of 
particles that contain substances such as quinones and transition metals. 
However, these studies focussed on the impacts of short-term exposure, 
mostly in traffic/curbside locations. Moreover, the majority of the acute 
impact studies do not consider the temporal variation of the exposure 
covariates as well as their large scale geographical variation. Though, 
few recent studies have reported on morbidity and mortality risk asso
ciated with long-term exposure to BC (Beelen et al., 2008; Chung et al., 
2015; Hvidtfeldt et al., 2019; Ljungman et al., 2019; Yang et al., 2021), 
there are inconsistencies on the reported increased risk compared to all 
component PM2.5. Such inconsistecies may be associated with differ
ences in study designs and methodology and because limited evidences 
on the chronic impacts of aSOA and POA are available, we have assumed 
BC, aSOA and POA to be about twice as hazardous as other components 
of PM2.5. We believe this is a reasonable assumption to illustrate the 
potential influence on policy decisions. We also performed calculations 
that consider these species to be only 1.5 times more toxic compared to 
the other components. Further, Daellenbach et al. (2020) suggested that 
upon acute exposure, aSOA is substantially more harmful than other 
SOA and POA. To model the implications of these findings, we formu
lated the 3BS scenario (exposure to BC and aSOA being three times more 
hazardous compared to other components of PM2.5 including POA). To 
simulate similar health responses of long-term exposure to these species, 
we formulated the 2BS and 1p5BS scenarios (long-term exposure to BC 
and aSOA were considered 2 and 1.5 times more toxic compared to other 
components of PM2.5). See Fig. S13 for sector contributions obtained 
with these scenarios. 

Our finding that exposure to PM2.5 from domestic burning should be 
regarded as a leading health risk factor, and that the significance of 
exposure to natural and agricultural PM2.5 decreases accordingly, does 
not change under the different assumptions. We note that for countries 
where the ratio of BC, POA and aSOA to other components is very low (e. 
g. dust dominated countries in North Africa and Middle-East), our re
sults must be interpreted with caution. The excess mortality we report in 
this study depends on the shape of the exposure–response function used 
and the diseases considered. We note that heavy metals e.g. cadmium 
and lead emitted from industries and power plants are also detrimental 

Fig. 7. Contributions of major source sectors to excess mortality from PM2.5 
under the EqT (all components of PM2.5 are considered to be equally toxic) and 
2BSP (black carbon, anthropogenic secondary secondary organic aerosols and 
primary organic aerosols considered to be twice as harmful as other compo
nents of PM2.5 assumptions, showing the largest differences for DOM, AGR and 
NAT. The sectors ats x-axis are BMB- Biomass burning; AWB- Agricultural waste 
burning; IND- Industries; ENE- Power generation; DOM- Domestic solid fuel 
burning and other commercial activities; SHI- Ships; WST- Waste Incineration; 
TRA- Transportation; AGR- Agricultural soils; NAT- Natural and 
biogenic emission. 
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to human health, but toxicity assumptions that include such compounds 
are beyond the scope of the current work. Mineral dust (considered in 
NAT) may also be a potential but likely minor source (compared to 
power generation and industry) of metals (Jin et al., 2019; Schaap et al., 
2018). The results from our sensitivity analyses illustrate the implica
tions of considering anthropogenic organic aerosols to be more haz
ardous on human health compared to other fine particulates, rather than 
providing evidence for such differences for which further studies on 
chronic impact of BC, aSOA and POA are suggested. 

We estimated the contributions of BC, aSOA and POA by removing 
their mass and then calculating the attributable deaths as those from the 
total PM2.5 mass minus the deaths from the removal of individual spe
cies. This approach has been used in previous studies (Chowdhury et al., 
2021; Lelieveld, 2017; Lelieveld et al., 2015) for source attribution. As 
an alternative to the MR-BRT functions, which account for selected 
disease categories, in previous work we used the Global Exposure 
Mortality Model (GEMM) to calculate excess mortality, which applies 
hazard ratio functions that encompass all NCDs together with lower 
respiratory tract infections (Chowdhury et al., 2020; Lelieveld et al., 
2019; Lelieveld et al., 2020). The number of excess deaths attributed to 
PM2.5 were about two times higher compared to our current estimates 
using the MR-BRT. Here we follow the recommendation by Burnett and 
Cohen (2020) to primarily apply the integrated exposure–response 
functions for specific disease categories, and use the GEMM for sensi
tivity calculations. The results are presented in the SI Text. By employing 
the outcomes of the GEMM calculations in those of the sectoral contri
butions, we find that the sectoral attribution results and policy impli
cations are in good agreement (Fig. 8). It follows that our conclusions 
about the relative health impacts of PM2.5 and its components are not 
sensitive to the use of different exposure–response relationships (see also 
Methods, SI Text, Figs. 8, S14). 

