
Fast and Accurate Genome Anchoring Using
Fuzzy Hash Maps

John Healy1, Desmond Chambers2

1 Department of Computing & Mathematics, Galway-Mayo Institute of Technology, Ireland. 2

Department of Information Technology National University of Ireland Galway, Ireland.

Abstract. Although hash-based approaches to sequence alignment and genome
assembly are long established, their utility is predicated on the rapid identification
of exact k-mers from a hash-map or similar data structure. We describe how a
fuzzy hash-map can be applied to quickly and accurately align a prokaryotic ge-
nome to the reference genome of a related species. Using this technique, a draft
genome of Mycoplasma genitalium, sampled at 1X coverage, was accurately an-
chored against the genome of Mycoplasma pneumoniae. The fuzzy approach to
alignment, ordered and orientated more than 65% of the reads from the draft ge-
nome in under 10 seconds, with an error rate of <1.5%. Without sacrificing execu-
tion speed, fuzzy hash-maps also provide a mechanism for error tolerance and
variability in k-mer centric sequence alignment and assembly applications.

1. Introduction

One of the more enduring approaches for performing an alignment search against
a sequence database is the use of hash-tables or hash-maps. Hash-tables are dic-
tionary data structures that use a key and a hashing function to provide rapid ac-
cess to a set of mapped values [1]. Hash keys may be implemented as k-tuples or
k-mers and are ideal for quickly indexing and detecting exact matches. Established
de facto standard sequence alignment applications, such as BLAST [2, 3] and
FASTA [4] have successfully employed hashing to rapidly seed and then search
large databases of biological sequences. Using an approach called “seed and ex-
tend”, they employ hash-tables to seed exact matches, before extending an align-
ment search by attempting to join neighbouring seeds using dynamic program-
ming algorithms. The utility of hash-tables for biological sequence alignment is
constrained by the requirement that each key in a hash-table be unique. This
uniqueness requirement implies that hash-tables are intolerant of variations in se-
quence composition, such as the insertions, deletions and polymorphisms that are
common in biological sequences. It also implies that genome assemblers that util-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CUAL Repository (Connacht Ulster Alliance Libraries)

https://core.ac.uk/display/51065487?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ise this approach require complex error correction mechanisms to deal with se-
quence trace errors [5, 6].

Many recent hash-based alignment applications and assemblers are notable for
their use of spaced seeds [7-10]. Space seeds permit a degree of mismatch at pre-
determined positions in a sequence. A spaced seed is analogous to a mask and can
be constructed using a template that specifies the positions in a k-mer that are al-
lowed to contain mismatches. The number of matches defined in the template can
also serve as a mechanism for weighting alignments. As spaced seeds inevitably
result in a large number of matches, alignment applications that use this approach
typically require multiple seeds to match within a region [8, 11].

The advent of second generation sequencing technologies [12-14] has resulted
in a reappraisal of existing sequence alignment approaches [15, 16]. Although
hash-maps appear to be ideal candidates for use with the k-mers of short sequence
reads, alternative strategies have emerged that use the Burrows-Wheeler Trans-
form [17] and prefix trees to align sequences [18]. Indeed, some alignment appli-
cations based on the use of spaced seeds, such as MAC and SOAP, have recently
been refactored to implement this alternative approach [19]. Notwithstanding
these developments, the determination of inexact matches between sequences re-
mains an issue, invariably resulting in the application of dynamic programming
approaches, which are quadratic in time and space complexity, to compare either
divergent sequences or match sequences in the presence of errors.

While the uniqueness requirement of keys in a hash map appears to constrain
their alignment use to the exact matching of sequences or k-mers, richer object-
oriented programming languages offer the capability of permitting the hash key to
tolerate some degree of variance. Originally proposed by Topac [20], a Fuzzy
Hash Map (FHM) is a data structure that adds fuzzy capabilities to traditional
hash-tables and hash-maps, using standard object-oriented techniques such as
composition and inheritance. By relaxing the semantics of equality used in deter-
mining the uniqueness of a hash key, FHMs not only provide comparable speed
in accessing values mapped to keys, but also can accommodate variation and pro-
vide a mechanism for error toleration. The remainder of this discussion includes a
description of the structure and function of FHMs in the next section. This is fol-
lowed by a discussion of a k-mer centric approach to genome anchor detection
and extraction using FHMs and the presentation of results.

