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AIM: Acinetobacter baumannii is a ubiquitous gram-negative bacterium found on 

a variety of surfaces that include skin, hair, and soil. Some gram-negative bacteria like A. 

baumannii have the ability to acquire and incorporate fatty acids into their phospholipid 

membranes. Known as ‘Iraqibacter,’ A. baumannii has emerged as a significant cause of 

nosocomial infections in the United States and abroad. This study was designed to 

determine whether structural alterations occur in A. baumannii upon exposure to a wide 

range of polyunsaturated fatty acids (PUFAs) as well as the significance of this 

phenomenon in terms of survival and resistance to stress.  

METHODS: Thin layer chromatography of isolated phospholipids indicated 

phospholipid profile variation depending on the exogenous PUFA supplied. To assess the 

incorporation of exogenous fatty acids with A. baumannii phospholipids, isolated lipids 

were analyzed by ultra-performance liquid chromatography/mass spectrometry 

(UPLC/MS). Membrane permeability was assessed with a crystal violet hydrophobic 

compound uptake assay. An assay for biofilm formation was performed to indicate the 

production of biofilms among bacterial growth in the presence of each fatty acid. To 

observe additional phenotypic responses, environmental stresses such as hydrogen 

peroxide, antimicrobial peptide, and antibiotic pressures were assayed. 

RESULTS & CONCLUSION: The fatty acids affected membrane permeability, 

as determined by a hydrophobic compound uptake test. At least a 20% range of uptake 

was observed between the PUFAs examined. Bacterial growth in the presence of each 

PUFA caused an increase in biofilm production. As expected, numerous unique 

phospholipid species were identified and were bioinformatically predicted to contain the 

exogenously supplied PUFA as one of their acyl chains. While no differences in 
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minimum inhibitory concentrations were observed with peroxide and beta-lactam 

antibiotic stresses, sensitivity of A. baumannii to two different antimicrobial peptides, 

colistin and polymyxin B, increased following growth in several of the PUFAs, with 

arachidonic acid displaying the highest inhibition. Since cationic antimicrobial peptides 

are believed to interact with bacterial lipid membranes for eventual pore formation, these 

results implicate exogenous fatty acids as modification moieties that may impact 

resistance to environmental stresses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III. INTRODUCTION 
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 One of the most prevalent challenges in the realm of healthcare has arisen in the 

form of multidrug-resistant bacteria. Examples of flourishing bacteria include 

Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, and 

Acinetobacter baumannii. These are four of six ‘ESKAPE bugs’ that were classified by 

the Infectious Diseases Society of America in 2008. ESKAPE bugs “are of immediate US 

health concern that collectively cause the majority of nosocomial infections and can 

escape therapeutic activity of currently available antibiotics.”
1
 A. baumannii does not 

desiccate easily and is notably responsible for a number of hospital-acquired diseases that 

affect various systems in the body. These diseases are typically difficult to treat and 

mainly affect individuals who are on ventilation or have previous wounds.
2,3

 It was also 

given the nickname “Iraqibacter” after causing a spike in A. baumannii infections on 

wounded soldiers during the war in Iraq, which in turn caused a global spread of the bug 

as soldiers returned home. One publicized example of this occurred when ABC news 

correspondent Bob Woodruff became infected by A. baumannii in Iraqi soil from a 

roadside bomb in January of 2006, causing sepsis and pneumonia. He ultimately lived 

after losing part of his skull, but this instance is only one of numerous cases of A. 

baumannii occurring all over the world.
4
 

 A. baumannii is a gram-negative bacterium. Unlike gram-positive bacteria that 

have a single cellular membrane, gram-negative bacteria such as A. baumannii are 

defined by an inner and outer cell membrane with a periplasmic space and thin 

peptidoglycan layer in between. Therefore, import and export transport systems in these 

bacteria must exhibit cooperation between inner and outer membranes.
5,6

 A. baumannii is 

regarded as a universal organism and can inhabit a variety of surfaces including human 

skin and hair as well as soil, and it is able to persist and survive in numerous types of 
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environments.
7
 Infections of A. baumannii can lead to problems in the lungs, spinal cord, 

blood, urinary tract, or skin. While some A. baumannii infections are treatable, many of 

them can be fatal, especially if they are not noticed or treated quickly.  

 Some gram-negative bacteria have evolved pathways to utilize fatty acids as 

carbon sources, with their degradation ultimately leading to production of ATP. More 

recently, it has been discovered that exogenous fatty acids can be taken up by A. 

baumannii and incorporated into their membranes (Giles lab, unpublished data). The 

mechanism of the uptake of fatty acids by gram-negative bacteria begins with FadL, a 

transporter that resides in the outer membrane of the cell. When FadL binds to and 

transfers a fatty acid through the outer membrane of the cell, the fatty acid navigates 

through the periplasm and travels to the cytosolic face of the inner membrane, where it is 

joined with coenzyme A (CoA) via the enzyme FadD, yielding acyl-CoA. Now joined to 

a carrier molecule, acyl-CoA can be used as a carbon energy source in the β -oxidation 

pathway or can go back to the membrane; in the membrane, acyltransferases integrate the 

new fatty acid into membrane phospholipids.
8
 Although several bacteria possess 

machinery to recycle exogenous fatty acids into their own membrane, there is no data to 

show how these scavenged fatty acids benefit the bacteria. The aim of this study is to 

explore fatty acid assimilation in A. baumannii and to examine potential survival and 

resistive advantages gained by lipid membrane remodeling. 