4. Conclusions 

Using the recent MR-BRT exposure–response functions of the GBD 
(Murray et al., 2020), we estimated 4.23(3.0–6.14) million excess deaths 
from the exposure to ambient PM2.5 globally for 2015 of which 92%, 5%, 
and 3% occur among adults, neonates and children, respectively. Our 
estimates agree with the recent GBD study (Murray et al., 2020), but are 

considerably lower than our previous studies (Chowdhury et al., 2020; 
Lelieveld et al., 2019; Lelieveld et al., 2020) using the Global Exposure 
Mortality Model (GEMM) (Burnett et al., 2018) that considers excess 
mortality resulting from all NCDs (see SI Text, Fig. S14). We reiterate 
that the MR-BRT functions of the GBD (Murray et al., 2020), address 
selected disease categories (Figs. 1, S6; SI Data8), whereas the GEMM 
addresses air pollution impacts by all NCDs plus lower respiratory tract 
infections. In Europe, for example, the other NCDs (accounted for by 
GEMM but not by MR-BRT) may contribute about one third to the 
mortality burden from air pollution (Lelieveld et al., 2019). Previously, 
we also added excess mortality from the long-term exposure to tropo
spheric ozone, not included here. We estimated a global mortality 
burden of about 1.3 million per year from ozone in 2015 (Chowdhury 
et al., 2020), but this does not affect the current discussion on PM2.5 
toxicity. 

Another recent study (Vohra et al., 2021), using a concen
tration–response function built from a meta analyses of 53 studies, 
which provided 135 estimates of the quantitative association between 
the risk of mortality and exposure to PM2.5 (Vodonos et al., 2018), 
estimated 8.7 (95% CI: − 1.8 to 14.0) million premature deaths annually 
from the exposure to ambient PM2.5 from fossil fuel use globally, which 
included recent declines in air pollution in China. Here, we chose to be 
consistent with the GBD, but emphasize that the continued incorpora
tion of disease categories, following growing evidence for their rela
tionship with air pollution, implies that estimates of the excess mortality 
rate will increase accordingly, as it has done since the previous GBD 
study (Cohen et al., 2017; Stanaway et al., 2018). It can be expected that 
future updates of the exposure–response functions of the GBD and the 
GEMM will converge with respect to excess mortality estimates (Burnett 
and Cohen, 2020). We find that the different functions (MR-BRT and 
GEMM) yield the same results in terms of the contributions of source 
sectors to PM2.5 mortality, and the role of BC, POA and aSOA (SI Text, 
Fig. 8). This indicates that the policy implications of our sensitivity 
calculations are robust. 

We estimated the source sectors and mortality attributable to PM2.5, 
BC, POA and aSOA. Our results of source attribution of ambient PM2.5 
exposure match with a recent global study (McDuffie et al., 2021), while 
here we additionally estimate the excess mortality from BC, POA and 
aSOA, the source sectors, and also present sensitivity studies where these 
components were assumed to be more toxic compared to other com
ponents in PM2.5. We identified DOM as the globally largest source 
category of BC, POA and aSOA and the leading anthropogenic sector 
contributing to excess mortality from exposure to PM2.5. The major 
sources of BC in our calculations are DOM and TRA, which concurs with 
previous findings (Anenberg et al., 2011; Janssen et al., 2011; Li et al., 
2016). The current study provides the first global source attribution of 
POA and aSOA. Our estimates of excess deaths from aSOA are ~ 20% 
lower compared to a recent study (Nault et al., 2020) that used a 
different chemical transport model, carbonaceous aerosol routines and 
exposure–response functions. 

