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available at the end of the article

on the input data, the existence, uniqueness and continuous dependence upon the
data of the solution are shown. Some considerations on the numerical solution for
this inverse problem are presented with an example.

1 Introduction
Denote the domain D by

D:={0<x<1,0<t< T}
Consider the equation
Up = Uyy — p(Ou + f(x, 8, 1) (1)
with the initial condition
u(x,0) =px), =x€l0,1], (2)
the nonlocal boundary condition
u(0,t) =0, u(0,t) =uy(1,2), tel[0,T], (3)

and the integral overdetermination data

1
/ u(x,t)dx=E@), 0<t<T, (4)
0

for a quasilinear parabolic equation with the nonlinear source term f = f(x, £, u).

The functions ¢(x) and f(x, ¢, u) are given functions on [0,1] and D x (—00, 00), respec-
tively.

The problem of finding the pair {p(t), u(x, t)} in (1)-(4) will be called an inverse problem.
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Definition 1 The pair {p(t), u(x, t)} from the class C[0, T] x (C*1(D) N C*°(D)), for which
conditions (1)-(4) are satisfied and p(¢) > 0 on the interval [0, T], is called the classical
solution of inverse problem (1)-(4).

The problem of identifying a coefficient in a nonlinear parabolic equation is an interest-
ing problem for many scientists [1-3].

Inverse problems for parabolic equations with nonlocal boundary conditions are inves-
tigated in [4, 5]. This kind of conditions arise from many important applications in heat
transfer, life sciences, etc. In [6], also the nature of (3) type boundary conditions is demon-
strated.

These kind of conditions such as (4) arise from many important applications in heat
transfer, thermoelasticity, control theory, life sciences, etc. For example, in heat propaga-
tion in a thin rod, in which the law of variation E(t) of the total quantity of heat in the rod
is given in [7].

The paper organized as follows.

In Section 2, the existence and uniqueness of the solution of inverse problem (1)-(4) are
proved by using the Fourier method and the iteration method. In Section 3, continuous
dependence upon the data of the inverse problem is shown. In Section 4, the numerical
procedure for the solution of the inverse problem is given.

2 Existence and uniqueness of the solution of the inverse problem
Consider the following system of functions on the interval [0,1]:

Xo(x) =x, Xox-1(x) = x cos(2mkx), Xox(x) =sin(2wkx), k=1,2,...,

Yo(x) =2, Yor_1(x) = 4 cos(2mkx), Yor(x) = 4(1 —x)sin(2wkx), k=1,2,....

The systems of these functions arise in [8] for the solution of a nonlocal boundary value
problem in heat conduction. It is easy to verify that the systems of functions Xj(x) and
Yi(x), k=0,1,2,..., are biorthonormal on [0, 1]. They are also Riesz bases in L,[0,1] (see
(5, 91).

The main result on the existence and uniqueness of the solution of inverse problem (1)-
(4) is presented as follows.

We have the following assumptions on the data of problem (1)-(4):

(A;) E()eC'0,T),E(t)>0,E(t) <O.
(Az) (A2)1 o) € C*[0,1],
(A2)2 ¢(0)=0,¢'(0)=¢'(1), ¢"(0) = 0.
(As) (As); Let the function f(x,t, u) be continuous with respect to all arguments in D x
(—00, 00) and satisfy the following condition:

Af (e, t,u)  3Vf (¢, 11)
0x" ox"

<b(t,x)|u-u, n=0,1,2,

where b(x,t) € Ly(D), b(x,t) > 0.
(Az)y flx t,u) € C?[0,1], £ € [0, T],
(As)s fx, 8, u) =0 = 0, o, £, 4) lx=0 = fo (%, , ) [x=1, frn (%, ) 20 = O,
(Az)s fo(t)=0,Vte[0,T],
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where

