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Abstract
Background: The effects of measurement error in epidemiological exposures and confounders
on estimated effects of exposure are well described, but the effects on estimates for gene-
environment interactions has received rather less attention. In particular, the effects of confounder
measurement error on gene-environment interactions are unknown.

Methods: We investigate these effects using simulated data and illustrate our results with a
practical example in nutrition epidemiology.

Results: We show that the interaction regression coefficient is unchanged by confounder
measurement error under certain conditions, but biased by exposure measurement error. We also
confirm that confounder measurement error can lead to estimated effects of exposure biased
either towards or away from the null, depending on the correlation structure, with associated
effects on type II errors.

Conclusion: Whilst measurement error in confounders does not lead to bias in interaction
coefficients, it may still lead to bias in the estimated effects of exposure. There may still be cost
implications for epidemiological studies that need to calibrate all error-prone covariates against a
valid reference, in addition to the exposure, to reduce the effects of confounder measurement
error.

Background
One of the largest difficulties facing epidemiological
research is that of measurement error in an exposure or
relevant confounders [1-4]. Measurement error can lead
to substantial bias in either direction, either diluting or
exaggerating the apparent effect size [5]. There is a partic-
ular problem in the area of nutrition epidemiology where
measuring long-term dietary intake is prone to error, such
that most epidemiological studies in this field are subject
potentially to very large biases [6,7]. An additional side-
effect of measurement error is reduction in statistical

power – the ability to detect a true difference of practical
importance [8-11]. Whilst these effects of measurement
error in exposures are well described, the effects of meas-
urement error in confounding variables have received less
attention [5,12-16].

The source of measurement error may occur in the assess-
ment tool used to determine the extent of exposure or die-
tary confounder. For example, food frequency
questionnaires may use crude measures of portion size,
frequency of consumption, and use broad food group-
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ings, which all limit the precision with which dietary
intake can be estimated. In addition, the source of error
could be random variation in the exposure attributable to
chance fluctuations, and not dependent on the assess-
ment tool. In this way natural variation in individuals'
diets from day-to-day and week-to-week could lead to ran-
dom error in estimating long-term dietary intake. For
example, a food diary or a series of 24 hour recalls may
record actual intake more precisely than a food frequency
questionnaire (FFQ), but only represents a short period of
time so will lack precision compared to true long-term
intake. Another source of error could be related to the
individual completing the dietary assessment, leading to a
person-specific bias and measurement errors in two
instruments being correlated [17-21].

One area of epidemiology receiving increasing attention is
that of the gene-environment interaction. The researcher
is often interested in whether an epidemiological expo-
sure has a different effect dependent on an individual's
genotype. Alternatively, they may want to identify groups,
identifiable on the basis of genotype or phenotype, at
greater risk from a particular exposure. One type of gene-
environment interaction that can be investigated is the
gene-diet interaction, where the environmental exposure
is a particular dietary intake. Whilst the effects of measure-
ment error on estimation procedures such as linear regres-
sion are well known for main effects, the influence of
errors on estimation of interaction terms is not well docu-
mented. In particular, the effect of measurement error in
confounding variables on a statistical interaction is
unknown.

We aim to characterise the impact of measurement error
in an exposure and in a confounder in the estimation of
both main effects as well as their interaction. We present
a series of simulations demonstrating the effect of meas-
urement error in a variety of situations. We illustrate our
findings with a recent cohort study where we investigate
the relationship between HFE genotype for haemochro-
matosis (iron overload), diet, and serum ferritin concen-
trations [22].

Methods
Simulations
We denote the true covariate, X, and its surrogate, W,
measured with error U under the classical additive meas-
urement error model such that W = X + U. We assume
X~N(0,1), U~N(0, σu

2), and that given X, W contributes
no additional information about the outcome, Y. This
means that, in terms of conditional probability distribu-
tions, f(Y|X, W) = f(Y|X). In addition we represent the gen-
otype, G, as coded 1 for homozygotes and 0 for
heterozygotes and wild types, where G~bernoulli(p). We
assume p = 0.2. We generate a potential confounding var-

iable, C, such that C~N(0,1), corr(X, C) = ρxc, corr(Y, C) =
ρyc, and C's surrogate, D, is measured with error such that
D = C + V, where measurement error V~N(0, σv

