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A New Preconditioner Design Based on Spectral Division for Power 
Flow Analysis

Hasan Dağ1, E. Fatih Yetkin2, Murat Manguoğlu3

Abstract –  Solution of large sparse linear systems is the most time consuming part in many  
power system simulations. Direct solvers based on LU factorization, although robust, are known  
to have limited scalability on parallel platforms. Thus, Krylov subspace based iterative methods  
(i.e. Conjugate Gradient method, Generalized Minimal Residuals (GMRES) method) can be used  
as  alternatives.  To  achieve  competitive  performance  and  robustness,  however,  the  Krylov  
subspace methods need a suitable preconditioner. In this work we propose a new preconditioner  
for iterative methods, which can be used in Newton-Raphson process of power flow analysis. The  
suggested preconditioner employs the basic spectral divide and conquer methods and invariant  
subspaces for clustering the eigenvalues of the Jacobian matrix appearing in Newton-Raphson  
steps of power flow simulation. To obtain the preconditioner, we use Matrix Sign Function (MSF)  
and to obtain the MSF itself we use Sparse Approximate Inverse (SPAI) algorithm with Newton  
iteration. We compare the convergence characteristics of our preconditioner against the well-
known black-box preconditioners such as incomplete-LU and SPAI.
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Symbol list:
A nxn coefficient matrix
B  nx1 right hand side vector
X solution vector

)(AΛ  spectrum of matrix A
P nxn projector matrix
I nxn identity matrix
Qb nxn orthogonal matrix
Mb nxn preconditioner matrix
M sparse approximate inverse of the matrix A
sign(A) Matrix Sign Function of matrix A
nnz(A) Number of non-zeros of matrix A

ηρ , the number of positive and negative 
eigenvalues of matrix A, respectively.

βα , Real numbers to determine the borders for 
eigenvalues

I. Introduction
The power flow problem in an electrical transmission 

system is mainly based on a solution of a set of non-linear 
equation. Application of the Newton-Raphson method to 
the non-linear  set  of equations results at  each Newton-
Raphson iteration  in a  linear  system and has  the form 
below. 

 







∆
∆

=







∆
∆ Θ









Q
P

VLM
NH

      (1)

These equations represent only one step of the power 
flow problem. Several applications and solution methods 
about power flow analysis can be found in the literature 
[1-5]. They are traditionally solved by the direct methods 
with sparse  techniques  [1].  This  equation  set  is  in  the 
form of Ax=b and this notation will be used for the rest of 
the paper.

Much attention has been paid to the solution of linear 
systems.  While  direct  solvers  are  robust  methods  [6], 
iterative methods have also been shown to be almost as 
robust  as  direct  solvers  if  a  suitable  preconditioner  is 
used.  Richardson  iterations,  Krylov  subspace  methods, 
and Chebyshev iterations are some examples of the most 
commonly  used  iterative  methods.  These  types  of 
iterative  methods  can  be  classified  in  two  different 
subclasses  as  symmetric  and  un-symmetric  methods 
according  to  the  type  of  the  coefficient  matrices.  For 
large and sparse systems, Krylov subspace methods (such 
as CG, GMRES, etc.) have been proven to be much more 
effective. Their advantage over direct methods [7], [8] is 
two  folds:  (i)  better  parallelism  (ii) less  memory 
requirement.  Much  work  has  been  done  on 
preconditioning techniques [9-10]. 