 The scale of infections and diseases that A. baumannii has the ability to cause is 

extremely vast and broad. The Centers for Disease Control and Prevention estimate that 

approximately 80% of all reported infections in healthcare facilities arise from A. 

baumannii.
9
 Healthy people do not have as great a probability of contracting disease from 

A. baumannii, as it is typically seen within all types of healthcare settings, but 



 8

specifically in veterans’ hospitals and intensive care units. Those who do contract the 

bacteria usually have compromised immune systems, diabetes, lung problems, open 

wounds, long hospital stays, or have invasive devices in them such as catheters or 

ventilators. A. baumannii can be transmitted either by contact with an infected individual 

or a contaminated surface.
10
  Soldiers infected by “Iraqibacter” in Iraq and Afghanistan 

have reported cases of osteomyelitis, bacteremia, and various respiratory and wound 

infections. Researchers believe that rather than being infected via the soil or debris 

directly, military medical establishments are the source of most A. baumannii infections 

among soldiers. It is likely that a few individuals contracted it from soil or debris, which 

was then subsequently spread in medical facilities. Mortality rates related to A. 

baumannii infections are fairly high, whether their deaths are directly linked to the 

bacteria or other underlying problems.
2
 This is most likely a result of the pre-existing 

medical conditions associated with the general population of people affected by A. 

baumannii, as mentioned before. 

Due to its persistent nature, A. baumannii will always be around as long as there 

are vulnerable patients and lack of compliance towards infection control by healthcare 

providers.
2
 While there are several preventative measures that can be taken to avoid 

exposure to the bacteria, the most common method of treating it is through antibiotics. 

Common treatment agents against A. baumannii include carbapenems, lactamase 

inhibitors, tigecycline, aminoglycosides, and polymyxin therapy.
2
 Most forms of 

antibiotics, however, have become an issue as the number of multidrug-resistant strains 

of A. baumannii has risen.  

 To address our hypothesis that exogenous fatty acids can be utilized by A. 

baumannii, we first determined how the membrane of A. baumannii is modified 
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structurally and how these alterations may benefit the bacteria’s survival and resistance to 

stress. We analyzed phospholipid species to see if the bacteria were in fact incorporating 

fatty acids in their membranes. Ultra-performance liquid chromatography/mass 

spectrometry confirmed that new phospholipid species were produced depending on the 

fatty acid supplied. After this confirmation, we tested the effects of exogenous fatty acids 

on hydrophobic compound uptake. Finally, the effects of environmental stresses were 

investigated through a series of tests and assays that established how various phenotypic 

stresses affect A. baumannii based on its ability to uptake exogenous fatty acids.  

 Understanding the capabilities of A. baumannii is of great importance in 

microbiology and public health fields. Studying A. baumannii can also have a potential 

effect on the global scale, as “Iraqibacter” is highly multi-drug resistant in nature and has 

rapidly spread in a short period of time. Ideally, the tests conducted in this experiment 

will help better understand the survival and virulence of A. baumannii so that we may be 

better prepared to contend with the bacteria holistically. These studies may also give 

insight to methods that may improve treatments of diseases caused by A. baumannii 

worldwide in the most effective and efficient manner. 

 

 

 

IV. METHODOLOGY 

MATERIALS 

The following fatty acids were collectively used throughout the entirety of this project: 

linoleic acid (18:2), α -linolenic acid (18:3α ), ), γ -linolenic acid (18:3γ ), dihomo), dihomo-γ -linolenic 

acid (20:3), arachidonic acid (20:4), eicosapentaenoic acid (20:5), docosapentaenoic acid 
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(22:5), and docosahexaenoic acid (22:6). The strain of Acinetobacter baumannii used was 

ATCC 17978. Fatty acids and bacteria were obtained through Cayman Chemical and the 

American Type Culture Collection, respectively. Bacteria were grown in either Luria 

broth (LB) or G-56 minimal media. G-56 was buffered with Hepes (pH 7.4) and 

supplemented with KH
2
PO

4 
(0.3 mM), KCl (10 mM), (NH

4
)

2
SO

4
 (10 mM), glucose 

(0.2%), FeSO
4
 (0.03 mM), and thiamine (0.075 mM) as well as additional additives of 

CaCl
2
 (1 mM), MgSO

4
 (1 mM), and casamino acids (0.4%). G-56 was prepared the same 

day it was used after being filter sterilized. Crystal violet (CV) was purchased from 

Fisher Scientific, imipenem from LKT Laboratories, Inc., colistin (polymyxin E) from 

Adipogen International, and polymyxin B (PMB) from Cayman Chemical.   

PREPARATION OF BACTERIAL CULTURES 

Bacterial cultures were prepared uniformly each time an assay was performed. To begin, 

A. baumannii (ATCC 17978) was streaked onto an LB agar plate and left in the 37°C 

incubator overnight. The plate was removed the next day and placed into the refrigerator, 

where it remained fresh for at least two weeks. Every two weeks a new plate was 

streaked to maintain consistently fresh bacterial colonies. Overnight cultures were set 

each evening prior to running an experiment, which were grown in LB broth tubes in a 

37°C shaking incubator.  

GROWTH CURVE 

Overnight cultures were pelleted, washed in G-56 (pH 7.4), and used to inoculate fresh 

cultures in G-56 at a starting optical density of 0.05. 300 µMM of each fatty acid (18:2, 

18:3α , 18:3γ , 20:3, 20:4, 22:5, and 22:6) was supplemented to the appropriate cultures. 

The prepared bacteria was placed in the 37°C shaking incubator (200 rpm). Optical 

densities were read every 30 minutes for a total of eight hours, followed by an additional 



 11

reading five hours later as well as twelve hours after that, yielding a total observation of 

twenty five hours of growth.  