1 1
<Pk=/ @ (%) Yi(x) dx, ﬁ(t)=ff(x,t,u)Yk(x)dx, k=0,1,2,....
0 0

By applying the standard procedure of the Fourier method, we obtain the following rep-
resentation for the solution of (1)-(3) for arbitrary p(t) € C[0, T]:

t 1
() = [gaoe-fép“’ds +2 / / £, T e [P0 g dT:|X0(x)
0 0

o0
't
£ Xoa (%) [%k_le—<2”k>2f-fo”<s>ds
k=1

t 1
+ 4/ / f(&,T,u)cos kg e @R[ p6)ds g dr]
0 0

o0
ke [t
+ szk(x)[(§02k — darktgy_y)e PR Lo p6) ds]
k=1

o0 t 1
D Xau®) [4/ / FE, T, u)(1 - &) sin2kg e GO D[ PO g d’}
k=1 0 0

- Z 47 kX5 (x)
“ 5)

t 1
) [4/ f FE T u)(t - ) cos 2k e PO Tp0% g dr]
0 JO

. t 1 .
uo(t) = o~ Jo P 4 / / f&, T, u)ge [POB ge dr,
0 0

usk(t) = [(pax — 47 ktgay1)e @R tlo ) “]

t prl "
+ [4 / / fE,T,u)(1 - &) sin 2w kg e TR DL PO s g d‘[]
0 JO

t pl .
- 4nk[4 / / FE,T,u)(t - T) cos 2k e PR D=L PO s e dr:|,
0 JO

U (t) = I:Qﬁzkle(znk)zt/"tp (s)ds

t pl .
’ 4/ / F(&, T, u) cos 2w kE e~ TR =)= [T PO ds g dr].
0 0

Under conditions (A3); and (A3),, the series (5) and ) 7, % converge uniformly in D
since their majorizing sums are absolutely convergent. Therefore their sums u(x, ) and
ux(x, ) are continuous in D. In addition, the series Y ;°, & and > ;2 % are uniformly
convergent for £ > ¢ > 0 (¢ is an arbitrary positive number). In addition, u(x, t) is continu-
ous in D because the majorizing sum of Y 7o, % is absolutely convergent under conditions
(Az), and (A3)s. Differentiating (4) under condition (A;), we obtain

1
/ ux,t)dx=E'(t), 0<t<T. (6)
0
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Equations (5) and (6) yield

p0) = 55| E @+ 30| o)

E(t)
Definition 2 Denote the set
{u®)} = {u0®), usk (@), w1 (), k = 1,....,n}

of continuous on [0, T'] functions satisfying the condition

o0
max |uo(t)| + Z( max |ux(£)| + max |u2k_1(t)|) <00
0<t<T P 0<t<T 0<t<T
by Bl. Let
o0
Juee)]| = max [wo0)] + ;(O@gmk(tn + max Juz1(6)])

be the norm in B;.
Let us denote

B, = {p(t) € C[0, 7] : p(t) = 0},

lp(®)|| = maxo<;<7 |p(¢)| be the norm in B,.
It can be shown that B; and B, are the Banach spaces.

Theorem 3 Let assumptions (A;)-(Asz) be satisfied. Then inverse problem (1)-(4) has a

unique solution.

Proof An iteration for (5) is defined as follows:

4o 0 = t)+2/ /fé,ru e PN 0 g g

UV (@) = (2(;3 1(2) + 4/ / (& 7,u™)cos 271/(5e’(z”k)z("’)’f;p(N)(S)dS dt dr,
0o Jo

Upk

8)
t 1
ug V(1) = ) (6) + 4/ / f(E7,u™)1-&)sin kg e CrR e f; PN O ds g 1o
0 JO

t pl
— 1671/(/ / f(f; T, M(N)) (¢ - 1) cos 277kée—(an)Z(t—r)iffp(N)(s) ds dt dt,
0 JO

where N =0,1,2,...and

(0) ~@rk)?t-[¢ pls) ds

t
ul)(£) = poe 0PIy (8) = (pox — Akt 1)e

”(2(;2 (B = 9021«167(2”/()2“'[5’7 (e)ds

From the conditions of the theorem, we have u(?(t) € B; and p© € B,.

Page 4 of 16
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Let us write N = 0 in (8).
t pl
ul) (t) = ul(t) + 2/ f f(& 7, u)dg dr.
o Jo

Adding and subtracting 2 fot fol f(&,7,0)dE dt to and from both sides of the last equa-
tion, we obtain

t 1 t 1
ugl)(t)=ug°>(t)+2/0 /0 [f(g,r,u<°>(s,r))-f(s,r,0)]dgdz+2f0 /Of(g,r,omgdr.

