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Abstract: In this work, a lossless model is developed for the given Foster impedance data. In the model, a 2-port short-

or open-terminated LC ladder is used. After applying the proposed algorithm, a realizable driving-point reactance

function that fits the given data is obtained. Next, this function is synthesized, resulting in the desired model. In the

algorithm, there is no need to select a circuit topology for the model. Two examples are given to illustrate the utilization

of the proposed modeling algorithm.
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1. Introduction

It is necessary to obtain a model for the measured data from physical devices or systems in many engineering
applications [1]. In engineering for communications, typical situations that require circuit models can be listed
as follows: the characterization of circuits in terms of the minimum noise figure level or maximum power transfer
capability [2], the synthesis of matching networks or microwave amplifiers [3], and the rapid simulation of analog

and digital communication systems [4–7].

For example, a Foster function may be needed to improve the power transfer capability of a matching
network in broadband applications [8,9]. In [10], a lossless unsymmetrical lattice network was used as a
broadband matching network. Lossless circuits utilized in the arms of the lattice network are realized via
reactance functions.

In the method proposed in [11], a Foster impedance function Xf (ω) on the jω -axis was described as:

Xf (ω) =
n∑

r=1

krω

p2
r − ω2

+ k∞ω − k0

ω
. (1)

The pole pr has been selected by the modeler, and the residues (kr , k0 , and k∞) are computed by solving Eq.

(1) for the given Foster data set. However, in the proposed approach, open- or short-terminated LC ladder
networks are used. The resulting model topology is the natural consequence of the proposed algorithm.

In [12], again, open- or short-terminated LC ladder networks were utilized in the models, but a reflectance-
based gradient method was proposed. This study, however, develops a reactance-based approach and the
performance of the new proposed method is superior to the performance of the method proposed in [12].
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In the next section, lossless 1-port networks are summarized in line with [13] and then the scattering
description of lossless 2-ports is provided. Finally, the proposed algorithm is presented and illustrated in terms
of 2 examples.

2. Lossless 1-port networks

Consider the 1-port network seen in Figure 1, which contains only inductors and capacitors. Since no real power
is dissipated in a purely reactive network, and its driving-point function is positive real, the poles and zeros of
the driving-point reactance or susceptance must be imaginary or 0.

Z(p) �
Lossless

One-port �

Figure 1. Lossless 1-port network.

Therefore, a driving-point reactance or susceptance function can be defined as an odd-ordered positive
real function. Therefore, it is purely imaginary {i.e. Re [Z (jω)] = 0} , and Z (jω) can be written as:

Z (jω) = 0 + jX (jω) . (2)

The derivative of this function thus becomes:

dZ (jω)
dω

= j
dX (jω)

dω
. (3)

Since the derivative of Z (jω) at the roots of Z (jω) must be positive and real, a driving-point reactance has a
derivative with a positive slope, and the poles and zeros must be mutually separated.

In the following, 2 conclusions can be written for a driving-point function of a pure reactance network as
follows:

• The poles and zeros of Z (jω) must be simple (or first-ordered), and they must occur on the jω -axis in
conjugate pairs.

• The jω -axis poles and zeros must be mutually separated.

We can then write the driving-point impedance of the network seen in Figure 1 as:

Z(p) =
N(p)
D(p)

=
A1 + pB1

A2 + pB2
, (4)

where N and D are the numerator and denominator polynomials, respectively, and the As and B s are the
even-ordered functions of p . For a reactance function, the highest- and lowest-order terms of N(p) and D(p)
must differ in order by unity. If the orders of the numerator and denominator are equal, there would be
resistance.

The real part of this function can be expressed as:

Re {Z(p)}p=jω =
A1A2 + ω2B1B2

A2
2 + ω2B2

2

. (5)
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For a realizable network, Re {Z(jω)} must be positive and real; therefore, it follows from Eq. (5) that

A1A2 + ω2B1B2 ≥ 0, and equality (A1A2 + ω2B1B2 = 0) yields reactance networks. Hence, there are only 2
possibilities for the real part of the function to be 0: either A1 and B2 must be 0, or A2 and B1 must be 0 in
Eq. (5). Under these conditions, the driving-point impedance will have 1 of the following forms:

Z (p) =
N (p)
D (p)

=
pB1

A2
, (6a)

Z (p) =
N (p)
D (p)

=
A1

pB2
. (6b)

3. Scattering description of lossless 2-ports

The scattering matrix for a lumped-element lossless 2-port (Figure 2) can be written as [14]:

S(p) =

[
S11(p) S12(p)

S21(p) S22(p)

]
=

1
g(p)

[
h(p) μ f(−p)

f(p) −μ h(−p)

]
, (7)

where g(p), h(p), and f(p) are real polynomials in complex frequency p = σ + jω , μ is a constant, and g(p) is

a strictly Hurwitz polynomial. The 3 polynomials g(p), h(p), and f(p) are related by the Feldtkeller equation

as g(p)g(−p) = h(p)h(−p) + f(p)f(−p).