LIPID EXTRACTION AND THIN LAYER CHROMATOGRAPHY 

Bacteria were grown at 37°C. Once reaching an optical density between 0.8 and 1.0, 

cultures were pelleted for 10 minutes. The supernatant was poured off, followed by the 

washing of the residual pellet in 5mL of phosphate buffered saline (PBS) that was then 

centrifuged for an additional 10 minutes. Again, the supernatant was removed, and the 

remaining pellet was resuspended in 5 mL of single phase Bligh/Dyer mixture. This 

mixture is made up of chloroform/methanol/water in a 1:2:0.8 ratio. Once resuspended, 

the culture is vortexed and incubated for a total of 20 minutes at room temperature, 

followed by a 10-minute centrifugation. The supernatant was drawn off and put into a 

new glass tube while the pellet was disposed of, as it was no longer necessary. In order to 

make the single phase Bligh/Dyer mixture into a two-phase mixture, 1.3 mL of 

chloroform and 1.3 mL of water were supplemented to the single phase mixture that was 

then vortexed and centrifuged for 10 minutes. Centrifugation creates a lower and upper 

phase of the mixture; the lower phase was drawn into a fresh glass vial, while 2.6 mL of 

chloroform was added to the upper phase. The vortex, centrifugation, and extraction step 

was performed once more, and the collective extractions were further washed by adding 

5.2 mL of methanol and 4.7 mL of water. The final extraction was collected and dried 

down under a stream of nitrogen. The remaining lipids were kept in -20°C until the thin 

layer chromatography took place.
10,

 
11
 

Thin layer chromatography was used to analyze lipids via a solvent made up of 

chloroform/methanol/acetic acid in a 65:25:10 ratio.
12
 The chromatography creates lipid 
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profiles that were visualized using a spray of 10% sulfuric acid in 100% ethanol and 

heating the plate to 200°C.   

ULTRA PERFORMANCE LIQUID CHROMATOGRAPHY & MASS 

SPECTROMETRY 

Ultra performance liquid chromatography (UPLC) and mass spectrometry were used to 

determine the mass to charge ratio of phospholipid species in A. baumannii after they 

were grown in the presence and absence of various fatty acids. These are two separate 

processes, with UPLC used to separate lipids and mass spectrometry used to detect and 

assign specific mass to charge ratios to the species as they are ionized. Structural 

assignments were generated using the Lipid Metabolites And Pathways Strategy database 

(Lipid MAPS).
12
 Mobile phase A consisted of 30:70 (25 mM ammonium acetate [pH 

6.7]: methanol), and mobile phase B was 100% methanol. Isolated phospholipids were 

weighed, and 300 parts per million (ppm) were paired in 1 mL diluent (50:50 mobile 

phase A: mobile phase B) prior to injection into a Waters UPLC equipped with a 

reversed-phased C8 column. The injection volume was 5 µL, the run time was 15 L, the run time was 15 

minutes, and the flow rate was 0.4 µL/minute. The gradient was 50:50 up until the 2L/minute. The gradient was 50:50 up until the 2-

minute mark, where it shifted to 20:80 until the 12-minute mark. Between 12 and 12.2 

minutes, the gradient shifted back to 50:50 until the end of the run. Detection was by 

quadrupole mass spectrometry using electrospray ionization in the negative mode.  

CRYSTAL VIOLET UPTAKE 

Overnight cultures of A. baumannii were pelleted, washed, and used to inoculate in G-56 

media at a starting optical density of 0.1. These cultures were supplemented with each of 

the following fatty acids: 18:2, 18:3α , 18:3γ , 20:3, 20:4, 20:5, 22:5, and 22:6. Once the 

cells had grown to an OD
600nm 

of approximately 1.0, they were transferred into sterile 
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plastic tubes and centrifuged for 10 minutes at 4000 rpm. Media was removed and the 

cells were washed with PBS. Each culture was suspended in 1 mL PBS and the optical 

density was determined. Cultures of equal starting OD were prepared in 5 mL of PBS, 

and 5 µL of 5 L of 5 mg/mL crystal violet solution was added (final concentration of 5 µg/mL)g/mL). 

The tubes were agitated at room temperature, and the optical density was read every five 

minutes for a total of 25 minutes. To read the optical density, 800 µL of each culture was L of each culture was 

micro-centrifuged for one minute at 1200 g. The supernatant was analyzed 

spectrophotometrically for absorbance at OD
590nm

. 

BIOFILM FORMATION 

The protocol to test for biofilm formation was borrowed for a method by the O’Toole 

assay.
13
 Overnight cultures were pelleted, washed in PBS, and prepared at an OD of 0.1. 

In the appropriate media, 300 µMM of each fatty acid (18:3 γ , 20:3, 20:4, and 22:6) was 

added to each culture. Microtiter plates were used for this assay, with each inoculum 

placed into its respective wells and grown overnight statically or shaking in the 30°C or 

37°C incubator. After 24 hours, the biofilm was to be stained following O’Toole’s 

protocol again. Excess cells were first removed by shaking the liquid out of each 

microtiter plate. The plate was submerged in a small tub of distilled water and then 

shaken to remove additional liquid. This step was repeated two or three times until 

planktonic cells were confidently discarded. At this point, 125 µL of 0.1% crystal violet L of 0.1% crystal violet 

solution was added to each of the wells in the microtiter plate and incubated at room 

temperature for 10-15 minutes. The crystal violet was rinsed out of the plate by gently 

submerging it in distilled water three to four times followed by vigorous blotting on a 

paper towel. Once the crystal violet was rinsed out, the plate was dried upside down 

overnight. After 24 hours, 125 µL of a prepared solution of 30% acetic acid L of a prepared solution of 30% acetic acid was added to 
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each well in the microtiter plate to solubilize the crystal violet. This incubated at room 

temperature for 10-15 minutes as well. 125 µL of L of the solubilized crystal violet was 

transferred into a new microtiter dish and read on a Biotek Microplate reader with Gensys 

software. The biofilm assay was conducted several times, with manipulating variables 

including temperature, pH, and incubation (shaking vs. static). A two-tailed T-test was 

done to determine which data points reflect significant differences. 