2). For each
scenario, we generate n observations such that Y = β0 +
β1G + β2X + β3 G.X + β4 C + ε, where ε represents residual
error. For the purposes of estimating standard deviations
of estimates and the probability of rejecting the null
hypothesis H0, we assume the residual error ε~N(0,4).
Parameters were chosen to give reasonable R2 values
approximately in the range 10–25%, based on experience
in the UK Women's Cohort [23], and dependent on the
scenario and amount of measurement error in the expo-
sure and confounder. To achieve adequate precision in
estimates, 10000 simulations were performed for each
scenario, with each containing a sample size of 1000
observations. The regression model intercept is set to β0 =
0 for all simulations. An interaction can be expressed in
terms of either the regression coefficient β3 above, referred
to here as the coefficient estimate, or alternatively as the
ratio of the regression slopes for each genotype, where the
ratio = (β2 + β3)/β2 is referred to here as the ratio estimate.

For the simulations, measurement error magnitude can be
expressed in four different ways: (i) as the measurement
error variance (e.g. σu

2), (ii) as the reliability ratio, λ (e.g.
σx

2/(σx
2 + σu

2)), (iii) as the correlation between repeated
measures of the covariate, which is mathematically equiv-
alent to λ [24], and (iv) as the correlation between the
imperfectly measured covariate and its true values, math-
ematically equivalent to √λ [24].

Scenario 1
The initial aim is to investigate the effect of measurement
error in a confounding variable on the coefficient of a per-
fectly measured exposure and on the interaction between
a perfectly measured exposure and a perfectly measured
genotype. For scenario 1 we assume that X is measured
without error, i.e. U = 0, hence W = X, and that the true
effect of exposure X is such that β2 = 1. We also assume the
true genotype effect to be β1 = 1 and the true interaction
between X and G is such that β3 = 1. The effect of the con-
founder, β4, is set to either 1 or -1. For scenario 1 the data
were therefore generated from Y = β0 + β1G + β2X + β3G.X
+ β4 C + ε and the regression model fit to these data was
the same but with C replaced by its surrogate D. We con-
sider correlations between confounder C and exposure X
of 0.2, 0.5 and -0.5. The measurement error variance, σv

2,
in the confounding variable D was set to 0, 1, 2, 4, and 9
(equivalent to reliability ratios, λ, of 1.0, 0.5, 0.33, 0.2 and
0.1 respectively). An alternative way of viewing the latter
is to consider a replicate measurement on the same indi-
viduals, D', subject to the same level of measurement
error. The correlation between D and D' would have the
same values as the reliability ratios, that is 1.0, 0.5, 0.33,
0.2 and 0.1 respectively. Alternatively, this could also be
Page 2 of 8
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presented in terms of the correlation between the true and
observed confounders C and D, equivalent to √ λ, having
values 1.0, 0.71, 0.58, 0.45 and 0.32.

Scenario 2
The second aim was to investigate the effect of measure-
ment error in an exposure on estimates of the interaction
between the exposure and a perfectly measured genotype.
We assume that X is now measured with error, hence
U~N(0, σu

2), and W = X+U, with the true effect of expo-
sure X such that β2 = 1. We assume the true effect of geno-
type to be β1 = 1. Estimates of model coefficients and the
probability of rejecting H0 are investigated for true interac-
tions between X and G of β3 = 0, 0.5, 1 and 2 (equivalent
to ratios of the two regression slopes of 1, 1.5, 2, and 3
respectively). In this scenario we assume that the exposure
is not subject to confounding, i.e. β4 = 0. For scenario 2 the
data were therefore generated from Y = β0 + β1G + β2X + β3
G.X + ε and the regression model fit to these data was the
same but with X replaced by its surrogate W.

Practical illustration
Detailed methods have been presented elsewhere [22]
and are briefly summarised here. We sought to determine
the relationship between haem iron intake (from meat),
iron storage status and the risk of iron accumulation in
subjects who are carriers of certain genetic mutations asso-
ciated with haemochromatosis, a hereditary condition
characterised by excessively high iron stores potentially
leading to severe chronic diseases. For this illustration we
focus on mutations of the C282Y genotype, combining
heterozygotes and wild types into one category, and com-
paring with homozygotes. We assume the assessment of
genotype is perfectly measured and that combining heter-
ozygotes and wild types does not introduce any measure-
ment error. Participants were sampled from the UK
Women's Cohort Study, a cohort of 35 372 women living
in the United Kingdom aged 35–69 in 1995 [23]. Blood
samples were available for 2489 women, giving serum fer-
ritin concentrations and C282Y genotype. Intake of haem
iron and other nutrients were measured using a 217 item
FFQ [23,25,26]. A second FFQ was completed by 820
(33%) of these approximately 5 years after the first. This
gap minimises correlation between the measurement
errors in each response. The drift over time in response
between the two measures was taken into account by sub-
tracting the difference between the mean responses from
the second FFQ results as suggested by Carroll et al[3] and
Landin et al[27].

