
Towards a M achine Enabled Semantic Framework for

the Distributed Engineering Design
In One Volume

Vasile Ovidiu Chira B.Sc.

June 2004

Submitted for the degree of
Doctor o f Philosophy

Submitted to;

Research carried out at:

Galway Mayo Institute ofTechnology
The C1M Research Unit, National University oflreland,

Galway, Ireland.
Galway Mayo Institute ofTechnology, Ireland

Research Director: Thomas Roche B.Eng, M.Eng., PhD

Declaration

I hereby declare that the work presented in this thesis is my own and that it has not been

used to obtain a degree in this university or elsewhere.

1 °

Vasile Ovidiu Chira

ii

T o m y m o t h e r

Dedication

iii

A c k n o w l e d g m e n t s

There are many to whom I wish to thank for their impact on my scientific self and,

consequently on this thesis. However, for objective reasons, only few of them will be

mentioned here, since they are the ones that have directly influenced this research work.

However, if I am to forget someone please accept mea culpa.

To my wife Cam elia for quite everything. I am at this point of my thesis (i.e. writing

acknowledgements, thus ending the thesis) more because of you than because of me. So,

please accept my never-ending appreciation /ffl for being such a great

pal even when my moods were far from that ~ sunny place we never

want to leave. Thanks for reading, suggesting corrections and even

more essential, for listening and accompanying me in

my quest to find the light of inspiration and the power to work

during the last four years. Indeed, even if you are not mentioned in

the approach research section, you are an essential part of it. Moreover, I couldn’t finish

this work without your help in implementing the OSA prototype. I am grateful.

To Thomas Roche for his guidance and especially for the cultural and intellectual

‘clashes’ that formed and informed me as a researcher.

To Elena M a n for the essential assistance in understanding the engineering design

domain.

To A ttracta Brenan for reading, re-reading, re-re-reading, ..., my chapters and suggesting

such bright alternatives. I am impressed.

To me, Cami, Tom, Attracta, Eli, David and Valerie for being a fine having-a-good-craic

research team ©. To Laurentiu and Aurora for their friendship.

To all the lads from CIMRU.

P u b lis h e d W o r k A s s o c ia te d w i t h th is T h e s is

Ovidiu Chira, Camelia Chira, David Tormey, Attracta Brennan, Thomas Roche, "An
agent-based approach to knowledge management in distributed design", CE2003, Selected
for Special Issue of Journal of Intelligent Manufacturing, 2004.

Ovidiu Chira, Camelia Chira, Thomas Roche, Attracta Brennan, "Semantic Tools for
Knowledge Management in Distributed Engineering Design", 10th International
Conference on Concurrent Enterprising Escuela Superior de Ingenieros, Seville, Spain,
June 14-16, 2004.

Ovidiu Chira, Camelia Chira, David Tormey, Attracta Brennan, Thomas Roche, "A Multi-
Agent Architecture for Distributed Design", International Conference on Applications of
Holonic and Multi-Agent Systems HoloMAS 2003, Prague, September 1-3, 2003.

David Tormey, Camelia Chira, Ovidiu Chira, Thomas Roche, Attracta Brennan,
"Development of Engineering Design Methodologies and Software Tools to Support the
Creative Process of Design in a Distributed Environment", International Conference on
Engineering Design ICED 03, Stockholm, August 19-21, 2003.

David Tormey, Ovidiu Chira, Camelia Chira, Attracta Brennan, Thomas Roche, "The Use
of Ontologies for Defining Collaborative Design Processes", 32nd International
Conference on Computers and Industrial Engineering, University of Limerick, August 11-
12, 2003.

Ovidiu Chira, Camelia Chira, David Tormey, Attracta Brennan, Thomas Roche, "An
agent-based approach to knowledge management in distributed design", 10th ISPE
International Conference on Concurrent Engineering: Research and Applications, Madeira
Island, Portugal, July 26-30, 2003.

v

C on ten ts

List o f Figures..viii
List o f tables... ix

Chapter 1 In tro d u c tio n .. 1
1.1 Research B ackground..2
1.2 Thesis M o tiv a tio n2
1.3 A im and O bjectives.. 3
1.4 Approach to R esearch.. 5
1.5 Thesis S tru c tu re ... 6

Chapter 2 The Distributed Engineering Design S ystem ... 9
2.1 In tro d u c tio n .. 10
2.2 Distributed Engineering Design..10

2.2.1 Engineering Design.. 11
2.2.2 The Distributed Engineering Design Organization... 13
2.2.3 A Distributed Engineering Design M o d e l..17
2.2.4 Information Setbacks in Distributed Engineering D esign19
2.2.5 Changing the perspective..21

2.3 A Systemic Approach to Distributed Engineering D e s ig n23
2.3.1 Systems Theory and Cybernetics.. 24
2.3.2 The Distributed Engineering Design System (D E D S)....................................... 26
2.3.3 A Distributed Engineering Design System M o d e l.. 34
2.3.4 Information Setbacks in Distributed Engineering Design System37

2.4 Distributed Engineering Design System R equirem en ts.. 38
2.5 Conclusions...41

Chapter 3 Distributed Technologies... 43
3.1 In tro d u c tio n ... 44
3.2 O ntologies...44