MOTILITY TEST  

To begin the setup for the motility test, five plastic tubes were prepared, each with 1 mL 

of LB and the appropriate amount of fatty acids required (18:3γ , 20:3, 20:4, and 22:6). 

These were grown in a 37°C shaking incubator until they reached an OD of 0.1 and the 

calculated amounts of culture were added to each tube. The motility plates were prepared 

with 0.3% and 0.4% LB agar in sterile petri dishes. Each of the five tubes was calculated 

to an OD of 0.5 and 0.1. Once the agar plates were solidified and ready to use, four spots 

of A. baumannii were injected into them, with two at an OD of 0.5 and two at an OD of 

0.1 for each plate. A total of ten plates were inoculated, five in 0.3% agar and five in 

0.4% agar, with and without each specific fatty acid. These plates were incubated 

overnight at 37°C and analyzed for growth and motility the next day.  

BACTERIAL RESISTANCE TO PEROXIDE STRESS, ANTIMICROBIAL PEPTIDE 

RESISTANCE, AND ANTIBIOTIC RESISTANCE 

The peroxide stress, antimicrobial peptide, and antibiotic resistance tests were prepared 

and conducted identically, differing only in the concentrations and types of stresses used 

against the bacteria. Overnight cultures were pelleted, washed with G-56, and used to 

inoculate fresh culture in G-56 (with and without fatty acids) at a starting OD of 0.1. The 

fatty acids used in this assay included 18:3 γ , 20:3, 20:4, 20:5, and 22:6, 20:3, 20:4, 20:5, and 22:6. Triplicate and 
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GROWTH CURVE 

The growth curve assay provided an
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quadruplicate microtiter plates were prepared with a range of twofold dilutions

10 mM - 640 mM), colistin (0.4 µg/mLg/mL - 25.6 µg/mLg/mL

), and polymyxin B (1.6 µg/mL g/mL - 102.4 µg/mLg/mL). Each well was 

inoculated with bacteria at a starting OD of 0.1, followed by incubation at 37°

20 hours. The plates were read the next day via the Biotek 

Microplate reader with Gensys software at an absorbance of 600 nm.  

The growth curve assay provided an overview pattern of growth for A. baumannii

were prepared with a range of twofold dilutions of 

g/mLg/mL), imipenem (0.1 

Each well was 

at 37°C in a 

the Biotek 

baumannii in the 

of 
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Figure 1: Growth patterns for 
37°C grown in the absence of fatty acid as well as the presence of 18:2, 
18:3 α , 18:3γ , 20:3, 20:4, 20:, 18:3 γ , 20:3, 20:4, 20:, 20:3, 20:4, 20:
measured every 30 minutes for a total of eight hours, followed by 
readings five hours later
presence of fatty acids generally increased growth rates for 
baumannii.  

16

or cell aggregation, began to appear as early as the 60-minute mark for 

enriched with 18:2 and 18:3 α . All other . All other cultures displayed flocculation within 

All of the media for this assay was prepared at 37°C in G

As shown in the graph, growth patterns begin to diverge at around 480 minutes

d 1.5 (Fig 1). 18:3 γ  reached the greatest optical density around  reached the greatest optical density around 

teria without fatty acids almost consistently had the slowest growth 

when measured after the eight-hour mark. This indicates that

A. baumannii with fatty acids may affect growth, particularly long

CHROMATOGRAPHY 

Phospholipids were 

and analyzed from 

Growth patterns for A. baumannii with G-56 (pH 
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α , 18:3γ , 20:3, 20:4, 20:, 18:3 γ , 20:3, 20:4, 20:, 20:3, 20:4, 20:5, and 22:6. Optical density (600 nm) was 
every 30 minutes for a total of eight hours, followed by 

readings five hours later and 12 hours after that. Bacteria grown in the 
presence of fatty acids generally increased growth rates for A. 

.   

minute mark for A. 

flocculation within 

All of the media for this assay was prepared at 37°C in G-56 at 

at around 480 minutes 

γ  reached the greatest optical density around  reached the greatest optical density around 

lmost consistently had the slowest growth 

. This indicates that 

with fatty acids may affect growth, particularly long-

CHROMATOGRAPHY  

Phospholipids were 

and analyzed from A. 

56 (pH 7.4) and 
37°C grown in the absence of fatty acid as well as the presence of 18:2, 

5, and 22:6. Optical density (600 nm) was 
every 30 minutes for a total of eight hours, followed by 

. Bacteria grown in the 
A. 
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baumannii in order to verify uptake of exogenous fatty acids in their own membranes, as 

many other gram-negative bacteria have exhibited. The bacteria were grown in the 

presence of various fatty acids, and their lipids were extracted and subjected to thin layer 

chromatography. The chromatography showed different patterns and shifts of migration 

with each of the different fatty acids. Specifically, A. baumannii with 18:3 γ , 20:, 20:3 and 

20:5 displayed higher migration compared to the other fatty acids (Fig 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ULTRA 

PERFORMA

NCE LIQUID 

Figure 2: Phospholipid profiles of A. baumannii grown in minimal 
media (pH 7.4) and 37°C. The Bligh and Dyer method was used to 

extract lipids, followed by thin layer chromatography.   
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CHROMATOGRAPHY 

The Bligh and Dyer extraction method for phospholipids was used to prepare A. 

baumannii for phospholipid extraction. An extra wash step was included to increase 

purity of the isolated lipids. Table 1 represents all significantly detected lipid species that 

eluted from the column during chromatography and were detected by mass spectrometry. 