As a sensitivity analysis, we consider BC, POA and aSOA to be more 
harmful compared to the other components of PM2.5 based on toxico
logical and epidemiological studies of short-term health outcomes (Bates 
et al., 2019; Daellenbach et al., 2020; Janssen et al., 2011; Park et al., 
2018; Verma et al., 2015; Yang et al., 2018), pending extensive epide
miological cohort studies of long-term impacts. The small number of 
cohort studies of chronic impact of BC have shown variable findings but 
a recent long term follow up has shown increased risk from BC exposure 
(Yang et al., 2021). Under the 2BSP assumption, anthropogenic carbo
naceous particles would account for 364 (257–533) out of 1,000 excess 
deaths from the global exposure to PM2.5 (i.e. 36 (26–53)%). If DOM 
emissions would indeed be more toxic than PM2.5 emissions from other 
sources, as we indicate in our sensitivity analyses, the health effects of 
air pollution originating in solid fuel using households may be even 
greater and more strongly coordinated efforts may be required to avert 
this burden. One way is to promote campaigns encouraging the use of 

Fig. 8. Percentage contributions of source sectors to excess mortality burden 
from PM2.5 calculated using the MR-BRT and GEMM exposure response func
tions. The sectors at the x-axis are BMB- Biomass burning; AWB- Agricultural 
waste burning; IND- Industries; ENE- Power generation; DOM- Domestic solid 
fuel burning and other commercial activities; SHI- Ships; WST- Waste Inciner
ation; TRA- Transportation; AGR- Agricultural soils; NAT- Natural and 
biogenic emissions. 
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cleaner cookstoves in the low-and-middle-income countries; however, 
solid biomass is a difficult fuel to burn efficiently. Reducing or replacing 
household solid fuel use with cleaner fuels, like liquified petroleum gas 
(LPG), ethanol, or electricity, should be a high priority. Some countries 
like Brazil and India have substantially expanded the use of LPG for 
cooking in their households. Though the net climate impacts of LPG use, 
compared to improved biomass stoves, are uncertain and minimal, the 
social and health benefits are large. 

Phasing out DOM emissions in South Asia, where interventions aim 
at replacing the domestic use of solid fuels for cooking and lighting, with 
LPG (Chowdhury et al., 2019) may help prevent up to 24% of global 
excess mortality from exposure to ambient PM2.5. To some degree this 
will shift the mortality burden between bio- and fossil fuels (Table 1). 
The use of alternative, clean renewable energy technologies based on 
solar and wind power, for example, would remove this health burden 
altogether. For Western Europe we find AGR to be the largest contrib
utor to ambient PM2.5 (20%), however, more stringent policies will be 
effective by mitigating the use of solid fuels for heating, which will avert 
27% of excess mortality if the 2BSP assumption would be valid. Despite 
the small share in total energy consumption, residential biomass and 
coal burning may cause ~ 40% of total primary emissions of PM2.5 in 
Europe, which is about two times higher than emissions from TRA and 
AGR, which are often the targeted sector in policy making (Clean Heat, 
2016; Crippa et al., 2018; Giannakis et al., 2019; Hoesly et al., 2018). 
Nevertheless, globally, contributions from fossil fuel use also increase by 
15% under the 2BSP assumption, and by 18% and 16% in North America 
and Western Europe, respectively, which corroborates the importance of 
curbing fossil fuel use in power generation, industries, road trans
portation and shipping. 

Thus, the relative contributions of sectors that use fossil fuels as well 
as DOM are expected to increase significantly under the 2BSP assump
tion (as well as other enhanced toxicity assumptions). Taken together 
the sectors that use fossil fuels and DOM then contribute about equally 
to excess mortality. These findings, which do not depend on the expo
sure–response functions applied, demonstrate the central importance of 
accounting for the relative harmfulness of PM2.5 components in 
formulating air quality policies, which need to be tailored for different 
countries and regions. It may be expected that the actual relative health 
effects are within the range of these five assumptions, and further studies 
on the health effects of long term exposure to relatively toxic species and 
those with high oxidative potential are recommended. Even though 
current knowledge does not allow a more reliable quantitative assess
ment of the relative health outcomes, our results, based on the recent 
literature, suggest that anthropogenic, carbonaceous particles should 
receive greater weight in air pollution mitigation scenarios and policy 
measures. Our results generated at country-level (SI DataS3), or at 
higher resolution (on request), are available to study mitigation path
ways to reduce the health burden of ambient PM2.5, and capitalise on the 
potential health co-benefits from reducing greenhouse gas and air 
pollution emissions. 
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