3.2.1 Background... 45
3.2.2 D efin itio n ...47
3.2.3 Typologies..54
3.2.4 Methodologies for Building Ontologies...56

3.3 Software A g en ts ...65
3.3.1 Background..65
3.3.2 D e fin itio n ... 67
3.3.3 Typologies.. 70
3.3.4 Multi-Agent Systems.. 73
3.3.5 Final Rem arks.. 78

3.4 Conclusions...79

Chapter 4 Semantic Fram ew ork for the Distributed Engineering Design System80
4.1 In tro d u c tio n ..81
4.2 Thinking the Distributed Engineering Design S ystem ...82

4.2.1 Prerequisites.. 82
4.2.2 The Cooperation Process...83
4.2.3 Cooperation Processes as the M ain Information Flow Patterns....................... 88

4.3 The Need for Semantic S u p p o rt... 91
4.3.1 A DEDS Requirements Analysis..92

4.3.2 Cooperation Process - the Semantic Enablers... 96
4.3.3 Ontologies and Software Agents - the Technological Enablers......................98

4.4 Proposed Fram ew ork for Enabling Semantics w ithin the D E D S 100
4.4.1 The Architectural Fram ework...101
4.4.2 The Architectural Layers..103
4.4.3 The Architectural Planes... 105

4.5 Conclusions...I l l

Chapter 5 A n Instantiation o f the Proposed A rchitectural F ra m e w o rk113
5.1 In tro d u c tio n ..114
5.2 A n Ontology-based Software Agent (O SA) S ystem ...114

5.2.1 The Proposed OSA System.. 116
5.3 A n O SA P ro to typ e .. 120

5.3.1 Prototype Characterization... 121
5.3.2 The Ontological P lane..122
5.3.3 The Software Agents P lane... 127

5.4 Conclusions...133

Chapter 6 Conclusions and Future W o r k ...134
6.1 Research S u m m a ry ..135
6.2 Research R esu lts .. 136
6.3 Further Development and Recommendations for Future W o r k 139
6.4 Final R e m a rk s ..141

References...144

Appendix 1 The Semantic W e b ..154

v i i

L ist o f F ig u res

Figure 1.1 Approach to research... 6
Figure 1.2 Thesis layout.. 7
Figure 2.1 The role o f the computer in the design project space (MacGregor 2002)..........16
Figure 2.2 A Distributed Engineering Design model.. 18
Figure 2.3 The main concepts o f an open system (Bennett, McRobb et al. 19 99)............29
Figure 2.4 A high-level model o f the D E D S ...34
Figure 2.5 A systemic approach to distributed engineering design..39
Figure 3.1 Possible interpretations of the term “ontology” after (Guarino and Giaretta
1995).. 48
Figure 3.2 Conceptualization-language-ontology relation (Guarino 1998)............................49
Figure 3.3 Kinds o f ontologies, according to their level o f dependence on a particular task
or point o f view (Guarino 1997; Guarino 1998)... 53
Figure 3.4 Uses for Ontologies (Uschold 1996)... 54
Figure 3.5 Ontology life cycle in the Methontology approach (Femandez-Lopez
2001).. 62
Figure 3.6 The Ontological Reengineering process... 63
Figure 3.7 Scope o f intelligent agents (adapted from Gilbert et al. by (Bradshow 1997))..68
Figure 3.8 Nwana’s agent typology (Nwana 1996)... 69
Figure 3.9 The taxonomy o f agents proposed by Franklin and Graesser (Franklin and
Graesser 1996).. 71
Figure 4.1 The fundamental model o f communication (VanCuilenburg, Scholten et al.
1991).. 82
Figure 4.2 A black-box view on DEDS as an information transformation system.............. 86
Figure 4.3 High-level DEDS - Environment interaction......................... 87
Figure 4.4 The transformation o f information from Ii to h is performed through the
cooperation o f Human System, Engineering Design Model System, and Infrastructure
System...................... 88
Figure 4.5 The proposed DEDS Architectural Framework... 99
Figure 4.6 The bi-plane model view o f the DEDS architectural framework........................103
Figure 5.1 An ontological model o f the service concept... 114
Figure 5.2 The proposed OSA system to support the access to design information...........116
Figure 5.3 Prototype’s Ontology Library.. 120
Figure 5.4 The Protégé 2000 view o f the Product Ontology.. 121
Figure 5.5 The Protégé 2000 view of the Material Ontology.. 122
Figure 5.6 A pail (two subassemblies and two components) o f a Smoke Alarm design
information.. 123
Figure 5.7 The G U I o f cami:MyAgent agent...125
Figure 5.8 Cami has requested the Material Browse service 126
Figure 5.9 The material browse Service Provider’s G U I presented to the requester.........127
Figure 5.10 The providing o f the SearchProduct service by the OSA Prototype................128
Figure 5.11 The GUIs presented to the user cami by the ProductSearch Query Builder
agent and RDQ L agent..................................... 129
Figure 6.1 Research progression from implicit and heterogeneous knowledge towards
explicit and homogeneous knowledge..137

L is t o f ta b les

Table 3.1 Example o f an ontology from (Benjamins, Fensel et al. 1998)............................... 51
Table 3.2 The Ontology Development Process... 60
Table 3.3 Various definitions o f an agent.. 65

ix

C h a p t e r 1

Introduction

1.1 Research Background

1.2 Thesis M otivation

1.3 A im and Objectives

1.4 Approach to Research

1.5 Thesis Structure

1.1. Research Background
This thesis is the outcome of the research work the author has carried out as part o f a team

(i.e. CODE) within two projects funded by Enterprise Ireland, i.e. Environmental

Enterprise Services Ireland (EESI) and Intelligent Agent Based Collaborative Design

Information M anagement and Support Tools (IDIMS).