The three chromatograms shown below (Fig 6) indicate quantitative and structural 

differences among phospholipid species from each culture. The changes in retention time 

as compared to the control indicate production of new phospholipid species when grown 

with the indicated fatty acids. Many of the corresponding mass spectra are consistent with 

the incorporation of the exogenous fatty acids into the phospholipids of A. baumannii 

during growth at 37°C. Representative structures of predicted phosphatidylglycerol and 

phosphatidylethanolamine species are shown for the selected exogenous fatty acids in the 

first chromatogram. Corresponding phospholipid species were also identified for linoleic 

acid (18:2), γ -linolenic acid (18:3 γ ), dihomo), dihomo-γ -linolenic acid (20:3), arachidonic acid 

(20:4), and docosapentaenoic acid (22:5), as shown in the second and third 

chromatograms.  

 

 

 

 

 

 

 

No FA 18:02 18:3 α 18:3 γ 20:3 20:4 20:5 22:5 22:6 
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716.4 716.5 716.5   716.4 716.5 716.4   716.5 

  717.4               

719.6 719.4 719.2 719.6 719.4   719.3 719.2 719.4 

    721.3       721.4 721.7 721.3 

      728.4           

    734.4 734.5     734.4 734.4 734.5 

          736.5 736.5 736.5 736.6 

  738.3 738.4 738.4   738.6 738.4     

  740.3 740.1   740.5         

  741.5               

742.2 742.2 742.4     742.5 742.6   742.6 

  743.4 743.3 743.3 743.6         

744.3               744.5 

745.5 745.5 745.4     745.3 745.5 745.2 745.4 

747.4 747.4 747.4 747.4 747.4 747.4 747.4 747.6 747.6 

                752.5 

            756.4     

                760.5 

            762.4 762.3 762.5 

          764.5 764.4 764.5 764.5 

            765.4     

        766.4         

            767.4 767.4 767.4 

  769.4 769.2 769.2   769.6 769.7     

  771.6     771.5         

773.3 773.5 773.3     773.3     773.3 

775.4               775.5 

            782.5   782.4 

                788.5 

                790.6 

            793.5   793.4 

              795.3   

Table 1: Spreadsheet representing all significantly detected lipid species (m/z of [M-
H]-) that were eluted from the C8 column during chromatography and detected by 
mass spectrometry. Lipid species are categorized by the various fatty acids used 

throughout UPLC.  
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CRYSTAL VIOLET UPTAKE

Figure 6: Ultra performance liquid chromatography (UPLC) and mass spectrometry 
of A. baumannii phospholipid species. Bacteria were grown in G
37°C with or without various fatty acids. Phospholipids were dissolved in 50:50 
mobile phase A:B
Detection was quadropole mass spectrometry. The changes in retention time (and 
mass spectra) are consistent with incorporation of the exogenous fatty acids into the 
phospholipids of A. baumann

are shown for bacteria grown with 18:3
chromatograms for bacteria grown in the presence of fatty acids18:2, 18:3 γ
20:3; figure C shows chromatograms for 

Predicted structures are provided in A, reflecting the eluted phospholipid species. 
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CRYSTAL VIOLET UPTAKE 

Ultra performance liquid chromatography (UPLC) and mass spectrometry 
phospholipid species. Bacteria were grown in G-56 (pH 7.4) at 

with or without various fatty acids. Phospholipids were dissolved in 50:50 
mobile phase A:B and injected into a Waters UPLC with reversed
Detection was quadropole mass spectrometry. The changes in retention time (and 
mass spectra) are consistent with incorporation of the exogenous fatty acids into the 

A. baumannii during growth in 37°C. In Figure A, chromatograms 
are shown for bacteria grown with 18:3 α , 20:5, and 22:6; figure B represents 
chromatograms for bacteria grown in the presence of fatty acids18:2, 18:3 γ
20:3; figure C shows chromatograms for A. baumannii grown with 20:4 and 22:5. 

Predicted structures are provided in A, reflecting the eluted phospholipid species. 

Ultra performance liquid chromatography (UPLC) and mass spectrometry 
56 (pH 7.4) at 

with or without various fatty acids. Phospholipids were dissolved in 50:50 
and injected into a Waters UPLC with reversed-phase C8 column. 

Detection was quadropole mass spectrometry. The changes in retention time (and 
mass spectra) are consistent with incorporation of the exogenous fatty acids into the 

. In Figure A, chromatograms 
, 20:5, and 22:6; figure B represents 

chromatograms for bacteria grown in the presence of fatty acids18:2, 18:3 γ , and , and 
grown with 20:4 and 22:5. 

Predicted structures are provided in A, reflecting the eluted phospholipid species.  



 

The purpose of the crystal violet uptake assay was

permeability in the presence of various fatty acids. 

five core fatty acids, others

gain a better understanding of the role th

uptake test was conducted following

Membrane permeability of 

of hydrophobic compounds

reduced uptake of CV. Five fatty acids (arachidonic, α

docosapentaenoic, and eicosapentaenoic) exhibited 15

reflected by CV uptake. The decrease in membr

duration of the test. 