Applying the Cauchy inequality and the Lipschitz condition to the last equation and
taking the maximum of both sides of the last inequality yields the following:

max 15”0 <19l + VT 6 )] 17O |, + VT |56, 0)]
t prl
uly) () = pyre @0 4 4/ / [f(& 7,u) - f(&,7,0)] cos 2mkge ™D g gy
0 JO

¢l
+4 / / f(&,7,0)cos 2k @RXE) e g
0 Jo

Applying the Cauchy inequality, the Holder inequality, the Bessel inequality, the Lips-
chitz condition and taking maximum of both sides of the last inequality yields the follow-
ing:

o0 [o¢]
V3 V3
;OIQ%XTW(;;—IQ)N = kX—; |2k + 3 ||b(x, t) ||L2(D) ””(O)(t) ||B1 t 3 ”f(x, L O)HLz(D)'

Applying the same estimations, we obtain

o0
1)
max |(u,, (¢
> o o)

=D lewl+ == |
k=1 k=1

; (? 23T ) 563 [ O,

V3
3

+ 242 T|) If G, 0)||L2<D)'

Finally, we have the following inequality:

[e¢]

||u(1)(t)||Bl = 012;“;‘T|”8)(t)‘ + Z(Or?ng|u(21,2(t)| + org&xT|u;2_l(t)|>

o0 (o]

V6T

< lgol + Y (loakl + lgaral) + 3 D lena
k-1 k-1

23
+ <2ﬁ + *Tf + 4J§|T|) 16 0], oy |0,

+ <2ﬁ+ 23£ + 4~/§|T|) Hf(x’ t’o)”Lz(D)'

Page 5 of 16
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Hence uV(¢) € B;. In the same way, for a general value of N, we have

[ee]

™| B, = 0?&XT|ME)N)(t)| + Z(O?%XTW(Z]Z)(M + 0?&XT|M(2]Z11(L‘)|)

o]

< lgol + Y (Ipakl + lgaral) +
k=1

+ (2ﬁ + 23£ + 4ﬁ|T|) |6 D), )[4V )],

+ (2ﬁ+ %g + 4\/§|T|) Hf(x’ L 0)||L2(D)'

Since NV (t) € By, we have u™(¢) € B,
{M(t)} = {MO(t)) MZk(t)’ qu—l(t)rk =12,.. ~} € B1~

An iteration for (7) is defined as follows:

_ et [ ™)) 4
Ni(e) = %[ (t)+5/0f(s,r,u ) s},

where N =0,1,2,....
o L[ e L[ &)
(t)—E(t)|: E(t)+2/0f(§,r,u )dg].

Applying the Cauchy inequality,

-E'(t)
E@)

1565y |60 g, + =5 2,0

0 lh, <| o

E(t) | E(t) 4

Hence p)(¢) € B,. In the same way, for a general value of N, we have

—E'(¢) ‘

1
(N) (N)
1PN @], < ‘ w0 |+ 5012 O o O, + g5l
we deduce that p™(¢) € B,.

Now we prove that the iterations z™*1(

N+1)(

t)and p t) converge as N — oo in By and

B,, respectively.

uy) (8) — uy)(£)
! ! t 1
= © _
s fo /0 [F(e, 1,0, 7)) —F(E, 7, 0] di d +2 /0 /0 615,00 dE i,

1 0
), (8) - ) 1 (®)

t 1
=4 / / [ (5, 7,u®(, 1)) - £, 7,0)]e @D cos 2k dE d
0 0

t 1
* 4/ / fE T, 0)e~@R*0=") cos 2 ke dE db,
o Jo

Page 6 of 16
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1 0
) (2) — uy) (2)

1
=4ff/ [f(g,r,wm(g,f)) —f(&,T, 0)] -2k (-1) (1 &) sin 2 ké dE dv
0 Jo
t 1
v [ [ A6 m 0 0 - g sinamie de e
1
_16ﬂ/(ft/ [f(%',f,u(o)(g,f)) _f(s’r’o)](t_t)e_(znk)z(t_r)COSZNk%'dédr
0 Jo

t el
- 167rk/ / (E-1)f(&, T, 0)e~ @R (=) g 2k dé dr.
o Jo

Applying the Cauchy inequality, the Holder inequality, the Lipschitz condition and the