The goal o f the EESI project (http://pan.nuigalwav.ie/eesi/) is the formation o f an Internet

based environmental services company for small and medium enterprises in domains such

as Design for Environment, Life Cycle Costing, Reverse Logistics, PDM Systems,

Standards and Legislation. The research area covers data and project management,

electronic communication, e-leaming and the European environmental legislation.

The IDIMS project (http://pan.nuigalwav.ic/idims/) investigates the use o f Software

Agents, Ontologies and Semantic W eb to support the synthesis and presentation of

information for distributed teams for the purposes o f enhancing design, learning, creativity,

communication and productivity.

While both projects required the investigation o f the engineering design domain, (i) the

EESI project focused on the development and the integration o f engineering design

software tools into a W eb-based environment and (ii) the IDIMS project proposes software

tools to support the designer’s decision-making process, in order to facilitate the

interoperation among distributed design environment (DDE) participants during the

various design activities and to manage design knowledge.

1.2 Thesis M otivation
Once tests and validations were carried out, some limitations o f the EESI project became

clear. These limitations m ainly derived from the lack o f appropriate ICT tools to support

the collaboration and knowledge exchange within distributed environments. Limitations o f

the existing ICT tools for distributed environments can be classified, from author’s

experience within the EESI project, under three headings, i.e. Data Management, User

Distribution and System Architecture, as follows:

1. Data Management issues included:

• Fragmentation. It has become vital for m odem distributed environments to be

able to deal with structured data and data in a specific context (i.e. information

and knowledge). For this to happen, a knowledge management system and not a

data management system should be designed and developed.

• Data repository is not truly distributed. Even if m odem database systems such

as Oracle can deal with clusters o f database servers, the administration o f such

Chapter 1

2

http://pan.nuigalwav.ie/eesi/
http://pan.nuigalwav.ic/idims/

systems requires high skills and as a result can be resource demanding (i.e.

time, specialists, IT infrastructure).

• Information and Knowledge Reusability. Because data is taken out o f its context

when it is saved (e.g. data in a C A D application makes a visual sense, but,

when saved, it represents strings o f signs without meaning outside the CAD

tool), it becomes almost impossible to implement a reusability policy (such as

for object oriented programming) for complex information structures in a

distributed environment.

• Semantic Search Engines. There is no way for a search engine to know what the

user truly wants and as a result can only perform retrievals based on key words

and simple queries.
2. Users Distribution issues included:

• The semantic distribution o f users could be difficult to be implemented because

o f the impossibility o f translating data from one specialised language into

another (for example engineering specific language versus administrative

specific language or ‘jargon’). Such translation can be only carried out with a

semantic translation mechanism (which is not available with existing systems).

• Generally, users perform a variety o f tasks that do not require any special skills

(e.g. filling all sorts o f reports with information that is already available within

the environment, translating information form visual representations into

written words), tasks that in the existing distributed collaboration environments

are not automated (mainly because the distributed systems are typically highly

heterogeneous).

• The users are required to perform time-consuming activities in order to

synthesize information and knowledge from data (mainly because they can only

obtain simple data and not direct information and knowledge).

3. System Architecture issues included:

• Inherent distribution: The data, information, knowledge, users and technology

in a distributed environment are highly heterogeneous and there is no standard

representation with which to work.

• Inherent complexity-. The distributed environments tend to become too large to

be solved (in some cases it is even impossible) by a single, centralised system

because o f hardware and software limitations, difficulty, and the resulting

increase in time and cost. Distributed decision making is a particularly complex

Chapter 1

3

task to implement in distributed environments, particularly for the design and

development o f environmentally superior products where a diverse expertise is

required to inform the design process.

Closely related to the above problems, the author considers that one of the main difficulties

encountered within the EESI project was the integration o f various engineering design

tools and users at levels that go beyond the exchanges o f simple strings o f data. In order to

achieve this integration goal, the author found that it was essential to enable

exchanges/connections o f complex information structures among the concerned

engineering design actors. Moreover, the author also found that, in order to fu lfill their

purpose, the services offered through the Web portal had to be tailored to their particular

users both at presentational and content levels. Therefore, the same service had different

layout appearances and information content for different users (i.e. user with different

needs). This situation further complicated the development o f the Web framework that
would amalgamate software tools having different approaches (usually concealed) for

representing their working information to users with/having a wide variety o f profiles.

The investigations carried out for finding solutions to the above-mentioned problems,

while contributing in part to the concretization o f the ID IM S project, form the motivation

behind the present research work. It is intended to discover and to adopt an holistic view of

the distributed engineering design organization, in order to reveal the intimate mechanisms

capable o f controlling and regulating information related functionalities. Moreover, the

author intends to uncover how these mechanisms can be steered by means of software

applications in order to improve the performance o f the engineering design actors.