The  preconditioner  we  propose  aims  to  remove 
extreme eigenvalues of the Jacobian matrix with the help 
of an orthogonal  similarity transformation.  The method 
only needs some basic information about the eigenvalue 
spectrum of  matrix  A.  This  information  can  easily  be 
obtained by the eigenvalue inclusion theorems, such as 
that  of  Gerschgorin or  the  well-known Power  iteration 
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[11]. With this information some regions can be defined 
in  the  complex  plane  to  construct  the  orthogonal 
transformation  matrices  to  remove  the  extreme 
eigenvalues.  It  is  proved  that  the  eigenvalues  of  the 
Jacobian matrix in the power flow problem do not change 
significantly in  Newton-Raphson steps  [1].  One of  the 
advantages  of  the proposed  preconditioner  is  based  on 
this fact. The core computational effort needed is, thus, in 
the first step of the Newton-Raphson iteration since the 
same  preconditioner  can  be  used  in  the  subsequent 
Newton-Raphson  iterations.  The  basic  tool  for  this 
purpose  is  matrix  sign  function  (MSF),  which behaves 
like its  scalar  equivalent.  Scalar  sign function,  extracts 
the  sign  of  a  real  number.  Similarly,  MSF detects  the 
signs of eigenvalues of a matrix and it returns two blocks 
of identity matrix. The size of the first block of identity 
matrix gives us the number of positive eigenvalues of the 
matrix and the size of the second one gives the number of 
negative  eigenvalues.  Furthermore,  one  can  perform  a 
rank-revealing  QR  decomposition  on  the  sign(A)+I or 
sign(A)-I to  compute  an  orthonormal  basis  for  the 
invariant subspace of the eigenvectors in the right or the 
left half-plane [12]. In addition to that one can implement 
the  same  operations  on  a  shifted  matrix  to  find  the 
number of eigenvalues larger or smaller than a selected 
real number or the invariant subspace of the eigenvectors 
on a desired part of the complex plane. This orthonormal 
base can be employed to remove the extreme eigenvalues 
of the Jacobian matrix. In fact, the proposed method uses 
more floating-point operations than those of the similar 
type preconditioners.  On the other hand, the method is 
easy  to  parallelize  and  the  building  blocks  of  the 
algorithm are all well-known block matrix operations like 
matrix multiplication or QR decomposition. 

Most  time  consuming  part  of  the  suggested 
preconditioner  is  the  computation  of  MSF.  It  requires 
matrix  inversion.  The  Sparse  Approximate  Inverse 
(SPAI), however, can be used to obtain an approximate 
MSF, which can be used in the construction phase of the 
preconditioner.  SPAI  technique  is  an  efficient 
preconditioner implementation for sparse linear systems 
[13].

In  this  work,  we especially focus on developing the 
method. Therefore, well-known IEEE test cases (30 bus, 
57  bus,  118  bus  and  300  bus)  are  used  to  show the 
accuracy and the effectiveness.

The rest of the paper is organized as follows. In the 
second section, mathematical tools of the algorithm are 
briefly introduced and the algorithm itself is described. In 
the  third  section,  some  numerical  test  results  and 
comparisons are given. Finally, in the last section some 
conclusions and future work are presented.

II. Method and Algorithm
A  new  preconditioner  based  on  matrix  sign  function 
(MSF) and spectral decomposition is presented. The aim 
of  a  preconditioner  can  be  thought  as  the  process  of 

grouping of the eigenvalues of the coefficient matrix at 
hand. In the proposed method, MSF is employed to group 
the eigenvalues of the coefficient matrix A. MSF is a very 
powerful and useful tool for matrix analysis. It is possible 
to employ the MSF to build a spectral projector [14].

Definition  2.1:  Let  )(ZΛ show the  spectrum of  nxn 
dimensional  square  matrix  Z and 21)( Λ∪Λ=Λ Z , 

∅=Λ∩Λ 21 . If  P is the invariant subspace of  )(1 ZΛ  
any projector onto P is called as spectral projector. Basic 
properties of the spectral projectors can be given as:

• range(P)=range(AP)
• ker(P)=range(I-P), range(P)=ker(I-P)
• (I-P) is a spectral projector for )(2 ZΛ

Spectral  projectors  can be  used to  split  the matrices 
into  diagonal  blocks  based  on  its  eigenvalues.  The 
algorithm for block decomposition of a matrix by spectral 
projectors is given in its general form in Alg. 1 [14].

Algorithm 1 BLOCK DECOMPOSTION
Input: Spectral projector P
Output: Diagonal blocks of matrix A

1. Compute rank revealing  QR decomposition of 
the projector as Π= QRP .

2. Build  A-invariant  1S  subspace from the first  k 
column of the orthogonal matrix Q.

3.  Compute the below transformation
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II.1. Computation of Matrix Sign Function

There are a few ways to compute MSF in the literature 
[15]. One of the main approaches of MSF computation is 
based  on  Newton  iteration,  which  uses  the  equation 
below.

IS =2      (3)

Here, )(AsignS = , is a sign function of matrix A and I is 
an  identity  matrix  in  appropriate  dimensions.  If  the 
Newton iteration method is applied to (3) one can obtain 
the iteration for MSF.