 

 

 

 

 

 

 

 

 

 

BIOFILM FORMATION

Figure 3: Crystal violet hydrophobic compound uptake assay shown with 
prepared in G-56 (pH 
18:3 γ , 20:3, 20:4, 20:5, , 20:3, 20:4, 20:5, 
densities (590 nm) of the supernatant every five minutes for a total of 25 minutes. All 

fatty acids inhibited crystal violet uptake to some degree.   
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Biofilms are persistent, thick clusters of adhesive cells that increase their survival and 

virulence on certain environmental surfaces, and assessing their formation is useful to 

understanding their resistive nature and role in bacterial survival and persistence.
 14

 

Bacteria that can form biofilms inherit a great deal of advantages, including their 

resistivity, stability, and ability to cling to a variety of surfaces.
15
 The Centers for Disease 

Control and Prevention and the National Institutes of Health claim that 65-80% of 

microbe-related infections are related to the development of biofilms.
16
 The biofilm assay 

was unique from the other experiments in that a number of different variables were tested 

in the presence and absence of fatty acids, including temperature, pH, and type of 

incubation. While the data looks similar and lacks significant growth of biofilms for A. 

baumannii, as evidenced by OD, there are still some conclusions that can be drawn. 

Based on experiments performed in octuplet, there were several observations of both 

stimulatory and inhibitory effects of fatty acids on biofilm formation. At pH 5.5 and 

37°C, 20:3 enhanced biofilm production, whereas 20:4 and 20:5 inhibited biofilm 

production. At pH 7.4 and 37°C, 20:4 slightly increased the production of biofilms, while 

18:3γ , 20:3, and 20:5 had very little effect, 20:3, and 20:5 had very little effect. Under conditions with pH 5.5 and 30°C, no 

fatty acid enhanced biofilm production, but 18:3γ , 20:4, 20:5, and 22:6 decreased it by a , 20:4, 20:5, and 22:6 decreased it by a 

relatively significant amount. On the other hand, at pH 7.4 and 30°C, all fatty acids 

boosted biofilm production to some degree except for 20:5, which inhibited it (Fig 4). 

This is interesting to note because 30°C is our approximate skin temperature, and 

biofilms have been known to cause numerous dermatologic diseases.
17
  When incubated 

under shaking conditions, very little biofilm was detected (data not shown). 
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MOTILITY TEST 

The literature cites motility as a difficult characteristic to examine with A. baumannii, 

calling for a specific media called Eiken agar as an appropriate media for testing surface 

motility.
4
 Because we did not have the means to access this agar from Japan, we 

attempted our own assay based on previous research regarding A. baumannii motility.
18,19 

In lieu of Eiken agar, we conducted our motility test on 0.3% and 0.4% LB agar plates. 

Unfortunately, no motility was exhibited on any of the plates after 24 hour incubation at 

37°C. The strain of A. baumannii that is used in our lab (ATCC 17978) is non-motile due 

to its absence of a flagellum, although it is known to exhibit a twitching motility.
20
 

BACTERIAL RESISTANCE TO PEROXIDE STRESS, ANTIMICROBIAL PEPTIDE  

Figure 4: Biofilm formation of A. baumannii grown in the absence and presence of fatty 
acids (18:3 γ , 20:3, 20:4, 20:5, and 22:6). Casamino acids were added to each set of 
cultures, and the assays were performed at A) pH 5.5 and 37°C, B) pH 7.4 and 37°C, C) 
pH 5.5 and 30°C, and D) pH 7.4 and 30°C. All graphs above show static growing 
conditions. The asterisk marks (*) indicate data points reflecting statistical significant 
differences from the no fatty acid control, as detected by p-value: A&C) p<0.002 and 

B&D) p<0.02. 

pH 5.5, 37°C pH 7.4, 37°C 

pH 7.4, 30°C pH 5.5, 30°C 
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RESISTANCE, AND ANTIBIOTIC RESISTANCE 

has become undoubtedly resistant to a number of stresses and 

we thought it was important to test whether their stress survival 

potential modifications to phospholipids or the cell membrane.

shown in Figure 5. Prepared cultures were exposed to twofold 

hydrogen peroxide, imipenem, colistin, and polymyxin B

Hydrogen peroxide and imipenem minimum inhibitory concentration

not affected by the presence of fatty acids. In the peroxide stress and 

antibiotic experiments, bacteria grown in the presence and absence of all fatty acids 

followed a similar pattern, effectively being killed off at around 320 mM hydrogen 

g/mL imipenem.g/mL imipenem. Exposure to polymyxin B resulted in increased 

susceptibility for all fatty acids, with the MIC decreasing from 25.6 to 12.8 for every fatty 
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VI. DISCUSSION 

The literature states that strains of A. baumannii mainly synthesize 18:1, 16:0, and 

16:1 de novo.
19
 This means that all of the fatty acids used in our experiments had to be 

incorporated into the bacteria through the mechanisms described previously. It was 

certainly clear that the uptake of these fatty acids modified the cellular membrane, yet the 

implications from experiment to experiment varied from one another. For example, in the 

growth curve assay, it was observed that implementation of all fatty acids increased 

Figure 5: MIC assays for A. baumannii following growth with fatty acids 
and environmental stresses. Bacteria was grown in minimal media (G-56, 
pH 7.4) at 37°C, followed by introduction of various concentrations of A) 
hydrogen peroxide, B) imipenem, C) colistin, and D) polymyxin B. The 
graphs above show the various degrees of resistance of A. baumannii to 
these environmental stresses. 
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absorbance of the bacteria to some degree, with 18:3 γ  and 20:3 peaking highest of all at  and 20:3 peaking highest of all at 

the 780 minute mark. By adding fatty acids to A. baumannii, we were adding an external 

carbon source that had the potential of increasing the growth rate of the bacteria, which is 

what we found. While we do not know whether or not the fatty acids are being utilized as 

extra carbon sources to make ATP by β -oxidation, we do know that the bacteria is 

capable of incorporating the fatty acids into their membrane. It is likely that the carbon 

source is used for longer survival rather than anything related to modifying the 

membrane.  