1.3 A im and Objectives
The overall aim o f this thesis is to identify and propose a suitable architectural framework

for supporting cooperation processes and therefore enabling semantics within the

distributed engineering design environment. The proposed architecture is intended to

characterize a software-based management o f design related data, information and

knowledge flows in the distributed engineering design organization. The aim is to provide

a computational context for implementing IC T tools that would:
(i) Minimise the effect of user and resource dispersion (particularly temporal and

geographical dispersion), the misunderstandings that might be generated by the

(otherwise beneficial) functional and semantic distribution, the time spent for

searching and retrieval o f information, the effort o f information translation

Chapter 1

4

between different tools and the administrational and organisational efforts not

directly related to the design process (e.g. revision control)
(ii) Maximise the quality o f information (i.e. relevant information at relevant and

appropriate times), knowledge sharing and reuse among distributed design

actors, the flexibility o f the user interfaces and the designer’s time spent in the

actual designing process.
In order to achieve the overall aim, the research work supporting this thesis was carried out

along the following objectives:
1. To investigate and characterize the engineering design process performed in a

distributed environment and its problematic aspects;
2. To research and study alternative theories for thinking and modelling the

distributed engineering design process;
3. To investigate current research in information and knowledge management for

identifying supporting technologies for a possible solution to the identified

problematic aspects (from point 1);
4. To analyze the requirement needs for a solution according to the findings from

previous objectives, i.e. the driving problems (from point 1), the research and

therefore the thinking approach (from point 2), and available supporting

technologies (from point 3);
5. To synthesize the architectural framework along the identified supporting

technologies (from point 3);
6. To instantiate a software system along the underlying computational context as

described by the architectural framework (from point 5).

1.4 Approach to Research
The identification o f an architectural framework to fu lfil the aim and objectives o f this

research requires a good understanding o f the application domain (i.e. the distributed

engineering design), its key stakeholders and its shortcomings. Moreover, given the

complexity and the extent/vastness o f the distributed engineering design organization, the

author has identified and focused his research on those aspects concerning the information

flow dynamics within the distributed design environment (DDE).
Given that the proposed research work is the result o f the authors thinking and

interpretations steered by existing scientific theories (i.e. Systems Theory, Cybernetics,

Systems Thinking, Ontologies and Agent-based Systems), the approach to this research is

presented in figure 1.1.

Chapter 1

5

Chapter 1

g5
=§o>5
dj
a3(S'5» *.

I 5
S
o

A comprehensive literature review, carried out by the author as part of a research team,

accounts for this thesis application domain, i.e. the Distributed Engineering Design.

However, specific characteristics of the distributed engineering design (such as

complexity, distribution, multi-disciplinarity, highly reliance on information exchanges,

finality) resulted in the author’s adoption of General Systems Theory and Cybernetics as

conceptualising and modelling frameworks. The goal of using such approaches is to

cognitively model the perception of the distributed engineering design organization, i.e. the

Distributed Engineering Design System, so that deeper insights are attainable. In this way,

a characterization and a model of the Distributed Engineering Design System are inferred.

Furthermore, a Systems Thinking guided analysis of the achieved results is synthesized in

the proposed Architectural Framework.

1.5 Thesis Structure
The present thesis is structured into six chapters. A diagramed map, presented in figure 1.2,

summarizes this thesis layout.

6

Chapter 1

Figure 1.2 Thesis layout.

Chapter 2. Distributed Engineering Design

Chapter two introduces and characterizes the application domain of the research work, i.e.

the engineering design process performed within a distributed environment. It states the

research focus, i.e. the information flow dynamics, and identifies the driving problematic

aspects.

Subsequent to identified limitations of the conventional results, the author proposes a novel

approach to dealing with the distributed engineering design organization, i.e. the systemic

approach. Following the principles of Systems Theory and Cybernetics, it is argued and

demonstrated that actually, the distributed engineering design organization is an open

cybernetic system (called by the author DEDS) ‘kept together’ by information structures

and cooperation processes dynamics. Such a rethinking, in this new context, of the

distributed engineering design organization and its shortcomings, results in a set of

requirements for a computer-based solution to the identified problems.

Chapter 3. Distributed Technologies

This chapter presents two of the most promising research areas for implementing

semantically enabled environments, i.e. Ontologies and Software Agents. These two

technologies are envisioned, throughout literature, to form the next distributed

7

computational environment, capable of managing inherent complex and inherent

distributed systems.

Chapter 4. Semantic Framework for the Distributed Engineering Design System

This chapter argues that a hierarchy of cooperation process forms the directorial pattern of

the DEDS functionality, and therefore determines its performance. It is found that the

cooperation processes form (by means of communication processes), enable (by means of

co-location processes), regulate (by means of coordination processes) and support (by

means of collaboration processes) intra-system information-mediated interactions.

Consequently, it is shown that, while the semantics can enrich the cooperation processes,

the cooperation processes, in turn, can support the preservation of semantics among the

DEDS components.

Given that the poor semantic integration of the information structures into the whole has

been identified as a key problem of the DEDS, the author propose an architectural

framework to define the computational context for enabling semantics for the cooperation

processes within a distributed engineering design environment.

Chapter 5. An Instantiation o f the Proposed Architectural Framework

This chapter proposes an ontology-based software agents system (called OSA) as a

conceptual instantiation of the architectural framework, with the purpose of testing and

validating the results of the current research, i.e. the proposed architecture. In turn, the

OSA system will be validated by means of implementation of an OSA prototype.

Chapter 6. Conclusions and Future Work

This is the last chapter of this thesis. The main conclusions of the research are discussed

and recommendations are given for further research in this area. A special attention is

given to the potential of the Semantic Web, subject to which the author gave an entire

annex (see annex one).