AAwithAAA iii =+= −
+ 0
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  (4)

Iteration in (4)  is  quadratically convergent  in global 
sense [12]. But it uses the inverse of A, which makes (4) 
computationally expensive. There are many variations of 
this iteration and they can be found in the literature [16], 
[17], [18]. But most of these methods are also based on 
matrix  inversion and  hence  they are  not  suitable  to  be 
used as a preconditioner. Obviously, if the inverse of the 
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matrix  A is available, a matrix-vector product can solve 
the equation set. 

To overcome this problem, we combine some special 
sparse  matrix  tools  like  Sparse  Approximate  Inverse 
(SPAI) and sparse QR decomposition to compute matrix 
sign  function  decomposition  in  shorter  time  with  a 
satisfactory accuracy.  SPAI approach itself can also be 
used  as  a  preconditioner.  Some  comparisons  are  also 
made between SPAI preconditioners  and  our  proposed 
preconditioner. 

SPAI [19] algorithm computes a sparse approximate 
inverse  M of  a  given  sparse  matrix  A by  minimizing 

|||| IAM − F  provided that the sparsity structure of  M is 
the same as the original matrix.

To compute MSF of a matrix  A, one can employ the 
SPAI  method  to  produce  the  approximate  inverse  in 
every step of the Newton iteration given in (4). Because 
of  the  use  of  approximate  inverse  instead  of  exact 
inverse, the number of Newton iterations in (4) increases. 

Another important advantage of using SPAI to obtain 
MSF is the preservation of sparsity. Electrical power flow 
Jacobian matrices mostly have very sparse structures. But 
if one employs the Newton iterations method, because of 
the matrix inversion, sparsity of the matrices will be lost. 
Clearly,  computing  the  exact  inverse  is  both 
computationally and storage wise expensive. 

In  following  experiments  a  sparsity  and  accuracy 
comparison  is  performed  between  the  MSF  matrices 
computed by direct inversion in (4) and SPAI. 

TABLE I
COMPARISON OF THE MATRIX SIGN FUNCTIONS OBTAINED BY SPAI AND DI 

(DIRECT INVERSE)

Test 
Case

Number of 
Iterations Sparsity Accuracy

SPAI DI SPAI DI SPAI DI
IEEE57 86 10 0.099 1 6.8*10-10 4.6*10-15

IEEE118 81 8 0.036 1 4.2*10-10 1.5*10-14

IEEE300 42 10 0.014 1 1.5*10-10 1.8*10-15

In all experiments the tolerance for Newton iterations is 
10-10. In the Table I, two different measures are used to 
compare the different computational techniques of MSF. 
Sparsity is defined as the ratio of non-zero elements to 
square of dimension of the matrix. It can be defined as,

 2
)(

n
Annzsparsity =   (5)

where n is the dimension and nnz stands for  the number 
of non-zeros of  A.  The accuracy of the computation is 
given by,

))(( 2 IAsignnormaccuracy −=   (6)

where I is the identity matrix. The convergence graph for 
both type of computations are given in Fig. 1.

Fig. 1. Convergence history of MSF for IEEE 300 bus system, when 
SPAI and exact inverse methods are used in (4).

As shown in Table I and Fig. 1, if SPAI is used to obtain 
the  approximate  inverse,  number  of  iterations  of  the 
Newton  method  for  MSF  increases.  This  increase, 
however, can be compensated by the main advantage of 
using  SPAI  in  MSF  computation,  namely,  the 
preservation  of  the  sparsity  structure  and  the  reduced 
computational  cost.  The  sparsity  preservation  is 
important  to  obtain  satisfactory  computational  cost  for 
the preconditioner preparation step of the whole solution 
procedure.  In  Fig.  2  sparsity structure  of  the MSF for 
Jacobian matrix of the IEEE 300 bus test system is given.

Fig. 2. Sparsity structure of the sign(A) for IEEE 300-bus test system 
when SPAI is used for inversions. Here, the sparsity structure of  A is 
preserved  as  much  as  possible  by using  proper  parameters  in  SPAI 
algorithm.