2. Fuzzy Hash Maps

Hash-tables and hash-maps are generic data structures that are invaluable for a
wide variety of applications. In the Java programming language [21], hash-maps
are subtypes of a generic definition for a dictionary structure called a Map. Maps
are associative arrays in which a unique key functionally determines a value. They
provide constant time performance for the basic operations of adding, removing
and searching. In contrast with procedural programming languages, hash-maps in

object-oriented languages, such as Java, permit arbitrary objects to act as keys and
values in a map. Thus, the notion of hash key uniqueness is not limited to the
evaluation of primitive types or memory addresses, but can be customised to vary
for each type of object.

In the Java language, the semantics of object equality are defined by the be-
haviour of the equals() and hashCode() methods, implicitly inherited by every ob-
ject [21]. The generic implementation of hashCode() returns an integer value that
is computed by mapping the memory address of an object to an integer value. The
hashCode() method is used by Map implementations in Java as an initial collision
detection mechanism during insertion, deletion and retrieval operations. If two
objects share the same hash code, the equals() method is used to resolve any am-
biguity and avoid unnecessary naming collisions.

The semantics of object equality depend on the implementation and form part
of the design work for a class. In general, objects that are equal according to the
equals() method must share the same hash code. Although the default implemen-
tation of equals() returns true if two objects share the same object ID, it is often
desirable to relax the definition of equality to allow some scope for variability.

Using a modification of the approach described by Topac [20], a FHM data
structure may be implemented by using the hashCode() method to encourage ini-
tial collisions during a search of the map. In the FHM structure, the key values are
instances of a FuzzyHashKey type, each of which map to a collection of k-mers.
The essence of this approach is to permit collisions based on an exact match of
part of a key and confirm a match if the similarity of the remainder of the key is
above a specified threshold. Initial collisions are determined by the implementa-
tion of hashCode() and are conceptually similar to the spaced seed approach de-
scribed by Ma [11]. The degree of similarity is determined by the implementation
of the equals() method and can utilise any sequence similarity algorithm that is
capable of returning a fuzzy value in the interval [0..1].

Fig. 1 A FuzzyHashKey initialised to cause collisions if the first five bases in a sequence are the
same. If the hashCode() method returns true for the initial five bases, the equals() method is in-
voked to resolve equality. In practice, k-mer sizes of at least 21 bases are used, with collisions
only permitted if at least 50% of the search string is an exact match with a hash key.

In the context of genome alignment and anchoring, the application of a FHM
structure requires specifying that part of a k-mer that may be used to compute the

initial hash code value. A FuzzyHashKey can be configured to cause collisions
based on exact prefix, suffix or sub-sequence matches. A determination of
whether a collision on a hash code equates to a match can be accomplished by
computing the edit distance between the remainder of the hash key and the corre-
sponding part of the search string. Edit distance metrics such as Hamming Dis-
tance [22] and Fuzzy Hamming Distance [23] are ideal for fixed-length hash
keys, such as k-mers. Other metrics such as Levenshtein Distance [24] can be
used to compute the edit distance between variable-length hash keys.

Consistent with the “seed and extend” approach used by many hash-based
aligners [15, 18], FHMs are a compromise between speed and sensitivity. Com-
puting a hash code on too small a part of a FuzzyHashKey effectively flattens
much of the hash-map into a list, with a reduction in speed proportional to the
time complexity of the sequence similarly algorithm used. Hash codes computed
on larger portions of the FuzzyHashKey will increase the search speed at the ex-
pense of sensitivity.