Chapter 1

8

Chapter 2

The Distributed Engineering Design System

2.1 Introduction

2.2 Distributed Engineering Design

2.3 A Systemic Approach to Distributed Engineering Design

2.4 Distributed Engineering Design System Requirements

2.5 Conclusions

2.1. Introduction

This chapter offers insights into applying a holistic approach to the research in distributed

engineering design, i.e. the systemic approach, which “unifies and concentrates on the

interaction between elements, studies the effects of interactions and emphasizes a global

perception” (Rosnay 1979; Rosnay 1997).

The chapter opens with a characterization of the application domain of this thesis, i.e. the

distributed engineering design organization, focusing on the importance of information

structures. Firstly, the key assumptions and characteristics, based on the appropriate

literature, about the concept of engineering design are illustrated and described. Next, the

distributed design activity is introduced and portrayed, and its significant aspects are

identified and analyzed. Based on the specific findings, a working model of the distributed

engineering design organization is proposed and investigated. Furthermore, some of the

critical information related problems are identified.

Based on the conclusions of the literature review, the need for a new and innovative

approach orients the research towards a systemic perspective. The systemic viewpoints

offer the means of describing and demonstrating that the distributed engineering design

organization behaves as and therefore is an open cybernetic system, called DEDS. A

systemic adaptation and reorganization of the proposed distributed engineering design

model results in a high-level model of the DEDS. Furthermore, once the portrait of the

DEDS has been drawn, an interpretation of the information related problems (as identified

from literature) is performed and the appropriate conclusions are presented.

Based on the knowledge gained, the chapter concludes with a set of preliminary

requirements necessary to enhance distributed engineering design organization

functionality and to reduce its negative aspects. Technologies to implement the

specifications are also anticipated and documented.

A set of final remarks concludes the present chapter.

2.2 Distributed Engineering Design

In the context of today’s business environment, the engineering design activity involves

multiple clusters of users requiring concurrent access to multiple system resources and

collaborating in a distributed design environment in order to achieve global optima (Chira,

Chira et al. 2003). One of the reasons for this is that “complex design problems generally

Chapter 2

1 0

require more knowledge than any one single person possesses because the knowledge

relevant to a problem is usually distributed among stakeholders” (Arias, Eden et al. 2000).

The above state of affairs offers a preliminary insight into the complexity of the application

domain of the research that underlines the present thesis. Because of this and because of

the various scientific positions and points of view found in literature regarding the

engineering design concept and its derivates, the author considers helpful and necessary to

state and characterize his understanding of the field.

2.2.1 Engineering Design

Before characterizing the concept of engineering design as understood throughout the

thesis (i.e. as a process), a terminological clarification is first performed. Engineering

design as a science is defined as “a body of intellectually tough, analytic, partially

empirical, teachable doctrine about the design process” (Simon 1996). Hubka and Eder

proposed a more formal definition, as follows: “Design science comprises a collection (a

system) of logically connected knowledge in the area of design and of design

methodology...Design science addresses the problem of determining and categorizing all

regular phenomena of the system to be designed, and of the design process. Design science

is also concerned with deriving from the applied knowledge of the natural sciences

appropriate information in the form suitable for the designer’s use” (Hubka and Eder

1987). In summary, the science of design is in fact “a system of knowledge” (Eder 1998)

that investigates the design as its object.

Engineering design as a discipline (Cross 2000; Gero 2000; Love 2002) incorporates the

specific interdisciplinary features of the design science in an accurate learning

environment. Hence, the discipline of design defines rules, regulations and methodologies

that form the framework for studying and teaching design.

While the meaning of engineering design as a process is somehow elusive in spite of its

widespread use, attempts have been made to define it. Even though a universally accepted

definition of the design process has not yet been agreed upon, nevertheless, a large number

of proposed definitions exist (Feilden 1963; Finkelstein and Finkelstein 1983; Luckman

1984) that cover or focus on different aspects of the engineering design process domain.

The literature mainly deals with the following aspects:

1. The process of design itself (Luckman 1984; Pugh 1991; Hubka and Eder 1996;

Roche 1999; Gero 2000),

Chapter 2

1 1

2. The designer as the main agent of the process (Roche 1999; Gero 2000),

3. The finality of the design process or the objectives of design activity (Feilden 1963;

Pugh 1991; Lang, Dickinson et al. 2002),

4. The life-cycle information aspect that integrates the design in a more holistic view

of the product realization process (Eder 1998; Roche 1999; Lang, Dickinson et al.

2002).

1. A generic process is understood as “a series of actions or operations conducing to an

end” (Merriam-Webster 2003). For the process of design in particular, the actions can be

sequential or parallel, or combined and the end purpose is a solution to a design problem

(Smith and Morrow 1999). From the various definitions expressed in literature (Luckman

1984; Pugh 1991; Hubka and Eder 1996; Gero 2000), explicitly stated or implicitly

supposed, this process emerges to be three-fold. Firstly, engineering design is an

information transformation process from initial formal or informal requirements and

constraints towards a final artifact or product that fulfils these requirements in varying

degrees of performance characteristics (ideally the final artifact will fulfill all requirements

under the given constraints). Secondly, a problem solving process assists the

transformation of information process by employing specific methods that help establish a

path from the initial conditions to an acceptable optimal solution. Thirdly, a decision

making process is involved in making the right choices at the appropriate time in the

problem solving process (Boer 1989).