In the crystal violet assay, it was shown that incorporation of all fatty acids used 

inhibit crystal violet uptake, which verified that the membrane had indeed been affected 

by the introduction of various fatty acids. Nevertheless, A. baumannii with 18:3α , 20:4, , 20:4, 

20:5, 22:5, and 22:6 exhibited a greater membrane alteration compared to the bacteria 

with18:2, 18:3γ , and 20:3. It is interesting to note that the two groups of fatty acids , and 20:3. It is interesting to note that the two groups of fatty acids 

created that provided less or more crystal violet inhibition are also similarly classified as 

ω -3 and ω -6 fatty acids, respectively. There is a clear distinction between ω -3 and ω -6 fatty 

acids, and they both play an integral role in human health. From the PUFAs that were 

used throughout my experiments, ω -3 fatty acids include 18:3α ,, 20:5, and 22:6, while the 

ω -6 fatty acids are 18:2, 18:3γ , 20:3, and 20:4., 20:3, and 20:4.
21
 These fatty acids are naturally occurring 

in a lot of marine bacteria, which is of significance because some of these marine bacteria 

have been found to be viably natural sources that hold antibiotic and antitumor 

characteristics.
22
 Many of the ω -3 fatty acids in marine organisms have a different 

pathway of interconverting PUFAs within their biological systems, and they are 

beginning to become important in research related to human diet, health, and disease.
23
 

Perhaps the differences observed in the crystal violet assay reflect differential 
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incorporation between ω -3 and ω -6 fatty acids. If true, then our results indicate that ω -3 

fatty acids may be preferentially assimilated into the membrane; or alternatively, ω -3 fatty 

acids are intrinsically more refractory to passage of hydrophobic compounds. 

One of the reasons why A. baumannii is such a highly resistant bacteria can be 

attributed to its ability to form biofilms.
24
 The biofilms that we observed on our microtiter 

plates grew on a hydrophobic material. Although the data initially did not seem to show 

much, statistical analyses proved that there was an underlying implication to the 

experiments. Two of the four graphs above exhibited a very significant p-value 

(p<0.002), and interestingly enough, they were the two replicates performed under 

conditions of pH 5.5. pH may play a bigger role than temperature for biofilm formation, 

and this information could potentially be related to the pH values of the soil and 

environments that A. baumannii thrive in. Biofilms are known to have the capability of 

forming on plastic and glass materials, which are found in various pieces of medical 

equipment throughout hospitals. This is noteworthy, as fatty acids are amphiphilic, 

composed of hydrophobic and hydrophilic components, which should help biofilms form 

more efficiently.  

Although we tried manipulating various aspects while preparing A. baumannii for 

these assays, the observed biofilm growth was modest without any overall consistency. 

One reason why this occurred is because A. baumannii creates thicker biofilms at the 

liquid-air border because of its aerobic nature, and the lack of oxygen at the bottom and 

walls of microtiter wells are not conducive environments for them.
23
 The mechanism by 

which many bacteria create biofilms is directly related to their locomotory moieties (pili, 

flagella, glycopeptidolipids), but since none of these were detected in our motility 

experiments, biofilm formation was most likely due to the ability of A. baumannii 
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colonies to grow on these hydrophobic materials such as our polystyrene microtiter 

plates.
25
   

Strains of A. baumannii that are discovered in intensive care units and hospitals 

carry antibiotic resistance that has proven to be troublesome over time. The antibiotics 

and antimicrobial peptides used in this project had varying effects on the bacteria. Out of 

the four environmental stresses that were tested in this portion of the project, colistin and 

PMB showed the greatest variance of resistance when grown with different bacteria; 

hydrogen peroxide and imipenem had little to no effect. The reason why a difference is 

seen between the effects of imipenem versus colistin or polymyxin B is related to their 

specific modes of inhibiting the bacteria. Imipenem is a β -lactam antibiotic that works by 

binding to penicillin binding proteins (PBPs) and obstructing formation of the bacterial 

cell wall.
26
 Since A. baumannii is a gram-negative bacterium, there is less peptidoglycan 

for the antibiotic to get through to inhibit the cell altogether, and the pores formed 

provide an easy route to inhibit the bacteria. On the other hand, colistin and polymyxin B 

are cationic microbial peptides that have almost identical structures, differing in only one 

amino acid. They work solely against gram-negative bacteria by interacting with 

lipopolysaccharide (LPS).
27
 Lipopolysaccharide molecules are comprised of lipid A, a 

core oligosaccharide, and a distal polysaccharide. Cationic microbial peptides disrupt the 

calcium and magnesium bridges that hold LPS together and ultimately disturb the outer 

membrane.
28
 This yields a cell membrane with amplified permeability and penetrability, 

and the cell ultimately lyses.
29,30

 The addition of fatty acids contributes to this process by 

altering the MICs of the antibiotics, as described in our results. Since the exposure to 

PUFAs has no negative chemical or physiological effect on the human body, using them 

to strengthen the sensitivity to drugs such as colistin and polymyxin B is quite possible in 
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the future of medicine. It is also important to note the contributions of LPS to gram-

negative bacterial resistance to cationic antimicrobial peptides. A key strategy is 

modification of lipid A with positively charged moieties, which serve to repel cationic 

antimicrobials.
31
  

The effectiveness of β -lactam antibiotics like imipenem has a hypothesized 

correlation to biofilm formation. It is believed that the strains of bacteria that can make 

their own biofilms have less resistance to these antibiotics, as evidenced in our results.
32
 

Strains that cannot form biofilms must rely on antimicrobial resistance because there are 

no biofilms present to provide protection and virulence.  

