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Abstract
Motivated by an advertising scenario in which a luxury sports sedan races
against a similar car falling under the influence of gravity, a calculation using
undergraduate physics and calculus is performed to theoretically predict the
outcome.

1. Introduction

Although nowadays there are mythbusting teams ready to empirically confirm or deny
advertising claims that may seem too good to be true, it is often economically prohibitive
to perform the kinds of experiments that are called for. It is therefore sometimes more
sensible and efficacious to perform a thought experiment instead, especially if the physics is
relatively elementary. Some years ago there was an advertisement affirming that a certain
luxury sports sedan could outrace a falling car (in a horizontal attitude) over the same distance.
This is clearly a situation of the type alluded to above: the experiment cannot be performed
by a single person, nor without significant funding. However, a single person with some
basic knowledge of mechanics (at the level of a university physics course) can construct a
reasonable (theoretical) model of the scenario and predict the outcome with some confidence.
This exercise is intended as an interesting application of Newton’s laws, and as such it can
serve as a useful instructional example for advanced undergraduates. It goes beyond the
typical end-of-the-chapter problem in an introductory physics text by requiring more than one
concept to be brought into consideration, to wit, forces and torques, friction, air resistance and
mechanical advantage. It also involves the use of mathematical modelling and computational
methods. The mathematics, however, never requires anything beyond the level of integral
calculus. The basic question this paper attempts to answer is: can a driven car, starting from
rest, outrace an identical free-falling car over the same distance?
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Figure 1. Forces on an accelerating car.

2. Equations of motion

To make the calculation as realistic as possible, all the effective frictional forces should be
identified and included. For a car with front wheel drive, the basic collection of horizontal
forces during acceleration is depicted in figure 1. The tractive force, FF , is the reactive
frictional force of the ground on the car’s front wheels that propels the car forward. Whereas
the tractive friction on the front wheels forces the car forward, the resistive frictional force on
the rear wheels, FR , opposes the motion. These frictional forces are static in nature since no
slipping is assumed. Rolling friction due to tyre deformation will be included as an effective
frictional torque. Assuming air resistance, there is also a drag force, FD, to contend with. The
equation for translational motion to consider would then be

FF − FR − FD = mẍ, (1)

where

FD = κv2, κ = 1
2CDρA, (2)

and CD is the dimensionless drag coefficient, ρ the density of air and A the effective area
(orthogonal projection) presented to the air by the car [1, pp 146–8]. As it applies to the front
tyres, the assumption of no slipping is optimal to the driven car’s performance in the race since
FF � μN , where N is the normal force, and generally μstatic > μkinetic for two given surfaces
of contact [1, p 91]. In other words, the car’s translational acceleration is greater if the driver
throttles skilfully to avoid any slipping, and this will subsequently be assumed.

The rotational equations of motion for the front and rear axles are

τT − τFF − RFF = I

R
ẍ, (3)

−τRF + RFR = I

R
ẍ, (4)

where τFF (τRF ) is the front (rear) effective friction associated with the drivetrain, wheel
bearings and rolling, and τT is the engine’s transmitted torque. It has been assumed that all
wheels have the same radius, R, and that the entire axle assemblies (including wheels) of the
front and rear have moment of inertia, I. Note that the frictional force FR would be tractive
instead of resistive if the car had four-wheel drive, and there would be another engine torque
τ ′
T on the rear axle, resulting in the following changes to (4), in that case

τ ′
T − τRF − RFR = I

R
ẍ. (5)
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Figure 2. Effective engine torque/speed curve for a car.

The equations of motion (1), (3) and (4) can be rewritten as

�F − FD = mẍ, (6)

τT − τF − R�F = 2
I

R
ẍ, (7)

where �F = FF − FR and τF = τFF + τRF . Combining these gives

Ftotal = FT − FF − FD = Mẍ, (8)

where FT ≡ τT /R is the engine’s effective force on the ground, FF ≡ τF /R is the effective
frictional force, and M = m + 2I/R2 is the effective inertial mass. Note that when cruising at
a constant velocity, the engine’s torque matches the resistive forces/torques

τ
(cruising)

T = RFD + τF . (9)

The moment of inertia of the axles can be written I ≈ 2αmwheelR
2 for some α of order 1

(assuming an axle of negligible mass and/or radius). Since the mass of the car is significantly
larger than that of the four wheels, M ≈ m.