2. The designer, and mainly his/her cognitive activities, is a critical element of any

engineering design process, as, the designer is the decision-maker. Throughout literature

(Roche 1999; Gero 2000), characteristics such as skills, experience, knowledge,

imagination, originality and creativity are mentioned as key words associated with the

designer. The designer, usually collaborating with other designers, is the one who carries

out the design process and the design evolves through designers’ negotiation strategies

with each other (Brereton, Cannon et al. 1994).

3. The objectives of engineering design converge in a “structure, machine or system to

perform pre-specified functions with the maximum economy and efficiency” (Feilden

1963). Besides the accomplishment of the initial requirements under the initial constraints,

any end product generally has some significant other characteristics such as: it responds to

consumer demand, it is economically manufactured, it fulfills a human need, and so on

Chapter 2

1 2

(Feilden 1963; Pugh 1991; Lang, Dickinson et al. 2002). This final artifact is the pragmatic

result of the design process exertion, an activity that is supported by the designer’s

intellectual competences, experience and knowledge.

4. Life-cycle information represents a novel perspective of the design process that

integrates it into the wider picture of product design (Eder 1998; Lang, Dickinson et al.

2002). As products become more and more complex, the need to bring them to market

quickly and at low cost requires that expertise be shared along the supply chain. Following

this life-cyle line, engineering design is the starting phase of a process consisting of a set of

interrelated phases that also include manufacturing, supply, use, maintenance and disposal.

Therefore, engineering design is no longer a process on its own, disconnected from other

processes. It has been fused to support and to be assisted by the broader process of product

realization by means of needed and available knowledge (from the other phases).

In summary, the author views engineering design as an information transformation process

performed by qualified human designers. The input consists of abstract statements of

design requirements and the output represents detailed information that specifies the

product (Hubka and Eder 1996; Chira, Chira et al. 2003). The successful accomplishment

of the engineering design process depends on the designers’ problem solving skills and on

the decisions they make at the various junctures of design, based on the available life-cycle

information. Furthermore, the author identified that a key actor in engineering design is

information. Designing means to alter some initial information structures, through a series

of stages generally identified as requirement definition, functional specifications,

conceptual design and detailed design (Roche 1999), until a suitable structure is achieved

and outputted. The engineering designers alter the information based on their expertise

(which in turn is based on their personal knowledge), on the available methodologies,

methods and tools, and even more importantly, based on the information they can

straightforwardly access. Moreover, because of the various functionalities which today’s

product has to cover (e.g. assembly, disassembly, usage, manufacturing, disposal), the

outputted information needs to incorporate informative structures from and for its different

life stages.

2.2.2 The Distributed Engineering Design Organization

Competitive pressures and the constraints caused by the complex demands of today’s

markets such as quick time to market, low cost, high quality, low environmental impact

Chapter 2

13

and increased customization trigger the necessity of transition to better-suited forms of

design (Tomiyama 1994; Kimura 1997; Hirsch2000; Thoben 2002).

Therefore, even if the engineering design process remains the same in its substance, the

way it is carried out and the resources involved needed to adapt to the changing

characteristics of the business environment.

Globalization is probably one of the main forms of adaptation to these market and

legislative pressures. It launched the concept of a distributed organization that describes

“an organization which distributes its work to the best locations for their execution based

on the criteria of people skills, costs and resources” (Gammack and Poon 1999).

Following this trend, better forms of carrying out the engineering design activity have been

developed. This globalization and reorganization of the engineering design activity is

called distributed engineering design (Pahng, Senin et al. 1997; Gammack and Poon 1999;

Lang, Dickinson et al. 2002; MacGregor 2002). Hence, distributed engineering design is

seen as a strategy of organizing the engineering design activity for “exploiting the

knowledge and expertise of all parties involved, including marketing, engineering, design,

management, suppliers, production, [...], in the design team, no matter how these parties

are distributed geographically and organizationally” (Lang, Dickinson et al. 2002).

Some of the key defining characteristics of distributed engineering design, identified in

literature, are as follows (Olsen, Cutkosky et al. 1994; Cross and Cross 1995; Harvey and

Koubek 1998; Ahn, Roundy et al. 1999; Siemieniuch and Sinclair 1999; Chen and Lee

2002; Lang, Dickinson et al. 2002; MacGregor 2002):

1. Distribution

2. Teamwork

3. Cooperation

4. Computer’s role

1. Distribution.

Design projects have become increasingly larger and more complex and have started to

require a multidisciplinary approach (Cutkosky, Englemore et al. 1997). Therefore, more

designers dispersed in different geographic locations and coming from different disciplines

can become involved in the same project (Olsen, Cutkosky et al. 1994; Siemieniuch and

Sinclair 1999). Moreover, together with the designer, design data, design information and

design knowledge are generally highly dispersed (Cross 1994; Pahl and Beitz 1996)

(Bertola and Teixeira 2003). Using Weiss’ (Weiss 1999) typology, the author identifies

Chapter 2

14

four kinds of distribution, each at two levels (i.e. the human level and the information

resources level), as follows:

• Geographical distribution: the users and the information resources are dispersed in

different geographical locations;

• Temporal distribution: the users participate within a distributed environment at

different zones of time (e.g. 1 p.m. in Ireland means 10 p.m. in Japan), while the

information resources can arise (e.g. become available) at different moments of

time;

• Functional distribution: the users and the information resources are structured in

clusters defined by specific perceptual, effectual and intellectual capabilities.