Bessel inequality to the last equation, we obtain

|u® () - u(0>(t)||B1 < <2ﬁ + %g + 4«/§T) 1601, ||u(0>(t)||Bl

+ (zﬁ ¥ 23£ + 4\/§T) |f (x,2,0) ||L2(D)

24/3
_ <zﬁ 2B 4sz> 5], |0,

. (2ﬁ+ 25, 2T ) 1500

”o (@) - (t f/ (& 7, uVE 1) f(f,r,u(o)(é,r))]e’frtp(l)(s)dsdfdr

+2/ / f(g,T,u«))(s,T))[e—/'fp“)(sms_e—ﬁpm)(s)ds] dt dr,
0 Jo
QR0

_ (0)
4]/ E,'CM (5777)) f(E,T,M (‘é):,-[))]

e @R =) o= [PV ds o 07 ke dE d
+4/t/1f(§,r,u(°)(‘§,r)) cosanée_(Z”k)z(t_f)[e_fftpm(s)ds—e"fftp(o)(s)ds] dedr,
0o =4 [ / (71, 1) ~f (7106, 7))
x e @D [PV (1 g sin 2k dE dr
+4/tf1f($,r,u(0)($,r))(l—é)sinanée(2”1‘)2(”)
x [e - [PV (s _ —ffp“”(s)ds] dt dt

t pl
—l6nk/ / (t—t)[f(s,r,u(l)(é,r)) —f(é,r,u(o)(“g‘,t))]

QD) = [PV 0 ds oo 2k dé dt
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t 1
_16nk/ / (t_f)f(g,r,u(o)(g’T))ef(zﬂk)z(m)

[fr (©)ds _ o= frp6s €] cos 2kt dE d.

Applying the Cauchy inequality, the Holder inequality, the Lipschitz condition and the
Bessel inequality to the last equation, we obtain

4@ (@) - uV(2) ||Bl < <2ﬁ + 23£ + 4ﬁT> [bGx, 0 Ly(D) |u® @) - u(0>(t)||Bl

24/3
+ (2ﬁ+ Tf + 4«/§T> |T| Hf(x, t,O)||L2(D) ||p(1) —p(o) Hsz’

1 1
1 _ 0 _ Ly _ (0)
pY—p E(t)/o (& r,u) - f(&,7,u?)]ds.

Applying the Cauchy inequality and the Lipschitz condition to the last equation, we
obtain

W _ ||bx,t)||L2 V@) - u® O] 5,

[420) - a0, < <zﬁ . 23£ N T> [bte, 01, |00 - 0],

s (270 2B e aar) s o 00 0001,
™
00y, = (2T + 57 ) (14 e
uo (t )(t) 2// g,fu (5,,)) f(g’l.’u(l)(é-’T))]e—/fp(Z)(s)dsd;;:dT
+2/ /f(S,,,uﬂ)(g,r))[e— D0 _ o= fi O8] gg g,
0 Jo
t 1
W) (0~ u2) (6) = 4 / / (&7 u®E0) £ (57 u®E 7))
e QTR (=) o= [7 PP (5) ds Scos2mké d& dt
1
+4/‘t/f(é’f,u(l)(é,f))COSZﬂkEe(Z”k)z(tr)
0 Jo
x [efeP?Ods _ o fiVOD) ge g,
uS)(t) - ul) () = 4/ f (& 7u?E D) -f(57u"E )]
o @k (1) = [{ P S)d3(1_g)sin2nkéd$dr

t pl
+4/ / f(g: f,u(l)(,{;‘,‘[))(l—S) Sin27{k§e_(2”k)2(t—r)
0 Jo

X [e_fftp(2>(s)ds - e_-fftp(l)(s)ds] dé dv

t 1
—1671/(/0 /O - (€ 1,u?E ) -f(E1,uVE 1))

Page 8 of 16


http://www.journalofinequalitiesandapplications.com/content/2014/1/76

Kanca and Baglan Journal of Inequalities and Applications 2014, 2014:76 Page9of 16
http://www.journalofinequalitiesandapplications.com/content/2014/1/76

e TR0 o= [ PP O s o5 0 ki dE de

t pl
_167r/</ f (t—f)f(g,t,u(l)(%—,t))e—(an)z(t—T)
0

> [e*ffpm(s) s _ g fert S)ds] cos 2k d§ dr.