While A. baumannii is only one of 23 described species in the genus 

Acinetobacter, its role as an opportunistic pathogen in human health and disease has 

exponentially increased especially in the last two decades, now as a major threat in the 

United States as well as many parts of Europe and Asia.
33
 One of the biggest problems we 

face in healthcare is the increasingly arbitrary use of broad-spectrum antibiotics that have 

caused an explosion of antibiotic-resistant bacteria, leaving doctors and scientists with 

their last lines of defense against them.
34
 New drugs and medicines cannot keep up with 

the rate of resistance in bacteria. That being said, many of the fatty acids used in our 

experiments are known to have important functions in the body. For example, cell 

growth, inflammation, and the central nervous system are controlled by the arachidonic 

acid cascade, which is composed of over twenty signaling pathways. The pathway is 

begun by arachidonic acid (20:4) and also requires 18:3α , 20:3, and 20:5 to properly , 20:3, and 20:5 to properly 

proceed.
35
 Knowing this information, it is perhaps feasible that we couuld incorporate 

fatty acids into new strains of medication that can inhibit inflammatory responses from 

the body in a more efficient manner. This is just one example of many to illustrate the 
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important potential that this research could have in the field of microbial and clinical 

medicine. 

Data from UPLC and MS reported various phospholipid species present in A. 

baumannii when grown with various fatty acids. The outer membrane of gram-negative 

cells provides an extra, unique layer of protection to the cells. The asymmetrical outer 

membrane is composed of a lipopolysaccharide outer leaflet and a phospholipid inner 

leaflet. 95% of the inner membrane is made up of phosphatidylethanolamine and 

phosphatidylglycerol head groups, which are the groups verified through UPLC-MS.
36
 

Considering how many phospholipids make up the cell envelope of gram-negative 

bacteria, the assimilation of exogenous fatty acids would be expected to significantly 

alter membrane properties. Additionally, it is important to note that all of the fatty acids 

used in this study contained cis bonds. It is unknown whether or not A. baumannii 

possesses a cis-trans isomerase that can alter the fatty acid double bond conformation in 

the membrane. These studies not only identify ramifications of exogenous fatty acids on 

permeability and phospholipid composition, but also reveal phenotypic consequences that 

may affect survival and pathogenesis of A. baumannii.  
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VII. FURTHER STUDIES 

 Research shows that vaporized hydrogen peroxide (VHP) is used to treat 

multidrug-resistant bacteria such as A. baumannii.
3
 Using VHP has proven to 

dramatically decrease the number of bacterial cultures in the intensive care unit of 

hospitals.
37
 Having learned this information, it would be of interest to revisit the hydrogen 

peroxide assay and test the disinfecting abilities it may exhibit towards the bacteria in the 

presence and absence of various fatty acids.  

 One assay whose modification we could potentially benefit from is the growth 

curve assay. A long-term growth curve that goes to completion would show a better 

overall image of the points at which the bacteria ultimately dies off. Although our growth 

curve showed a progression of over 24 hours, a longer run could show us more. The fatty 

acids used were not included in every assay that we conducted, but if they had been then 

we would have seen significant increases in the effects measured and observed. It would 
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be worthwhile to replicate all of the assays in this project with direct incorporation of the 

fatty acids to gain a better understanding of their function in bacterial cells.  

 Since biofilms are capable of forming on hydrophilic and hydrophobic surfaces, 

and our studies were done on plastic microtiter plates, it would be interesting to see how 

results would differ if the biofilm assay was performed on a glass surface. Also, using a 

different mode of incubation aside from the microtiter plates would give insight to 

whether or not our particular strain (ATCC 17978) forms greater biofilms at the liquid-air 

border as opposed to the plastic walls of the microtiter wells.  

 Targeted MIC assays with various antibiotics to explore therapeutic potential of 

fatty acids would be beneficial for further levels of studies. This could potentially help 

determine if, how, and which fatty acids in conjunction with antibiotics or antimicrobial 

peptides can diminish infectious pathogens like A. baumannii without affecting the 

body’s natural microflora. Similar studies to this have been done with strains of 

Streptococcus mutans using specifically targeted antimicrobial peptides (STAMPs).
38
 Due 

to time and budget constraints, only selected fatty acids were used for the environmental 

stress and even biofilm assays in comparison with the full spectrum used in the growth 

curve. It would be beneficial to try all of the fatty acids and see if there is any consistency 

of any particular ones throughout the various experiments in this project.  

 In addition, results warranting further study and analysis include the 

chromatograms from the UPLC/MS. There is a significant amount of information 

pertaining in the UPLC/MS data that has to be thoroughly analyzed in order to 

understand the potential shifts in phospholipids among varying polyunsaturated fatty 

acids. MS/MS analyses have already been planned for the lipid samples used in this 

study. This approach determines whether the exogenous fatty acids are incorporated at 
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the sn-1 or sn-2 position. Furthermore, the fatty acids used in this study contained cis 

bonds. In order to determine the conformation of these fatty acids extracted from the 

bacteria, fatty acid methyl esters could be generated and analyzed by gas chromatography 

with appropriate standards.  

 While the extent of this project has been mainly with A. baumannii, many of the 

mechanisms and functions among other gram-negative, antibiotic-resistant bacteria are 

fairly similar. These bacteria include Escherichia coli, Pseudomonas aeruginosa, and 

Klebsiella pneumoniae. It would be worthwhile to see the similarities and differences if 

the experiments from this project were conducted on any of these other bacteria. By 

doing so, we would be able to paint a broader picture of the role that fatty acids play in 

the membrane and how this could affect the potential methods of treating and preventing 

diseases caused by them on a global scale. 
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