II.2. Counting Eigenvalues with Matrix Sign Function

To  build  a  spectral  projector  effectively,  some 
information regarding the spectral  of  A is needed.  The 
number of the eigenvalues in slices of complex domain 
can give  us  a  rough idea  about  the  distribution of  the 
eigenvalues.  Although  there  are  some  methods  for 
counting  eigenvalues  using  characteristic  polynomials, 
such  as  Gleyse,  Wilf,  methods  etc.,  they  are  not 
computationally feasible [20]. Instead, MSF can be used 
for counting the eigenvalues. To compute the numbers of 
eigenvalues in a pre-determined slice of complex plane 
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one  can  use  the  basic  properties  of  the  matrix  sign 
function [14].

Theorem 2.1: Let ηρ ,  be the numbers of the positive 
and negative eigenvalues of matrix A, respectively. Then 
the trace of sign(A) can be computed by trace(sign(A))= 

ηρ − . In addition, the size of the matrix  A is equal to
ηρ +=n .  From  this  point,  one  can  obtain  the 

relationships below.

)))(((
2
1 Asigntracen +=ρ

)))(((
2
1 Asigntracen −=η   (7)

Above theorem gives the number of eigenvalues with 
respect  to the origin.  If  the origin is shifted with some 
scalar β , it can still be used to obtain the number of the 
eigenvalues larger or smaller than β . 

Theorem 2.2:  Let  ℜ∈β and assume that there is no 
eigenvalues  of  A with real  part  equal  to  β .  Let  ηρ ,
denote  the  number  of  the  eigenvalues  with  real  parts 
larger and smaller than β , respectively. Then, we have

)))(((
2
1 IAsigntracen βρ −+=

ρη −= n   (8)

This approach can be used to determine the number of 
the  eigenvalues  of  matrix  A in  ],[ βα  slice  in  the 
complex plane [14].

Theorem 2.3: Let  ℜ∈βα , and assume that there are 
no eigenvalues of matrix  A with real parts neither equal 
to α  nor to β . In that case, one can find ρ  that shows 
the number of the eigenvalues of matrix A with real parts 
in between α  and β  as; 

)))()(((
2
1 IAsignIAsigntrace βαρ −−−=  (9)

Gerschgorin theorem can be used to specify the largest 
borders  for the eigenvalue spectrum of matrix  A.  Then 
some  linear  slicing  can  be  used  to  determine  the 
distribution of  the  eigenvalues  with MSF.  This  idea  is 
illustrated  in  Fig.  3.  Another  possible  solution  for  the 
selection  of  a  border  for  eigenvalue distribution  is  the 
power iteration [11]. Using power iteration the real part 
of the largest eigenvalue can be found approximately and 
then it can be used as the border value. The importance 
of  the  determination  of  the  border  value  is  about  the 
selection of β . Once the border is selected it is possible 
to find an appropriate β  as a ratio of the border value. 

Fig. 3. The number of the eigenvalues for the Jacobian of the 118-bus 
test  system in  the  first  step of the  Newton-Raphson  algorithm.  This 
graph is obtained with MSF using 5 different  β values. In the figure, 
eigenvalues of IEEE 118-bus test case clustered in between the origin 
and 110. 

The selection of the β  parameter is completely problem 
dependent. But in the experiments we have observed that 
30-40%  of  real  part  of  the  largest  eigenvalue  will  be 
enough for an accurate and reliable preconditioner. The 
most important point in this estimation is the fact that the 
percentage is not related to the number of eigenvalues. In 
other words, the selected domain does not need to cover 
the  same  percentage  of  the  eigenvalues.  In  all  of  the 
following experiments  β  is chosen as 40% of real part 
of the maximal eigenvalue. 

II.3. Computing Invariant Subspaces via MSF

MSF can  be  employed  to  compute  a  matrix  whose 
eigenvalues are equal to the eigenvalues of matrix A in a 
specific range [14]. More technically:

Theorem 2.4: Let ℜ∈β  and matrix S be defined as:

))((
2
1 IAsignIS β−+=              (10)

By applying the rank revealing QR onto this matrix S, 
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is obtained. Here,  S11 is a  kxk dimension matrix and  k 
equals to the number of the eigenvalues of matrix A that 
are larger than β . The orthogonal matrix Qb can be used 
for the transformation below.
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Finally, matrix B11 is a kxk matrix whose eigenvalues are 
equal to the eigenvalues of matrix A with real parts larger 
than β .  Since  S is  a  sparse  matrix,  one  can  use 
appropriate  sparse  QR  decomposition  methods. 
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Therefore,  it is possible to obtain  B without computing 
AQQT  explicitly. 