• Semantic distribution: the users and the information resources are structured in

clusters defined by specific languages and conceptual realities.

2. Teamwork

To manage distribution towards a common, unified goal, effective teamwork is essential

(Olsen, Cutkosky et al. 1994; Cross and Cross 1995) (Siemieniuch and Sinclair 1999). As

problems become more complex, design is not anymore an individual activity, but a

collective effort (Patel, D'Cruz et al. 1997). Designers need to be aware of each other and

must work together and collaborate in order to meet the design’s objectives.

3. Cooperation

The implementation of a viable organization consisting of dispersed human designers

clustered in virtual teams with access to distributed information resources requires a robust

collaboration process (Lawson 1990; Brereton, Cannon et al. 1994; Olsen, Cutkosky et al.

1994; Harvey and Koubek 1998; MacGregor 2002). In the literature, collaboration is the

main concept used to describe the process of bringing and linking together humans and

information resources in a functional distributed organization. Following the line of Pena-

Mora et al (Pena-Mora, Hussein et al. 2000), the author believes that the concept of

cooperation should be used instead, the reason being that cooperation refers to the

different processes of co-operation between humans in collaborative environments and

consists of the following sub-processes (Pena-Mora, Hussein et al. 2000):

• Communication: exchange of information, events and activities between

participants;

Chapter 2

15

• Co-locatiorr. infrastructure to provide effective communication among distributed

participants;

• Coordination: management of the workflow, resources, information and

communication process;

• Collaboration: the process of creation of a shared understanding in a distributed

environment, enabling in this way the communication process.

Therefore, while the collaboration process may implicitly subsume the other three

processes, for terminological clarity, this thesis adopts the notion of cooperation that

explicitly defines the meaning of ‘coming together’ of design actors (human and non­

human) in a distributed design environment.

4. Computer’s role

Besides a meaningful cooperation of distributed teams, an important aspect of a modem

engineering design activity is the role o f the computer. Since its early introduction, the

computer has acted as an advanced tool for designer usage. In the same time with the

evolution of the engineering design process, the computer has acquired more and more

important roles (see figure 2.1).

Too?assistant vi e w a t
each physical location.
Past approschesto
distributed design have
a m p ly taken the v ie w of
b collection o f intelligent
design assistants whicti
is inadequate.

Chapter 2

Figure 2.1 The role of the computer in the design project space (MacGregor 2002).

Today, the computer (or computer networks) acts as a medium or workplace: “a suite of

tools, necessary to support the human designer, both for actual design work and

communication” (MacGregor 2002).

The environment in which distributed engineering design takes place can be called a

distributed design environment (DDE). Therefore, a DDE consists of distributed designers

and distributed information resources networked by computers and software tools. A

Environment?space v iew which provides a
central worii environment fo r all separated
design team m embers and indudes a collection
of necessary design and
com m uni cat ion t oo ls .

Medium vi ew w h i cn
concentrates on the
com
along each o f the paths/links
which form the 'front end' in
distributed design w ork.

16

cooperation process is employed to support the geographical, temporal, functional and

semantical integration of all engineering resources (e.g. designers, information, tools,

methods and methodologies).

An important characteristic of such an environment, caused by the distribution of designers

and design resources, is its heterogeneity (Pahng, Senin et al. 1997). Designers are

heterogeneous (diverse disciplines, experience, expertise and knowledge), computers are

heterogeneous (different hardware and software platforms) and the software tools used by

designers are heterogeneous (different software tools developers).

2.2.3 A Distributed Engineering Design Model

Design models are schematic, simplified representations of the patterns (or structures) and

functionalities of the design process and are used to represent the design process.

Generally, a classic engineering design model (e.g. descriptive, prescriptive, mathematical,

computational, life-cycle) does not include any references to designers and design

infrastructure. This is because a generic designer is implicitly assumed and the

infrastructure (e.g. computers) is not seen to have a critical impact on a supposed

collocated design process (after all, computers are considered only when developing

software tools for designers).

For clarity and working reasons, an adaptation of such a generic model to distributed

engineering design is required. In order to represent the distributed engineering design

activity (i.e. how design takes place) in accordance with the findings from the previous

section, the author contends that a modified model should explicitly include references to

designers and infrastructure. Moreover the model should emphasize the cooperation

process that links designers, information resources, tools, methods and methodologies (i.e.

engineering resources) in a feasible organization that can carry out the engineering design

process.

The distributed design model used in this thesis intends to represents the inherently

distributed and heterogeneous nature of the design activity and reflects the critical

importance of the design information resources, as they are the main material for any

cooperation.

Figure 2.2 presents distributed engineering design as an information transformation

process effected by a human component and enabled by an infrastructure component. The

human component subsumes the distributed multidisciplinary design teams involved in the

design process. The infrastructure component (e.g. computer networks) enables the design

Chapter 2

17

process by creating the medium or the designing space and also by providing advanced

designing software tools (e.g. CAD tools). The engineering design model defines and

determines the specifications of the methods and the methodologies used to carry out the

design process. Finally, everything is functionally integrated in a common functional

organization by means of the cooperation process that envelops the internal information

flows used to harmonize, regulate and control the engineering design process. A key

characteristic of these information flows is that they depend on and are influenced by the

structures that produce, communicate, transform or consume them, e.g. human,

infrastructure, design specific structures, as well as any combination of them. A result of

the diversity of structures involved in the distributed engineering design is the highly

diverse and often irreducible representations used to embody and codify the information

structures.