Linear regression was used to explore the relationship
between log-transformed serum ferritin concentrations
(as a measure of iron storage) and haem iron intake. Sev-
eral potential confounders were identified [22]. However,
for the purpose of illustration, only the main one, total

energy intake, is included in the model, along with the
two main effects (genotype and haem iron intake), and
their interaction. In the presence of the interaction term,
the main effect of the exposure is interpreted as the expo-
sure effect in the genotype referent group. The influence of
genotype on the relationship between haem iron intake
and serum ferritin was formally tested by adding their
interaction to the model.

Measurement error was adjusted for by regression calibra-
tion [28,29] using Stata version 8 [30]. However, the pre-
ponderance of zeros in the interaction component
introduced by multiplying the dummy variable for the
perfectly measured genotype by the continuous exposure
can lead to model instability (data not shown). In terms
of regression calibration it is more robust to treat the inter-
action component, not as a separate error-prone variable
forming a second variable to include in the regression cal-
ibration, but to base it on E(X|W,G) derived for the expo-
sure variable. This approach provides a function that
meets the requirements for regression calibration, yield-
ing more robust results (data not shown).

Results
Scenario 1

When the exposure and error-prone confounder are posi-

tively correlated (i.e. ρxc>0) and both act in same direction

on the outcome (i.e. β4 has the same sign as β2), or if they

are negatively correlated (i.e. ρxc<0) and acting in oppo-

site directions (i.e. β4 has opposite sign to β2), then the

measurement error in the confounder causes the esti-
mated effect of exposure to be biased away from the null,
even when the exposure is measured without error (Table
1). For moderately sized correlations, the bias can be sub-
stantial. Though estimated coefficients vary greatly, the
empirical standard deviation of the estimates remained
similar, approximately 0.07 or 0.08, with the smallest for
the situation with no measurement error in the con-
founder and weak correlation between the true values of
the confounder and exposure. Therefore, unlike measure-
ment error in an exposure, which leads to lower probabil-
ity of rejecting H0 [8-11], measurement error in a

confounder can lead to either increased or decreased
probability of rejecting H0 when assessing the effect of the

exposure [31,32]. It achieves this by biasing estimates
either away from (increased probability of rejecting H0) or

towards (decreased probability of rejecting H0) the null,

depending on the effects of the residual confounding
[31,33-35]. However, any increased probability of reject-
ing H0 is due to bias, and does not reflect true statistical

power. The effect of measurement error in the confounder
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on the estimated exposure effect 2 was unaltered by

excluding genotype or the interaction term from the
model. The estimated coefficient associated with the con-

founder, 4, was subject to the usual bias caused by

measurement error. The estimated effects of genotype 1

and the coefficient estimate of interaction 3 were them-

selves unaffected by confounder measurement error. This
is because the confounder is uncorrelated with genotype
and, conditional on the other terms in the model, the con-
founder is uncorrelated with the interaction. This means
that the confounder for the exposure is not a confounder
for genotype or for the interaction, so adjustment for the
confounder is unnecessary for unbiased estimation of

their coefficients. However, because 2 varied whilst 3

remained constant, the ratio estimate of the interaction

[(β2 + β3)/β2] varied with confounder measurement error.

Since measurement error in the confounder has no notice-
able effect on either the estimate of the interaction coeffi-
cient or the empirical standard deviation of the estimates,
the power for this assessment is unaffected. This also
holds for the ratio estimate of interaction. Monte Carlo
error was 1% of the empirical standard deviation of the
estimates, giving adequate precision in the estimates to
two decimal places.