The same procedure in eigenvalue counting algorithm 
can be used to obtain the invariant  subspaces in above 
theorem  and  it  is  possible  to  compute  different  B11 

matrices based on the geometry selection in the complex 
plane.

II.4. Building a Preconditioner with MSF

To accelerate the convergence rate of an iterative method 
for solution of linear systems, a preconditioner has to be 
used. The preconditioners are thoroughly studied in the 
literature [9], [21]. We shall keep in mind that there is not 
a  single  preconditioner  that  is  suitable for  all  types  of 
linear systems. Preconditioning mainly aims to reduce the 
condition number of the coefficient matrix. Basically the 
process can be summarized as reducing the groups of the 
eigenvalues  of  the  coefficient  matrix.  In  this  work, 
orthogonal  spectral  projectors  are  employed  to  reorder 
and to deflate the effect of the extreme eigenvalues of the 
coefficient  matrix  A.  Based  on  Theorem 2.4;  one  can 
observe that MSF can also be useful for this purpose. 

In the proposed method, MSF is used to produce an 
orthogonal projector for transforming matrix  A into the 
form given in (12).  After that operation one can define 
several preconditioners to accelerate the iterative method. 
In this work, we use GMRES. In [22], MSF is explained 
in detail.  In  this work,  three  different  approaches  with 
different  computational  tools  (like  SPAI  method  and 
power  iteration)  are  investigated  for  the preconditioner 
design given in [22]. 

1) First Approach:  After a suitable  β  value is found 
with  the  help  of  either  the  power  iteration  or 
Gerschgorin  discs,  Theorem  2.4  can  be  used  to 
obtain the block diagonal form of the matrix A as B. 
Theoretically, the eigenvalues of the matrix  B11 are 
equal to the eigenvalues of the matrix A whose real 
parts  are  greater  than β .  When  SPAI  method  is 
used, however, the eigenvalues of B11 are no longer 
equal  to  the  eigenvalues  of  A  but  they  are 
approximately equal and this is usually acceptable 
for  a  preconditioner.  The  eigenvalue  distributions 
are shown in Fig. 5. Table I shows the results of a 
comparison  of  the  accuracy  of  the  matrix  sign 
function  obtained  using  SPAI  and  exact  inverse. 
Once  orthogonal  transformation  matrix  Qb is 
computed by theorem 2.4, the preconditioner matrix 
Mb is  obtained  as  a  combination  of  an  identity 
matrix and B11 matrices as given in Fig. 4.

More  precisely,  the  preconditioner  matrix  for  the  first 
approach can be given as,









=

− kn
b I

B
M

0
011                (13)

Fig. 4. Structure of the preconditioner matrix for the first approach. 

where B11 is a kxk matrix and In-k is an (n-k)x(n-k) identity 
matrix.  B11 contains the approximate eigenvalues of the 
matrix  A larger  than  the  pre-selected  value β .  This 
situation  is  illustrated  for  118-bus  IEEE  test  example, 
Here, 80=β  and it is clear  that eigenvalues of  B11 are 
approximate  and  some  unexpected  values  are  also 
computed by MSF with SPAI. Here SPAI is employed to 
preserve the sparsity structure of the matrix A. 
After the Qb matrix is applied onto the linear equation set 
Ax=b, we get

bQxQAQQ T
b

T
bb

T
b =)(   

(14) In (14), the matrix Qb is multiplied with A from both 
sides to make the eigenvalues of A to be in the same 

Fig. 5. Eigenvalues of the Jacobian matrix for one-step in power flow 
Newton-Raphson  iteration  and  the  eigenvalues  of  B11, which  is 
produced  by  MSF  with  SPAI.  Due  to  the  error  coming  from 
computation of MSF with SPAI, eigenvalues of B11 are not the same as 
those of A. 

order as those of the preconditioner matrix  Mb. Finally, 
the original system is transformed into Anxn = bn where,

 b
T
bn AQQA =

bQb T
bn =

xQx T
bn = (15)

The  new linear  system can  be  solved  by  any suitable 
iterative method with a preconditioner  Mb. In this case, 
dimension of  the matrix  B11 is  determined  by the pre-
selected β  values. In Fig. 6, dimension of the matrix B11 
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as we vary  β  values are shown with exact inverse and 
SPAI in MSF computation step of the algorithm. 