3. Modelling the engine

Automobile engines have varying torque/speed curves, but generally their effective features
are displayed in figure 2 [1, pp 126–9]. Through gearing a mechanical advantage is developed
[1, pp 129–36], so that in any given gear, with the associated factor γ , the transmitted torque
(to the ground) and angular speed are

τT = γ τE, (10)

ωT = ωE

γ
, (11)

where ωT is the angular speed of the wheels. An engine’s transmitted torque and speed through
three gears might look something like figure 3. From the general form of the enveloping curve,
the engine’s effective force (transmitted to the wheels) over all gears is simply assumed to
have the general quadratic form

FT (v) = f0 + f1v + f2v
2, f0 > 0, f2 � 0, |f1| + |f2| �= 0, (12)

such that FT (v) � 0 for 0 � v � vmax where vmax is the car’s maximum speed. Note
that there is therefore a set of four undetermined parameters associated with the engine,
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Figure 3. Transmitted torque versus transmitted speed.

SE = {f0, f1, f2, FF }. The engine’s power, P = vFT , is also positive and attains a maximum
in the stated range at the speed vP where

vP =

⎧⎪⎨
⎪⎩

v∗, if 0 � v∗ � vmax and
dP

dv

∣∣∣∣
v∗

= 0

vmax, otherwise

. (13)

Solving the local maximum condition,

dP

dv

∣∣∣∣
v∗

= f0 + 2f1v∗ + 3f2v
2
∗ = 0 (14)

for v∗ yields

v∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− f0

2f1
, if f2 = 0 (with f1 < 0)

−f1 −
√

f 2
1 − 3f0f2

3f2
, if f2 < 0.

(15)

At the speed vP , the following equation holds:

P(vP ) = Pmax, (16)

where Pmax is the engine’s maximum attainable power. This equation represents the first of
two constraints on the set SE of undetermined engine parameters. The second constraint is
derived from the fact that the car can no longer accelerate beyond the maximum speed (see
figure 4)

Ftotal(vmax) = 0. (17)

4. Solving the differential equation

Substituting (2) and (12) into (8) gives the differential equation that must be solved

f̃ 0 + f1v − κ̃v2 = Mv̇, (18)

where f̃ 0 ≡ f0 − FF > 0 and κ̃ ≡ κ − f2 > 0 for obvious reasons. The differential equation
can be equivalently expressed in the separated form

dv

(v − v+) (v + v−)
= −dt

λ
, (19)
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Figure 4. Effective engine torque and resistive load curves.

Table 1.

0 − 96.5 km h−1 (v60 = 26.8 m s−1) in t60 = 5.3 s
vmax = 228.5 km h−1 (63.5 m s−1)

Pmax = 228 kW (306 Hp)

m = 1600 kg
Dimensions: 4.6 m × 1.8 m × 1.4 m

where

v+ = f1

2κ̃
+

√(
f1

2κ̃

)2

+
f̃ 0

κ̃
≡ vmax, (20)

v− = − f1

2κ̃
+

√(
f1

2κ̃

)2

+
f̃ 0

κ̃
, (21)

λ = M

κ̃
. (22)

Integrating the differential equation above gives

v(t) = v+v−
1 − e−2t/t0

v− + v+e−2t/t0
, (23)

where

t0 = 2λ

v− + v+
, (24)

and v → v+ as t → ∞. Integrating for the position further yields

x(t) = v+t + λ ln

(
v− + v+ e−2t/t0

v− + v+

)
. (25)

5. Data analysis

Table 1 displays some of the available data for the luxury sports sedan used in the advertisement,
the Lexus IS350 [2].
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Table 2.

f0 = 10, 749.3 N
f1 = −126.5 kg s−1

FF = 697.6 N

λ = M

κ
= 3200 m

v+ = 63.5 m s−1

v− = 316.5 m s−1

t0 = 16.8 s

Using data from [2] and [1, pp 148–50], the drag constant for this car when racing is