Scenario 2
Measurement error in an exposure leads to bias in the
coefficient estimate of interaction between that exposure
and a perfectly measured genotype (Table 2). Where there

is no confounding the interaction term tends to be under-
estimated because on average it is biased towards the null,
thereby diluting its apparent impact. The estimate of the
exposure effect is under-estimated to the same degree,
such that the ratio estimate of the interaction remains
unaffected by measurement error in the exposure. Stand-
ard errors decrease, giving a false sense of precision. How-
ever, because the coefficient estimate is attenuated
towards the null, the power is substantially decreased
despite reduced standard errors (Table 3).

Practical illustration
The reliability ratios based on the covariance and the
measurement error variance matrices estimated from the
full regression calibration model were λx = 0.82 and λc =
0.61 for the exposure and confounder respectively. The
correlation between the (imperfectly measured) exposure
and confounding variables was 0.15, but the correlation
between their predicted true values from the regression
calibration was 0.20. Before considering the effect of the
confounder (total energy intake), ignoring measurement
error in the exposure (haem iron intake) leads to the expo-
sure effect being underestimated by approximately 20%
and the interaction with genotype being underestimated
by 15%, compared to adjustment for measurement error
using regression calibration (Table 4). Adjustment for
total energy intake as a confounder, assuming it to be per-
fectly measured, leads to changes in all the estimates.
Expanding the model to allow for confounder measure-
ment error leads to relatively small changes compared to
models allowing for exposure measurement error alone.
This could indicate, in this simple example with one con-
founder, that adjusting for an imperfectly measured con-
founder, ignoring any associated measurement error, may

β̂

β̂

β̂

β̂

β̂ β̂

Table 1: Scenario 1: The effect of measurement error σv
2 in a confounding variable on estimated exposure effects 2. The exposure is 

measured without error.

Coefficient for 
true effect of 

confounder (β4)

Correlation 
between true 

value of 
confounder and 

exposure

2 (sd of estimate)

σv
2 = 0 σv

2 = 1 σv
2 = 2 σv

2 = 4 σv
2 = 9

1.0 0.2 1.001 (0.073) 1.103 (0.076) 1.136 (0.077) 1.162 (0.078) 1.182 (0.079)
0.5 1.001 (0.081) 1.287 (0.079) 1.365 (0.079) 1.422 (0.078) 1.463 (0.078)
-0.5 1.000 (0.080) 0.715 (0.079) 0.637 (0.079) 0.580 (0.078) 0.539 (0.078)

-1.0 0.2 1.001 (0.073) 0.898 (0.077) 0.865 (0.078) 0.839 (0.078) 0.819 (0.079)
0.5 1.001 (0.081) 0.715 (0.079) 0.637 (0.079) 0.579 (0.078) 0.539 (0.078)
-0.5 1.000 (0.080) 1.286 (0.080) 1.364 (0.079) 1.421 (0.079) 1.462 (0.078)

True values of coefficients β1 = 1 (binary genotype), β2 = 1 (continuous exposure), β3 = 1 (interaction term), β4 (confounder) given in first column. 
Simulations based on 10,000 simulations of 1000 observations. Monte Carlo error is 1% of the empirical standard deviation of the estimates for 

2; approximately 0.0008.

β̂

β̂

β̂
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give better estimates than not adjusting for that con-
founder at all.

Discussion
Under the scenarios considered in this paper, we have
shown that measurement error in a confounder can lead
to biased estimates of a perfectly measured exposure and
that this bias may occur in either direction, dependent on
the correlation structure of the data. The mean coefficient
estimate of the interaction did not vary with confounder
measurement error, but the mean ratio estimate did. This
is in contrast to the situation observed for measurement
error in an exposure, where the mean coefficient estimate
of the interaction varied with exposure measurement error
whilst the mean ratio estimate did not. We have con-
firmed the previously reported lack of effect of exposure
measurement error on the ratio estimate of interaction
[36], but reveal that the coefficient estimate is biased
towards the null in the scenarios considered. Modest

amounts of measurement error in the exposure may lead
to substantial bias in estimates of the interaction coeffi-
cient. The estimated genotype effect is unaffected by meas-
urement error in the confounder.

For the scenarios considered, we also confirm that statisti-
cal power to detect the interaction is reduced by measure-
ment error in the exposure [37] and reveal that this is due
to attenuated estimates of the interaction coefficient. In
addition, we reveal that measurement error in a con-
founder has no noticeable effect on statistical power for
assessing the interaction, whether presented as the coeffi-
cient or the ratio estimate. This is because measurement
error in the confounder has no noticeable effect on either
the estimate of the interaction coefficient or its standard
error; it is measurement error only in an exposure (not a
confounder) that reduces power to detect an interaction
term.