Fig. 6. Change of the dimension of B11 according to pre-selected  β
values  with  exact  and  sparse  approximate  inverse  usage  in  MSF 
computation.

It can be seen from Fig. 6 that the size of B11 block in the 
preconditioner  is  mainly based  on  the  pre-selected  β  
value and the accuracy of the method is getting worse for 
larger β values. The main reason is that a larger β  value 
causes less eigenvalues to be selected and therefore one 
has to use more accurate methods like exact inverses in 
MSF computation. The dependency of the first method to 
parameter β  can be diminished by including B22 into the 
preconditioner.  This  idea  is  described  in  detail  in  the 
second approach.
2) The Second and Third Approaches (M2 and M3):  To 
reduce  the  effect  of  β  and  to  build  a  more  reliable 
preconditioner one can select both of B11 and B22 blocks. 
In that case, the dimension of B11, depending on this β  
parameter, does not affect the accuracy and the reliability 
of  the  preconditioner  based  on  the  experimental 
observations.  By setting dimensions of B11 and B22 to be 
almost equal,  we can achieve better  load balancing for 
parallelism. The structure of the preconditioner matrix in 
the second approach is given in Fig. 7.
 

Fig. 7. Structure of the preconditioner matrix for the second approach.

Implementation of the preconditioner is exactly the same 
as that  of the first  approach.  Here,  the effect  of  B12 is 
neglected since its Frobenious norm is relatively small. In 
order  to have a basis for comparison one can come up 

with a third approach by including the B12 block into the 
preconditioner  as  well.  Structure  of  the  third  type  of 
preconditioner is given in Fig. 8.

Fig. 8. Structure of the preconditioner matrix for the third approach.

The algorithm for forming the preconditioner and solving 
the systems using the preconditioner are given in Alg.2. 
We emphasize,  however,  it  is  not  required to form the 
preconditioner explicitly and this information is provided 
here only for illustration of the method.     

Algorithm 2 MSF-BASED PRECONDITIONERS
Input: Matrix A, right hand side vector b, r (percentage  
of eigenvalue with the largest real part), preconditioner 
type b.
Output: (i)  Preconditioner  Mb  and (ii)  Solution of the 
systems using the preconditioner Mb

(i) Obtaining the preconditioner: 
1. Find the eigenvalue of matrix A with the largest 

real part and assign to η . 
2. Select β =η -rη .
3. Use theorem 2.4 to compute B11, B12, B22, and Qb 

by using SPAI. 
4. Build Mb matrices as

If (b = 1) 







=

− kn
b I

B
M

0
011

If (b = 2) 
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


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M b

If (b = 3) 







=

22

1211

0 B
BB

M b

(ii) Solving systems using the preconditioner Mb 

1. Compute An and bn using (15).
2. Use an iterative method to solve linear equations 

with the preconditioner Mb and obtain nx
3. Retrieve the true solution x = Qbxn
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II.5. Numerical Results

II.6. Comparison of MSF based methods

Some popular and well-known IEEE power test systems 
are  used  for  the  experiments.  In  every  step  of  the 
Newton-Raphson iteration a Jacobian matrix is created. 
The first Jacobian is used in the following experiments. It 
has  been  proven  that  the  eigenvalues  of  the  Jacobian 
matrix  in  different  steps  do  not  vary  dramatically  [5]. 
This  is  an  important  advantage  of  the  proposed 
preconditioner. The preconditioner is created at the very 
beginning,  as  a  preprocessing  step  and  is  used  for 
different  Jacobians.  The  main  properties  of  the  test 
matrices are given in Table II.