Applying the Cauchy inequality, the Holder inequality, the Lipschitz condition and the
Bessel inequality to the last equation, we obtain

[#2@) - @),

¢l 3

<zﬁ f+4fT><//b2(§,t)|u(2)(t)—u(l)(r)|2d.§d1>
0 Jo

t ol 3

+(2«/7+2T\/§+4«/§T>TM(/ / |p<2>(f)_p<l>(r)|2dgdr) :

4@ @) - u® (2) “131 < (<2ﬁ f 4\/_T)( ;?i))

t ol 1
x1<</0 fo bz(é,r)|u(2)(r)—u(l)(r)|2d$dr) :

[P - uP @, < ((2ﬁ+ 243, 4fT>< ;{g))

el [ [ ren(([ [ #em)dedn acar)
s,
(o2 o) B ([ o))

[#2@) - w2 @),

(0124 oo ) ([ )

By the same way, we obtain

” u(S)(t) —u (¢

[ - u® @,

< <(2«/:7+ ¥ +4«/§T) (1 + Z—))

For N, we have

(//bzgrdgdr>.

WD) _ )| <
2

1
i |l 1

a0 @) = u™ @, 9)

\/__<(2ﬁ+ 2V3 4fT>(1+%))NH”(’C”“M\;(D)

M@ - uM @,

”P Ly(D) ” u
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Using (A;)-(As) and the comparison test, we deduce from (9) that the series
Z;,O:O [N () — N ()] is uniformly convergent to an element of B;. However, the general

term of the sequence {#N*)(t)} may be written as
o0
u(N“) )+ Z (N+1) (t) - u' )(t)].
N=0

So the sequence {#*V(¢)} is uniformly convergent to an element of B; because the sum
on the right-hand side is the N'th partial sum of the aforementioned uniformly convergent

series.

(N+1)

It is easy to see that if u™N*) — 4™, N — oo, then pN*) — p™N) N — o0,

Therefore u™*V(¢) and p™N*+V (t) converge in B; and By, respectively.
Now let us show that there exist # and p such that
lim #™*(¢) = u(t), lim p™*D(t) = p(t).
N—oo N—oo
In the same way, we have

[u(®) - u®P @,

f@¢T+%?+%5fN“%%@@W®-“MWWE
+@¢?+é§+4¢ﬁjmwﬁmﬂﬂ¢mwﬂ_¢mhw&

+ (2«/7+ %g + 4«/§T> IT||p(2) —p(N)(t)”]32 1 (e, 2, 20) ||L2(D), (10)
MﬂpﬂmzﬂA//ﬁ&ﬂW)ﬂWM&ﬁ>

E(t)</ / B2, 7)|u™NV(z) - ™ (2)? dgdf) . (11)

Applying Gronwall’s inequality to (10) and using inequalities (9) and (11), we have

K
VN!

X epo(D +D2|T|—> |6,

2
() — ™V (2) ||31 < 2[ D*E?| b(x, t)||L2(D):| (12)

2
t) ||L2(D)'

Here

D:(2ﬁ+¥+4ﬁT)’ {<2ﬁ 2L 4IT>( U?f)')}

WN+) 5 4. Hence pN*) — p.

When N — o0, we obtain u
For the uniqueness, we assume that problem (1)-(4) has two solution pairs (p, &), (g, v).

Applying the Cauchy inequality, the Holder inequality, the Lipschitz condition and the
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Bessel inequality to |u(t) — v(£)| and |p(£) — g(£)|, we obtain
|ue) = v®) |5, < (||(p|| + (2ﬁ + 23£ + 4ﬁT)M) T|p(t) - ()|,

+ (2ﬁ+ % +4x/§T> (/t/ﬂ b2(€7f)|u(r)—v(t)’2d$dr>2,
3 0 Jo

1 t 1 %
”p(t)—q(t)”%gm(/o /0 bz(E,t)’u(t)—v(r)\zdsdr> ) (13)
Jut) -0y, <[ (ot + (27 + 2 2B aar)u)

. (2ﬁ+ 243 +4ﬁT)} (/tflzﬂ(s,r)lu(r) —v(o)| dg df)z.
3 0 JoO

Applying the Gronwall inequality to (13), we have u(¢) = v(£). Hence p(¢) = q(¢).
The theorem is proved. O

3 Continuous dependence of (p, u) upon the data
Theorem 4 Under assumptions (A1)-(As), the solution (p,u) of problem (1)-(4) depends

continuously upon the data ¢, E.