3. Anchoring a Genome

To illustrate the relevance and applicability of FHMs to sequence alignment, the
approach was used to anchor a draft genome of M.genitalium, at 1X coverage,
against the complete genome of M.pneumoniae. A measure of the effectiveness of
FHMs for intra-species alignment was achieved by anchoring a draft genome of
E.coli 536, also sampled at 1X coverage, against the complete genome of E.coli
K-12-MG1655. Given the k-mer centric nature of the alignment approach, a k-mer
centric strategy was also applied to detect and extract anchoring regions from each
reference genome. The anchor detection and extraction process consists of three
main phases; the construction of a de Bruijn graph to represent overlapping k-
mers, the transformation of the de Bruijn graph into a sequence graph, and the ex-
traction of unique sequences from the transformed graph.

A de Bruijn graph is analogous to the output of a shotgun sequencing experi-
ment that perfectly samples a genome, generating a set of fixed-length reads, with
a graph node representing each base position [14]. Nodes in the graph are con-
nected by edges that are weighted to reflect the multiplicity of matches to a given
k-mer. First described for genome assembly by Pevzner [5], the de Bruijn graph
approach has been successfully used for short-read assemblers such as Velvet [6],
ALLPATHS [25] and ABySS [26].

In the context of anchor detection and extraction, a de Bruijn graph creates a
perfect tiling path through a complete reference genome. Although the memory
requirements for a de Bruijn graph are huge [13], this can be reduced by a number
of orders of magnitude, by merging together nodes that have an in-degree, out-
degree and edge multiplicity of one. As each of these merged nodes represents a
unique anchor sequence in a graph, they are easily detected using a depth-first
search and can be subsequently extracted with ease. Critically, the exact position

of each anchor in the genome is recorded during the extraction process. The ex-
tracted anchors are saved in FASTA format and also as a serialized map.

Fig. 2. A 4-mer de Bruijn graph for sequence ATTACTTTCTCTTA. The graph implementation
typically decorates the edges with additional information, such as the multiplicity of overlaps be-
tween adjacent nodes. Tranforming the de Bruijn graph into a sequence graph is accomplished
by merging all adjacent nodes with an in-degree, out-degree and edge multiplicity of 1. All other
nodes in the graph represent repetitive sequences and are not extracted.

Before the reads of a draft genome are aligned, the extracted anchors are first
read into a FHM structure. The initialisation of the FHM requires the specifica-
tion of a FuzzyHashKey and a threshold value to score the alignment of each draft
read. The FuzzyHashKey used must also be configured, with an appropriate mask
for computing hash codes, an algorithm for determining sequence similarity and a
fuzzy threshold. The fuzzy threshold is a value between 0 and 1 and is used to fil-
ter out potentially spurious alignments. Thus, a fuzzy threshold of 0.8 will only
result in a match, if a given hash code results in a collision in the map and there is
a high degree of similarity between the remainder of the search string and the re-
mainder of the hash key.

The alignment of a draft genome requires that each draft read be decomposed
into a set of k-mers and then added to the FHM. Each time a match is found in the
FHM, the name and index of the anchor is recorded, along with the orientation of
the read. When each k-mer of a read has been aligned with the FHM, a majority
count is used to select the best anchor and compute the correct orientation of each
read. This process iterates for each read in the draft genome. It is noteworthy that
each anchor maintains a list of the name, orientation and starting position of each
aligned read. Sorting this list yields the order in which the set of reads align to an
anchor. As each anchor knows its own starting position with respect to the refer-
ence genome, this process not only orientates each read, but also orders the full
set of aligned reads.

4. Evaluation of Results

The 0.58Mb genome of M.genitalium was sampled at 1X coverage and aligned
against the 0.81Mb genome of M.pneumoniae. Using a k-mer size of 24 and with
fuzzy index and fuzzy threshold values of 11 and 0.8 respectively, the FHM ap-
proach anchored 65.56% of the M.genitalium reads. A total of 1.47% of the draft
reads were erroneously ordered and just 0.84% orientated incorrectly. The execu-
tion time for the genome alignment and anchoring was under ten seconds.