TABLE II
SOME NUMERICAL PROPERTIES OF THE IEEE TEST CASES

Number 
of buses

Matrix 
Size

Number of 
Non-zeros Cond(A)

30 53 333 492.81
57 106 718 825.09
118 181 1051 3.17x103

300 530 3736 1.16x105

In  this  work,  three  variations  of  MSF-based 
preconditioners are proposed. In  the first case, we take 
only the B11 block to form the preconditioner. However, 
this  is  not  enough  to  build  a  sufficiently  effective 
preconditioner.  B22 and B12 can also be included to form 
the second and the third types of preconditioners. First, 
the proposed preconditioners are compared to each other 
based on their effects on eigenvalue distribution of the 
preconditioned system. Then, all of them are compared to 
the  well-known  Incomplete  LU  (ILU)  methods  and 
Sparse Approximate Inverse (SPAI) type preconditioners. 
In  the  first  test,  IEEE  118  bus  test  case  is  used  and 
eigenvalue  distributions  of  different  cases  are 
investigated. For all type of preconditioners β is selected 
as 80.  It can be seen from the Fig. 9, the eigenvalues of 
the  preconditioned  system  matrices  are  much  better 
clustered around 1 for second and third approaches.       
Though  the  eigenvalues  of  the  preconditioned  system 
with  first  approach  is  also  clustered,  still  they  are 
scattered in a relatively wide area of complex plane. 
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Fig. 9. The eigenvalue distributions of the matrices A, M1
-1A, M2

-1A, and M3
-1A. The plots have different scales. But it can be seen from the subplots 

that eigenvalues with the second and the third approaches are much better clustered around 1.

II.7. Comparison between ILU, SPAI and MSF based  
methods

The same power flow data are used for the comparison 
of  the  most  widely  used  preconditioning  techniques, 
Incomplete  LU  (ILU),  and  the  suggested  MSF-based 
methods. Stand alone SPAI preconditioner is also used in 
the experiments for comparison. ILU methods produce an 
approximation  for  the  classical  LU decomposition  and 
these  incomplete  L and  U factors  are  used  as 
preconditioner [21]. ILU factorization has several types. 

1. ILU-Threshold:  The  entries  of  L and  U matrices 
below some threshold value are discarded and the 
resultant factors are used as preconditioners.

2. ILU('x'): Dropping  of  fill-ins  are  decided  by  the 
sparsity pattern  of  matrix  A.  For  example ILU(0) 
means no fill-in allowed outside the sparsity pattern 
of matrix A.

The residual history of restarted GMRES algorithm with 
several  types  of  ILU,  SPAI,  and  MSF  based 
preconditioners is shown in Fig. 10 In all tests, the restart 

value is chosen as 5,  stopping tolerance of GMRES is 
chosen as 10-6  and maximum iteration number equals the 
dimension of the Jacobian matrix. Parameters for SPAI 
method are selected to preserve sparsity of the original 
matrix  for  both  MSF  methods  and  SPAI  itself  as  a 
standalone preconditioner. 

Finally, preconditioners are compared in the Newton-
Raphson iterations of power flow simulation. To do this, 
Matpower package is used [23]. In  Matpower package, 
the  default  solver  is  classical  LU method.  To  test  our 
preconditioner,  the  solver  is  replaced  with  GMRES 
obtained from the templates of NETLIB [24]. In our tests 
we  used  118  and  300  bus  classical  IEEE  examples, 
important properties of which are given in Table I.

The second and the third approaches are employed for 
GMRES  iterations  in  Newton-Raphson  power  flow 
analysis. The preconditioner matrix is created only once 
and it used in all other Newton-Raphson steps. For IEEE-
300 test case, we observed that, GMRES with ILU(0) and 
ILUT (0.1) does not converge to the correct value. As a 
result one can say that satisfactory accelerations with the 
suggested MSF based preconditioners are obtained. 
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Fig. 10. The residual histories for the first Jacobian of IEEE-300 test case with several preconditioners are given. Here the second and the third  
approaches are in between the ILUT(0.01) and ILUT(0.001) preconditioners. So, the ILUT(0.001) preconditioner is very close to the direct solution 
and thus it can be said that the suggested approaches accelerate the GMRES iteration sufficiently. On the other hand if SPAI preconditioner alone  
used with default parameters (sparsity preserved) as in MSF computations for second and third approach, it was not converged.

TABLE III
ITERATION NUMBERS IN EACH NEWTON-RAPHSON STEP WITH A NEW PRECONDITIONER FOR EVERY STEP.