Table 3: The effect of measurement error in an exposure on the probability of rejecting the null hypothesis (H0) for the test for 
statistical interaction.

Coefficient for 
true effect of 

interaction (β3)

Ratio for true 
effect of 

interaction (β3 + 
β2)/β2

Probability of rejecting H0 for test of interaction

σu
2 = 0 σu

2 = 1 σu
2 = 2 σu

2 = 4 σu
2 = 9

0.0 1.0 5% 5% 5% 5% 5%
0.5 1.5 87% 54% 38% 26% 16%
1.0 2.0 100% 97% 87% 67% 41%
2.0 3.0 100% 100% 100% 98% 82%

True values of coefficients β1 = 1 (binary genotype), β2 = 1 (continuous exposure), β3 (interaction term) given in first column. No confounding 
present, β4 = 0. Simulations based on 10,000 simulations of 1000 observations.

Table 2: The effect of measurement error in an exposure σu
2 on estimated exposure ( 2) and interaction between the exposure and 

a perfectly measured genotype ( 3).

Coefficient 
for true 
effect of 

interaction(
β3)

Ratio for 
true effect 

of 
interaction(
β3+β2)/β2

2(sd of estimate) 3(sd of estimate)

σu
2 = 1 σu

2 = 2 σu
2 = 4 σu

2 = 9 σu
2 = 1 σu

2 = 2 σu
2 = 4 σu

2 = 9

0.0 1.0 0.50 (0.05) 0.33 (0.04) 0.20 (0.03) 0.10 (0.02) 0.00 (0.12) 0.00 (0.10) 0.00 (0.08) 0.00 (0.06)
0.5 1.5 0.50 (0.05) 0.33 (0.04) 0.20 (0.03) 0.10 (0.02) 0.25 (0.13) 0.17 (0.11) 0.10 (0.09) 0.05 (0.06)
1.0 2.0 0.50 (0.05) 0.33 (0.05) 0.20 (0.03) 0.10 (0.02) 0.50 (0.14) 0.33 (0.12) 0.20 (0.09) 0.10 (0.07)
2.0 3.0 0.50 (0.05) 0.33 (0.04) 0.20 (0.04) 0.10 (0.03) 1.00 (0.16) 0.67 (0.14) 0.40 (0.11) 0.20 (0.08)

True values of coefficients β1 = 1 (binary genotype), β2 = 1 (continuous exposure), β3 (interaction term) given in first column. No confounding 

present, β4 = 0. Simulations based on 10,000 simulations of 1000 observations. Monte Carlo error is 1% of the empirical standard deviation of the 

estimates for 2 or 3; approximately 0.0005 for 2 and 0.0015 for 3.

β̂

β̂

β̂ β̂

β̂ β̂ β̂ β̂
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For main effects only, in the absence of interaction, power
in detecting an exposure effect is decreased by exposure
measurement error in all the scenarios considered. How-
ever, confounder measurement error may either increase
or decrease the probability of rejecting H0 for the main
exposure effect, since bias in estimating the exposure
effect may occur either towards or away from the null
whilst standard errors are virtually unaffected.

The practical illustration demonstrates that relatively large
biases may occur due to measurement errors, and this
highlights the dangers of ignoring measurement error not
only in exposure variables but also in their confounders.
However, the strongest impact on the model estimates
was adjustment for confounding before taking con-
founder measurement error into account, illustrating that
it is still probably better to adjust for a confounder meas-
ured with error than not to adjust for it at all [38]. How-
ever, it is important to note that adjustment for covariates
which are not true confounders can also lead to bias [39].

Our main result is that random error in a confounder does
not influence the estimate of a gene-environment interac-
tion in the situations described, so if the primary goal of a
study is estimating the gene-environment interaction,
measurement error in a confounder is of lesser impor-
tance. However, these results are only directly applicable
to situations under the same conditions as the simula-
tions. Other situations are possible:

(i) We have assumed that the genotype is independent of
the exposure and confounder, including independence
from the exposure variance and exposure error variance.
This is not an unreasonable assumption in most epidemi-
ological settings because it is unlikely that genotype will
influence an environmental exposure such as dietary

intake, or an environmental confounder that is associated
with the exposure and the outcome. Similarly, other
potential confounders such as age or sex are unlikely to be
related to most genotypes under study. However, this
assumption must hold for these results to be valid.