To illustrate the utility of the approach for intra-species comparison, the 4.9Mb
genome of E.coli 536 was also sampled at 1X coverage and anchored against the
4.6Mb complete genome of E.coli K-12-MG1655. Using the same k-mer size and
fuzzy parameters described above, 80.88% of the draft genome was anchored,
with 1.5% and 1.18% of reads incorrectly ordered and orientated. The execution
time required to anchor E.coli 536, whose genome is approximately ten times the
size of that of M.genitalium, was less than one minute.

Fig. 3. The choice of fuzzy index has a major impact on the performance of FHMs and requires a
balance between speed and sensitivity.

In common with most sequence alignment applications, FHMs involve a trade-
off between execution speed and sensitivity. In the context of FHMs, the most
important consideration in this respect is the design of the FuzzyHashKey. Execu-
tion speed is improved by discouraging collisions, through the specification of
more rigorous exact matching criteria in the hashCode() method. Improved sensi-
tivity requires a larger part of the hash key be used to compute edit distance.

In this study, the FuzzyHashKey was configured to cause an initial collision if
the first n characters in the prefix of a k-mer matched the prefix of a FuzzyHash-
Key already in the FHM. A full collision and subsequent match was therefore
predicated on the remainder of the k-mer matching the existing FuzzyHashKey,
with a fuzzy value at or above a specified threshold. Constructing a FuzzyHash-
Key in such a manner is valid for this approach, as the k-mers in question repre-

sent a tiling path through a de Bruijn graph, with a logical graph existing in the
FHM for each anchoring sequence. Empirical evidence, using the genomes of
M.genitalium and M.pneumoniae, demonstrates that, for a k-mer size of 24, once
the fuzzy index falls below 11, the percentage of the draft reads anchored in-
creases at the expense of larger ordering and orientation errors. Moreover, the
execution time begins to increase exponentially, as the variance permitted in the
hash key increases. Using too small a part of the FuzzyHashKey to compute an
exact match dramatically increases collisions, and has the effect of collapsing
much of the FHM into a list, compromising execution speed.

Another FHM property worthy of discussion is the fuzzy threshold. This value
is used by the edit distance algorithm to make a determination on object equality
and to decide whether or not a match is permitted. Fuzzy threshold values of 0.8
were applied for both comparisons in this study. For more divergent species, this
value should be relaxed, permitting more variability to be entertained by the colli-
sion detection mechanism. Low fuzzy thresholds reduce the criteria for determin-
ing a match and increase the potential for detecting an alignment. However, too
low a value may result in spurious matches and increase the number of ordering
and orientation errors.

6. Conclusions

FHMs combine the speed of data structures based on hashing functions with the
sensitivity of sequence similarity algorithms, such as dynamic programming tech-
niques. Although not constrained to fixed-length keys, their application to k-mer
centric approaches to sequence alignment offers an alternative to existing imple-
mentations of the successful “seed and extend” strategy used by many applica-
tions. Moreover, due to the object-oriented nature of the approach, FHMs are eas-
ily configured with alternative keys and provide a fast, robust, flexible and
extensible mechanism for sequence alignment.

Perhaps the most cogent property of FHMs is that they permit a degree of error
tolerance. This property is potentially invaluable to k-mer centric sequence
alignment and genome assembly applications. The application of FHMs to de
Bruijn graphs is particularly worthy of investigation, as these graph structures are
intolerant of errors, requiring complex algorithms to detect and correct the tips
and bubbles caused by polymorphisms and sequence errors.

References

[1] M. Goodrich and R. Tamassia, "Data Structures and Algorithms in Java," John Wiley &
Sons, 2001.

[2] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman, "Basic local alignment search
tool," Journal of Molecular Biology, vol. 215, pp. 403-410, 1990.

[3] S. Altschul, T. Madden, A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. Lipman, "Gapped
BLAST and PSI-BLAST: a new generation of protein database search programs," Nucleic
Acids Research, vol. 25, p. 3389, 1997.

[4] W. Pearson and D. Lipman, "Improved tools for biological sequence comparison,"
Proceedings of the National Academy of Sciences, vol. 85, p. 2444, 1988.