Proof Let ® = {¢,E,f} and ® = {@, E,f} be two sets of the data, which satisfy the assump-
tions (A;)-(As). Suppose that there exist positive constants M;, i = 0,1, 2, such that

0 <My < |E|, 0< My <|E|, I1Ellciio,r) < M, IEll cio,r) < M,

lelicsion < Mo, @llcspo) < Mo.

Let us denote || @] = (| Ellcijo,r) + l@llczfo + Il csom)- Let (p,u) and (p,%) be solu-
tions of inverse problem (1)-(4) corresponding to the data ® = {¢, E,f} and ® = {g,E, f},
respectively. According to (5), we have

u(t) = ut) = 2(¢o — @oe” Jo pls)ds + 2¢0 (e‘ fops)ds _ e JEps) ds)
t 1 i
+ 2/ / [f (&, 7,ut, 1) —f (6,7, 0, 7)) e PO% dg dr
0 JO

t pl
_frtp( fr s)ds
+2/0/0f(§,t,u(§‘,r))[e —e ]det

+4Z.5005271k§((p2k = e (2mk)? [ - [t p)ds e—ffﬁ(s)ds]
k=1

oo
+4 Z £ cos 2k pope TRt g Jep)ds
k=1

oo
+4 Z sin 27 k& (o — W)e‘(Z”")Zf[e—ffP(s)ds - e-ffﬁ(s)dS]
k=1

o0
. 0% — 5
+4Zsm2nk3§<p2k_1e @)%t o= J; Pl ds
k-1
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o0
— 167 Z kt sin 27w k& (@op_1 — gozk_l)e‘(hk)zt[e‘ e p)ds _ o= [ P) dS]
k=1

- 167 Zkt sin 27 k& gyre™ @kt - [r Pls

X et opel
2] , — S ,_ , _ . p
+4§/0 /0 [f (&, T, uE, 1)) - f(&,7,u(§,7))](1 - &) sin 27 k&

e—(an)z(t—r)—ffﬁ(s)ds d&' dt

e i /t /lf(é’ 7, u(€, 7)) (1 - &) sin 27 kg e @00
o (14)

x e Jip6ds _ 1P “dg dr

- kfl: /Ot /ol[f(g’ v (8, 7)) =f (5,78, ©) |1 - §) sin 27k

i ki: /ot /olf('g’ 7, u(€, 7)) (1 - &) sin 27 kg e~ 00

< [e [EP0ds _ = [EP05] g e

167 ik/ot /Ol[f(%“,r,u(é,t)) —f (&, 7, 7(E, 7)) ](t - T) cos 2ke

o 2T -0 [L B 94 gt e

oo ¢l
-16 k .7, ulE, _ 21 ke~ 2k (t-1)
nkXﬂ: /0 /Of(é T,u(§,7))(t - 7)cos2mkEe

s [ PO _ o O] g g,

|u(t) - u(t)| < ((2ﬁ+‘—r 4v2 T) Z |¢2k|+|¢2k1|)>
k=0

_ 27/6 _
X |lp-plls, + (1 + TT>||<.0 =~ ?lle3p0a

+ (2ﬁ+ @ +4«/§T> (/t/1b2(§,t)‘u(r)—ﬁ(t)|2d§dr>2.
3 0 Jo

Now let us estimate the difference p — p.

o (EO | ET 1

()~ () - ( e E(t)) / P& Tu)de / 6,7, de,
_(-E®) E®

p(t)—p(t)-( 0. F) . / [F&,00) - (6,1, )] di

1 1
(2 [ 05
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Applying the Cauchy equation, we have