(ii) We have also assumed a simple random error model.
In nutrition it is quite common for a dietary assessment
tool to measure diet with a component of bias and atten-
uation in addition to random error, such that W = a + bX
+ U, where a indicates the component of bias in the meas-
ured W and b a component of attenuation multiplying
exposure X. Whilst regression calibration is able to esti-
mate E(X|W) providing an adequate validation measure is
available (e.g. a biomarker for the exposure), the com-
bined effects of the different sources of mis-measurement
will be more complicated than those described in this
paper.

(iii) A further assumption is that there is no genotype by
confounder interaction. If this were the case then con-
founder measurement error would influence the estimate
of the genotype by exposure interaction.

(iv) For logistic regression with a binary outcome, the esti-

mated coefficients 1 and 3 are affected by measure-

ment error in the confounder because of the non-identity
link function.

(v) Any measurement error in the genotype will add addi-
tional error in the manner of any other exposure, biasing
the estimate of the interaction effect.

The suggestion that confounder measurement error has
no effect on the estimate of the interaction term under the

β̂ β̂

Table 4: Comparison of methods for handling measurement error in a real dataset using a repeat FFQ on a 33% sub-sample, with total 
energy intake as potential confounder.

Without adjustment for total energy intake With adjustment for total energy intake With adjustment for 
total energy intake

Ignoring all 
measurement error

Regression calibration Ignoring measurement 
error

Regression calibration 
assuming energy 
intake perfectly 

measured

Regression calibration 
allowing for 

measurement error in 
energy intake

0 (se)
3.69 (.02) 3.64 (.02) 4.04 (.05) 4.00 (.05) 4.19 (.08)

1 (se)
.48 (.20) .38 (.32) .42 (.20) .32 (.32) .32 (.33)

2 (se)
.41 (.03) .51 (.04) .45 (.03) .56 (.04) .57 (.04)

3 (se)
.88 (.27) 1.04 (.40) .95 (.27) 1.12 (.39) 1.14 (.39)

4 (se) (× 1000)
- - -.15 (.02) -.16 (.02) -.24 (.03)

β̂

β̂

β̂

β̂

β̂
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conditions outlined above does not detract from the
impact it may have on other estimates. Confounder meas-
urement error leaves residual confounding that may have
a substantial impact on the estimated effect of correlated
covariates.

One way to view the effect of confounder measurement
error on the estimated interaction effect is to consider the
interaction term as allowing the exposure effect to vary
across two subgroups defined by genotype (e.g. carriers
and non-carriers). The interaction term measures the dif-
ference in exposure effect between the two subgroups.
Measurement error in a confounder biases the effect of
exposure to the same extent in each subgroup, and there-
fore does not alter the estimated interaction term. If a sit-
uation arose in which confounder measurement error
differed across the subgroups, perhaps through different
data collection procedures, then this would lead to con-
founder measurement error biasing the estimated geno-
type by exposure interaction.

Many exposures in nutrition epidemiology have much
greater measurement errors associated with them than
those in our illustration. Reliability ratios are commonly
in the region of 0.3 to 0.5, and even these may underesti-
mate the magnitude of the problem; ratios in the order of
0.1 or 0.2 may be more realistic when derived from mod-
els calibrating measured intake against biomarkers
[20,40].

Conclusion
Estimated coefficients for the main effects cannot be
assumed to be conservative and only attenuated towards
the null in the presence of measurement errors, since
errors in confounders may lead to bias in either direction.
Measurement error has a more predictable effect on inter-
action coefficients, which are generally biased towards the
null by random measurement error in exposure variables
though unaffected by random confounder measurement
error in linear regression when genotype can be assumed
error-free and independent of exposure and confounder.
Despite this, when designing studies where covariates are
anticipated to contain measurement error, it is important
not only to estimate the measurement error variance of
the exposure, but also the measurement error structure of
potential confounders. This may have cost implications
for large cohort studies where repeated measurements,
more labour intensive instruments, or biomarkers may be
needed for a large subsample in order to provide adequate
precision to adjusted estimates.
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