Z(p) �
Lossless�

Two-port
R�

Figure 2. Lossless 2-port terminated by resistance R = 0 or R = ∞ .

The polynomial f(p) is either even or odd if the 2-port is reciprocal. In this case, if f(p) is even, μ = +1,

and if f(p) is odd, μ = −1. Therefore, for a lossless reciprocal 2-port:

μ =
f(−p)
f(p)

= ±1, (8)

and the Feldtkeller equation can be written as:

g(p)g(−p) = h(p)h(−p) + μ f(p)2 . (9)

We can then write the input impedance of the network seen in Figure 2 as:

Z(p) =
N(p)
D(p)

=
1 + S11(p)
1 − S11(p)

. (10)

For a short- or open-terminated network |S11(p)| = 1 or, equivalently, S11(p)S11(−p) = 1. Therefore, from Eq.

(7), it can be stated that:

S11(p)S11(−p) =
h(p)
g(p)

h(−p)
g(−p)

= 1. (11)
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If h (p) is equal to g(p), S11 = 1 at all frequencies (trivial solution). Otherwise, it can be concluded that:

h(p) = ±g(−p) = γ g(−p), (12)

and

S11(p) = ±g(−p)
g(p)

= γ
g(−p)
g(p)

. (13)

At p = 0, S11(p) can be either γ = +1 or γ = −1, corresponding to an open termination or to a short
termination, respectively.

Using the Feldtkeller equation and Eq. (12), it can be said that:

g(p)g(−p) = h(p)h(−p) + f(p)f(−p)

= γ g(−p) · γ g(p) + f(p) f(−p)

= g(p) g(−p) + f(p) f(−p).

(14)

Hence, f (p) = 0, if the lossless 2-port is terminated in a short or an open connection.

If the driving point impedance is written using Eqs. (10) and (13), then the following expression can be
obtained:

Z(p) =
1 + S11(p)
1 − S11(p)

=
1 + γ g(−p)

g(p)

1 − γ g(−p)
g(p)

=
g(p) + γ g(−p)
g(p) − γ g(−p)

. (15)

If γ = −1, Z(p) = go(p)
ge(p) , which is equal to Eq. (6a), and if γ = +1, then Z(p) = ge(p)

go(p) , which is equal to Eq.

(6b), where the subscripts “e” and “o” refer to the even and odd parts, respectively.

4. Proposed modeling algorithm

Inputs:

• Z(jωi) = jXf (ωi); i = 1, 2, . . . , N : Given Foster impedance data.

• ωi = 2π fi, i = 1, 2, . . . , N : Measurement frequencies.

• rk = jβk; k = 1, 2, . . . , n : The initial imaginary poles and zeros of the driving-point impedance of the
model (Zin(p)). Since the poles and zeros are mutually separated, if the smallest (jβ1) is a pole, a zero
must be placed at ω = 0, and if the smallest is a zero, a pole must be placed at ω = 0. Hence, the number
of reactive elements in the Foster model is nc = n + 1.

• γ : Termination type, γ = −1 for short termination and γ = +1 for open termination.

• δ : The stopping criteria of the sum of the square errors.

Computational steps:

Step 1: If the given impedance and measurement frequencies are not normalized, select a frequency
normalization number (fn) and an impedance normalization number (Rn), and normalize them as follows:

Zn(jω) = Z(jω)
Rn

and ωn = f
fn

.
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Step 2: Decide if the smallest initial root is a pole or zero, then calculate the conjugates of the imaginary
poles and zeros such as r∗k = −jβk , and by using the pole or zero at ω = 0, form the polynomials N (p) and

D(p).

Step 3: Calculate the input impedance Zin(jω) = N(jω)
D(jω) at the frequency points.

Step 4: Calculate the error via ε(jω) = Zn(jω) − Zin(jω) and δc =
∑ |ε(jω)|2 .

Step 5: If δc ≤ δ , synthesize the input impedance function Zin(p) = N(p)
D(p) . Now it is necessary to

denormalize the element values as L = L(n)Rn

2π fn
and C = C(n)

2π fn Rn
, where L(n) and C(n) are the normalized

inductor and capacitor values, respectively. If δc > δ , go to the next step, otherwise, stop.