κ = 1
2CDρairA = 0.5 (0.3) (1.29) (1.4 × 1.8) = 0.5. (26)

The information collected in table 1 represents only three constraints (the first three rows of
the table) on the engine parameter set, SE. Therefore, one of the engine parameters must be
eliminated or fixed. To this end, let f2 = 0 (f1 < 0) in (12), thereby assuming a simple linear
fit to the engine’s effective transmitted force. The maximum power then occurs at

vP =
⎧⎨
⎩v∗ ≡ − f0

2f1
, if v∗ < vmax

vmax, otherwise.
(27)

The simplest way to solve for {f0, f1, FF } in terms of {vmax, Pmax, v60(t60)} is to iterate.
First guess an initial value for f̃ 0, then,

(1) calculate f 1 from (17)

f1 = κvmax − f̃ 0

vmax,
(28)

(2) calculate v− using v+v− = f̃ 0/κ and v+ = vmax

v− = f̃ 0

κv+
, (29)

(3) calculate t0

t0 = M

κ (v+ + v−) ,
(30)

(4) calculate f̃ 0 using (23)

f̃ 0 = κ(v− + v+ e−2t60/t0)v60

1 − e−2t60/t0
. (31)

Using the data in table 1, this iterative procedure converges to f̃ 0 = 10, 051.7 N and
f1 = −126.5 kg s−1. Then, using (16) and (17) gives f 0 and FF. The values of all the
parameters can be found in table 2.

Figure 5 shows the force and power profiles for the simplified engine model used above.
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Figure 5. Engine power and force profiles.

6. The free-falling car

The analysis of the falling car is very similar since its equation of motion is

mg − κ ′v2 = mÿ (32)

which admits the solutions above with the following identifications:

f̃ 0 = mg, (33)

f1 = 0, (34)

κ̃ = κ ′; (35)

then,

v′
+ = v′

− ≡ v′
T =

√
mg

κ ′ . (36)

For the falling car (in horizontal attitude) [1, p 142]

κ ′ = 1
2C ′

DρairA
′ = 0.5(1)(1.29)(4.6 × 1.8) = 5.3, (37)

so v′
T = 54.4 m s−1. This implies that

v′(t) = v′
T

1 − e−2t/t ′0

1 + e−2t/t ′0
, (38)

y ′(t) = v′
T t + λ′ ln

(
1 + e−2t/t ′0

2

)
, (39)

where

λ′ = m

κ ′ = 302 m, (40)

t ′0 = λ′

v′
T

= 5.6 s. (41)
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Figure 6. Plot displaying the motion of the two cars.

These numbers imply that the racing car will only overtake the falling one after 40.8 s and
at a distance of 2011 m (see figure 6). The television commercial realizing this race claimed
that the racing distance was 1220 m. Based on the present analysis, the racing car would
need a head start of a few seconds to overtake the falling car over such a distance, which
is presumably what was done in the commercial since in the commercial the driven car
wins [3].

7. Conclusions

Using relatively basic mechanical principles, the outcome of a race between a free-falling car
and a road-driven car can be predicted. Since air resistance is expected to play a significant
role in the matter, it is included in the theoretical model, as well as other frictional effects
associated with the driven car’s inner workings. Also the engine’s performance is modelled by
a quadratic torque curve. The resulting differential equation of motion turns out to be separable
and straightforward to solve with elementary calculus techniques. As in the advertisement,
the falling car was assumed to fall in a horizontal attitude which significantly affects its
aerodynamics. When representative data for a luxury sports sedan is fitted to the model, the
results indicate that the race can go either way depending on the racing distance. For shorter
distances, the falling car wins, but for longer distances the road-driven car triumphs. The
threshold distance turned out to be about 2000 m. It is interesting to note that in the television
commercial realizing this race, the distance chosen was only about 1200 m, perhaps because
of the constraints involved in air lifting a car. The falling car should have won, but a head start
was given to the driven car to ensure victory.

From the form of the solutions, equations (25) and (39), it follows immediately that the
asymptotic behaviour favours the car with the larger terminal velocity, which depends crucially
on the drag coefficient. Had the falling car assumed a vertical attitude, i.e. fallen head-on, the
victory would belong to it irrespective of the distance.
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