THE TEST CASE IS: IEEE – 118 

NR-iteration M2 M3
SPAI ILU(0) ILUT(0.1) ILUT(0.01)

1 25 12 F 8 9 2
2 35 15 F 11 12 2
3 49 24 F 16 17 3

TABLE IV
ITERATION NUMBERS IN EACH NEWTON-RAPHSON STEP, WITH A NEW PRECONDITIONER FOR EVERY STEP.

THE TEST CASE IS: IEEE –300

NR-iteration M2 M3 SPAI ILU(0) ILUT(0.1) ILUT(0.01)
1 50 23 F F 406 27
2 48 18 F F 362 60
3 72 21 F F F 74
4 98 43 F F F 94
5 158 52 F F F 143

TABLE V
ITERATION NUMBERS IN EACH NEWTON-RAPHSON STEP WITH THE SAME PRECONDITIONER FOR EVERY STEP.

THE TEST CASE IS: IEEE–118

NR-iteration M2 M3 SPAI ILU(0) ILUT(0.1) ILUT(0.01)
1 28 11 F 8 9 2
2 41 17 F 13 11 2
3 58 58 F 17 16 2

TABLE VI
ITERATION NUMBERS IN EACH NEWTON-RAPHSON STEP WITH THE SAME PRECONDITIONER FOR EVERY STEP.

THE TEST CASE  IS: IEEE – 300

NR-iteration M2 M3 SPAI ILU(0) ILUT(0.1) ILUT(0.01)
1 69 20 F F 462 53
2 60 28 F F F 85
3 59 35 F F 339 105
4 121 53 F F F 156 
5 139 74 F F F 198
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The effectiveness of the proposed preconditioners can 
be also observed from the Tables III,  IV, V and VI. In 
tables, F shows the failure. If the same preconditioner is 
used in all Newton-Raphson steps, iteration numbers are 
not changed significantly. The main reason for this is the 
eigenvalue based design of the proposed preconditioners. 
In  the  literature,  it  is  proved  that,  eigenvalues  of  the 
Jacobian does not widely change for power flow analysis 
problems.  So  MSF  based  preconditioners  can  be 
computed  only once  and  then the  same preconditioner 
can be used in each steps of Newton Raphson iteration.

III. Conclusion
In  this  study,  we  presented a  new  preconditioner 

design  for  the  iterative  solution  of  the  linear  equation 
systems  arising  from  the  power  flow  simulations  for 
electrical power networks. Although direct methods with 
sparse techniques are very common in the area of power 
system simulation, these types of methods are not suitable 
for large problems due to fill-in and, more importantly, 
provides limited parallelism. Therefore, iterative methods 
have  to  be  considered  in  the  area  of  power  system 
simulations.  Iterative methods, on the other  hand,  need 
preconditioners  to  accelerate  the  convergence.  A  new 
preconditioner based on the Matrix Sign Function (MSF) 
is presented in this work. The main idea is to remove the 
extreme eigenvalues to reduce the number of eigenvalue 
clusters.  To  do  this,  spectral  division properties  of  the 
MSF is employed.  The main computational cost  of the 
preconditioner  is  the  computation  of  MSF.  Meanwhile 
some  well-known  computational  tools  like  QR 
decomposition also increase the computational cost of the 
design.  On  the  other  hand,  electrical  power  network 
matrices have extremely sparse structures.  So based on 
this  information,  SPAI  (Sparse  Approximate  Inverse) 
method can be employed to produce the MSF. With this 
approach, sparsity structure of the Jacobian is preserved. 
Our  method  uses  sparse  QR  factorization  which  is 
computationally  expensive.  This  additional  cost, 
however,  can  be  amortized  by  the  fact  that  it  will  be 
computed only once and the same preconditioner can be 
used  effectively  in  subsequent  Newton-Raphson 
iterations. In this regard, our algorithm has an advantage 
over the well-known preconditioner, such as incomplete 
LU.  Computational  tools  and  the  structure  of  the 
suggested  preconditioner  are  suitable  for  parallel 
processing.  So  our  foresight  about  the  parallel 
implementation of the suggested preconditioners will be 
effective  and  reliable.  In  our  future  work,  we plan  to 
improve the computational efficiency of the method and 
implement  it  on  a  parallel  platform  to  solve  larger 
problems.
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