1
_ t g b3
||p(t)—p(t)||Bz <M;|E-Elcijo +M4(/ / bz(g,f)|u(r)—ﬁ(f)|2dg dt) ,
0o Jo
where My, k = 3,4, are constants that are determined by My, M; and M. Finally, we obtain
B t pr ) 3
||p(t)—ﬁ(t)”BZ§M5<||E—E||C1[O'T]+(f/ b€, 7)|u(r) - u(r)| dgdr> )
o Jo
If we take this estimation in (14), we get
o t pl ) )
!Mﬂ—ﬁﬁﬂfﬂ%n®—®n+ﬂb(/L/lﬁ@nﬂuh)—ﬁhﬂt%df),
o Jo
_ ¢ g .\
|u(t)—ﬂ(t)|SMGII¢—¢|I+M7(/ / b*(&,7)|u(r) - u(r)| d5d1> )
0 Jo
2 — LT 2
lu(t) —u(t)|” < 2Mz || @ - @ +2M§<[ ] b*(&,7)|u(t) - u(r)| d& dr).
o Jo
Applying the Gronwall inequality, we obtain
t pl
() - a(e)|* < 2M2)|® —5||2exp2M§(/ f b(E,7)dE dr).
o Jo
Taking the maximum of the inequality, we have
t pl
— 2 2 =12 2 2
||u(t)—u(t)||Bl <2MZ||D - D exp2M7</ / b (g,r)dsdr).
o Jo

If ® — ®, then u — u. Hence p — p. g

4 Numerical procedure for nonlinear problem (1)-(4)
We construct an iteration algorithm for the linearization of problem (1)-(4) as follows.

ut 3y

ot o -p@u +f(x,t,u”"™),  (x,t) €D, (15)
u(0,8)=0, ¢tel0,T], (16)
u(0,t) =u”Q,t), telo,T), 17)
u(x,0) = p(x), x€[0,1]. (18)

Let " (x, £) = v(x, t) and f(x, ¢, u"D) =f(x, t). Then problem (15)-(18) can be written as

a linear problem:
v 9%v
ot ox2
v(0,t)=0, tel0,T], (20)

—pOvlx,t) + fx,0), (x,) €D, (19)
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v.(0,8) = v,(1,2), t€][0,T], (21)

v(x,0) = p(x), «e€]l0,1]. (22)

We use the finite difference method to solve (19)-(22) with a predictor-corrector type ap-
proach which was explained in [10].

We subdivide the intervals [0,1] and [0, T'] into subintervals N, and N; of equal lengths
h= Nix and 7 = Nlt, respectively. Then we add two lines x = 0 and x = (N, + 1) to gen-
erate the fictitious points needed for dealing with the boundary conditions. We choose
the implicit scheme that is absolutely stable and has a second-order accuracy in / and a
first-order accuracy in 7 [11]. The implicit scheme for (1)-(4) is as follows:

SO ) = -2 )

_p/url‘/l}l +J’};j+1’ (23)
V? = ¢i} (24')
v, =0, (25)
e =Y + Y (26)

where 1 <i < N and 1 <j < N; are the indices for the spatial and time steps, respectively,
1/1: =v(x;, t), ¢ = go(xi),fi/ =f(xi, 1), %; = ih, tj = jt. At the level ¢ = 0, adjustment should be
made according to the initial condition and the compatibility requirements.

The system of equations (17)-(19) can be solved by the Gauss elimination method, and
1/;rl is determined.
5 Numerical example

Example 1 Consider inverse problem (1)-(4) with

f(x,t,u) = -4 sin(2mx) exp(—t) — x(27)* cos(2x) exp(—t) + exp(3t)u,

@(x) = x(1 - cos(27x)), E@t) = %exp(—t), x€[0,1],t [0, T].

It is easy to check that the analytical solution of this problem is
{p(t), u(x, t)} = {1 + exp(Bt),x(l - cos(2nx)) exp(—t)}. (27)

Let us apply the scheme which was explained in the previous section to the step sizes
h=0.05t=0.05.

In the case when T =1, the comparisons between the analytical solution (23) and the
numerical finite difference solution are shown in Figures 1 and 2.

It is clear from these results that this method has been shown to produce stable and
reasonably accurate results for these examples.
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Figure 1 The analytical and numerical solutions of p(t) when T = 1. The analytical solution is shown with
dashed line.
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Figure 2 The analytical and numerical solutions of u(x, t) at the T = 1. The analytical solution is shown
with dashed line.
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