Step 6: Change the initial imaginary poles and zeros via any constrained optimization routine, and
return to Step 2.

5. Examples

5.1. Example 1

To be able to compare the performance of the newly proposed method and the method in [12], the example

given in [12] is solved here again.

First, an impedance is formed by an inductor in series with the parallel combination of a capacitor and

a resistor, with the normalized values L(n) = 1, C(n) = 2, and R(n) = 1. Next, the imaginary part of this
impedance is used to obtain the Foster impedance data. The calculated Foster impedance data are listed in
Table 1.

Table 1. Foster impedance data given in [12].

ω 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Xf 0.1010 0.2077 0.3248 0.4552 0.6000 0.7588 0.9302 1.1122 1.3028 1.5000

In this step, open termination (γ = +1) and 4 elements (nc = 4) were selected for the model. The initial

imaginary poles and zeros of the driving-point impedance of the model (Zin(p)) were selected as r1 = j2,

r1 = j4, and r1 = j6 in an ad hoc manner. The first root (r1 = j2) was selected as a zero, so a pole was placed
at ω = 0. Applying the proposed algorithm, the driving-point impedance of the model is determined as:

Zin(p) =
N(p)
D(p)

,

where
N(p) = p4 + 14.9151p2 + 0.0197

and
D(p) = −3.8618p3 − 12.8557p.

The synthesis of this impedance function results in the equivalent circuit presented in Figure 3.

In Figure 4, the Foster impedance curves of the data in Table 1, which were obtained from the newly
proposed method and given in [12], are shown. It is clear that the performance of the proposed method marks
an improvement.
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L1 L2

C1 C2Zin (p)�

Figure 3. Obtained model for the Foster impedance data given in Table 1. L
(n)
1 = 0.2589, L

(n)
2 = 0.9017, C

(n)
1 = 0.3333,

and C
(n)
2 = 652.2403 (normalized values).
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Foster impedance

Given data
Obtained model
Model in [12]

Figure 4. Comparison of the Foster impedance curves for the given data, the new model, and that in [12].

5.2. Example 2

In this example, a data set measured from a dipole antenna is used and an LC ladder model for the antenna is
obtained. The normalized measurement frequencies and impedance values are given in Table 2. For frequency
normalization, fn = 275 MHz was used, and Rn = 51864Ω was used for the impedance normalization.

Table 2. Foster impedance data for dipole antenna.

ω 0.1091 0.2364 0.3273 0.4545 0.5455 0.6727 0.7636 0.8909 0.9818 1.0000
Xf –0.0655 –0.0191 –0.0063 0.0062 0.0145 0.0302 0.0502 0.1459 0.8666 1.0000

In this example, open termination (γ = +1) and 4 elements (nc = 4) were selected for the model. The

initial imaginary roots were selected as r1 = j1, r1 = j2, and r1 = j3. The first root (r1 = j1) was selected
as a zero, and so a pole was placed at ω = 0. Applying the proposed algorithm, the driving-point impedance
function of the model is determined as:

Zin(p) =
N(p)
D(p)

,

where
N(p) = 1.3059p4 + 6.6568p2 + 1

and
D(p) = −135.6013p3 − 135.6506p.
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The synthesis of this impedance function results in the equivalent circuit shown in Figure 5. The normalized

element values are L
(n)
1 = 0.00963, L

(n)
2 = 0.03208, C

(n)
1 = 135.6506, and C

(n)
2 = 31.16722. After denormal-

ization, the following actual element values are obtained:

L1 = L
(n)
1 ·Rn

2π fn
= 289.05 nH, L2 = L

(n)
2 ·Rn

2π fn
= 963.91 nH,

C1 = C
(n)
1

2π fnRn
= 1.5137 pF, C2 = C

(n)
2

2π fnRn
= 0.3478 pF.

A comparison of the original and reconstructed impedance curves is illustrated in Figure 6.

L1 C1

L2 C2Zin(p)�

Figure 5. Obtained model for the dipole antenna.
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Figure 6. Foster impedance curves.

6. Conclusion

In this study, a new algorithm was introduced to model the measured or computed Foster impedance data.
In the models, short- or open-terminated LC ladder networks were used. Two examples illustrated the
implementation of the modeling method and served as a proof-of-principle. The modeling method is quite
simple and straightforward, and it is an important tool for many applications like broadband matching and
device modeling.
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