[5] P. Pevzner, H. Tang, and M. Waterman, "An Eulerian path approach to DNA fragment
assembly," Proceedings of the National Academy of Sciences of the United States of America,
vol. 98, p. 9748, 2001.

[6] D. Zerbino and E. Birney, "Velvet: Algorithms for de novo short read assembly using de
Bruijn graphs," Genome Research, vol. 18, p. 821, 2008.

[7] H. Li, J. Ruan, and R. Durbin, "Mapping short DNA sequencing reads and calling variants
using mapping quality scores," Genome Research, vol. 18, p. 1851, 2008.

[8] S. Rumble, P. Lacroute, A. Dalca, M. Fiume, A. Sidow, and M. Brudno, "SHRiMP: accurate
mapping of short color-space reads," PLoS computational biology, vol. 5, 2009.

[9] R. Li, Y. Li, K. Kristiansen, and J. Wang, "SOAP: short oligonucleotide alignment program,"
Bioinformatics, vol. 24, p. 713, 2008.

[10] H. Lin, Z. Zhang, M. Zhang, B. Ma, and M. Li, "ZOOM! Zillions of oligos mapped,"
Bioinformatics, vol. 24, p. 2431, 2008.

[11] B. Ma, J. Tromp, and M. Li, "PatternHunter: faster and more sensitive homology search,"
Bioinformatics, vol. 18, p. 440, 2002.

[12] N. Hall, "Advanced sequencing technologies and their wider impact in microbiology,"
Journal of Experimental Biology, vol. 210, p. 1518, 2007.

[13] M. Schatz, A. Delcher, and S. Salzberg, "Assembly of large genomes using second-
generation sequencing," Genome Research, vol. 20, p. 1165, 2010.

[14] M. Pop, "Genome assembly reborn: recent computational challenges," Briefings in
bioinformatics, vol. 10, p. 354, 2009.

[15] S. Batzoglou, "The many faces of sequence alignment," Briefings in bioinformatics, vol. 6,
p. 6, 2005.

[16] H. Li and N. Homer, "A survey of sequence alignment algorithms for next-generation
sequencing," Brief Bioinform, p. bbq015, 2010.

[17] M. Burrows and D. Wheeler, "A block-sorting lossless data compression algorithm," Digital
SRC Research Report, 1994.

[18] P. Flicek and E. Birney, "Sense from sequence reads: methods for alignment and assembly,"
Nature Methods, vol. 6, pp. S6-S12, 2009.

[19] R. Li, C. Yu, Y. Li, T. Lam, S. Yiu, K. Kristiansen, and J. Wang, "SOAP2: an improved
ultrafast tool for short read alignment," Bioinformatics, vol. 25, p. 1966, 2009.

[20] V. Topac, "Efficient fuzzy search enabled hash map," 2010, pp. 39-44.
[21] J. Gosling, B. Joy, G. Steele, and G. Bracha, Java (TM) Language Specification, The (Java

(Addison-Wesley)): Addison-Wesley Professional, 2005.
[22] R. Hamming, "Error detecting and error correcting codes," Bell System Technical Journal,

vol. 29, pp. 147-160, 1950.
[23] A. Bookstein, S. Tomi Klein, and T. Raita, "Fuzzy Hamming Distance: A New

Dissimilarity Measure (Extended Abstract)," 2001, pp. 86-97.
[24] V. Levenshtein, "Binary codes capable of correcting deletions, insertions, and reversals,"

1966.
[25] J. Butler, I. MacCallum, M. Kleber, I. Shlyakhter, M. Belmonte, E. Lander, C. Nusbaum,

and D. Jaffe, "ALLPATHS: De novo assembly of whole-genome shotgun microreads,"
Genome Research, vol. 18, p. 810, 2008.

[26] J. Simpson, K. Wong, S. Jackman, J. Schein, S. Jones, and Birol, "ABySS: A parallel
assembler for short read sequence data," Genome Research, vol. 19, p. 1117, 2009.