Chapter 2

C o l la b o r a t io n

Communicatio
Raw Information

C o l lo c a t io n

P Y i n h t P S !

Human
Component Engineering

Design Model

Detailed
Information

C o o r d in a t io n

Figure 2.2 A Distributed Engineering Design model

In summary, the distributed design organization is the result of complex cooperation

enabled inter/intra-actions among engineering designers, design methods, methodologies

and tools, and information-communication technologies (ICT). Moreover, engineering

design is considered an increasingly complex process applied on a pool of desirably

shareable information by a team of designers desirably diverse (because the author thinks

that diversity is advantageous in developing new insights and design ideas) in their

disciplines.

18

The author believes that the design information structures represent a critical element of

the engineering design, and moreover of distributed engineering design, since the process

of designing can be viewed as an information transformation process (as shown in section

2.2.1). For this reason, this thesis focuses on the management of the above-mentioned

information structures. More explicitly, the research concentrates on how to manage the

information that needs to be exchanged or shared among different distributed engineering

design components, in order to support a sound and feasible cooperation process.

2.2.4 Information Setbacks in Distributed Engineering Design

Because of the complex nature of distributed design, the associated problems are generally

multifaceted. While some of these problems can be localized (e.g. infrastructure specific

problems), the majority of the difficulties cover more than one of the distributed design

components (e.g. a malfunction may be caused by poor infrastructure quality and

communication difficulties and inadequate information). These circumstances only serve

to complicate the study of the distributed design organization.

Regardless of the variety of distributed design problems that exists, this thesis focuses

specifically on information related problems. Moreover, the author argues that the

malfunctioning of the cooperation process causes most of the problems associated with

distributed design. Furthermore, the main cause of cooperation faults can be ascribed to the

lack of an efficient and effective management of design related data, information and

knowledge (Thoben, Weber et al. 2002).

The author recognized that, with respect to the design data, information and knowledge,

two aspects need to be considered, i.e. quantitative and qualitative aspects. The

quantitative aspect is related to the unprecedented growth of the quantity of information

(VanCuilenburg, Scholten et al. 1991). Ho claims that currently the overall amount of

information that the world produces is in the range of one to two exabytes (a billion

gigabytes) per year (Ho and Tang 2001). As this volume of knowledge and information

increases it is naive and dangerous to assume that any one designer would be capable of

grasping all aspects and nuances of a problem. As a result of these information and

knowledge overloads, designers can often become perplexed, because they do not know

how to handle such vast quantities of information and knowledge effectively for their

design work (Chira, Chira et al, 2003). In modem design environments products are so

complex that externalised information and knowledge must be readily accessible by the

designer. It is widely believed that design engineers spend up to 47% of their time seeking

Chapter 2

19

design information in the design process (Hales 1987), with no more than 10% being

machine-readable (McGee and Prusak 1993). Given that design can be described as a

problem solving process and considering that engineers tend to solve problems based on

available knowledge, it is important to ensure that data, information and knowledge are

available in enough quantities and at the correct time in the process (Lawson 1990; Cross

1994; Hubka and Eder 1996; Pahl and Beitz 1996; Roche 1999).

The qualitative aspect of design data, information and knowledge relates to the

increasingly critical problem that arises for the designers to find information that is

relevant or appropriate to the task at hand (Viano 2000). Research has shown that design

engineers have strong problem solving skills but they are generally poor at creating

imaginative ideas and conceptual models, and hence depend largely on the quality of the

information which they have ready access to (Kolb 1984; Finger and Dixon 1989; Coyne,

Rosenman et al. 1990; Brennan 1996; Hubka and Eder 1996; Roche 1999). If proper

information is not easily accessible design engineers are unlikely to seek or share

knowledge and expertise and as a result, at best are likely to sacrifice quality and to

generate local rather than global ‘optima’, and thus sub-optimal design solutions (Coyne,

Rosenman et al. 1990; Lawson 1990; Roche 1999).

Both the quantitative and the qualitative problematic aspects have the potential to be

particularly augmented in the distributed environment because of the distribution of data,

information and knowledge, the inherent dynamic nature of design information, the virtual

communication processes and the increased complexity of products (Jagdev and Browne

1998; Roche 1999; Pena-Mora, Hussein etal. 2000).

The shortfall of data, information and knowledge management impinges on distributed

engineering design and especially on the cooperation aspect of it. The literature

acknowledges the low level of awareness and understanding of other designers and their

work (Nakakoji, Yamamoto et al. 1998; Sclater, Grierson et al. 2001; MacGregor 2002;

Thoben, Weber et al. 2002). Moreover, because of the different languages, backgrounds,

experience and expertise of the design stakeholders meaning is particularly difficult to

transfer and communicate (Snow 1993; Harvey and Koubek 1998; Brazier, Moshkina et al.

2001; MacGregor 2002; Thoben, Weber et al. 2002). The sharing of knowledge and

information becomes even more difficult in an environment where the tools are developed

by and for experts (Cutkosky, Englemore et al. 1997) and their syntactic integration into

Chapter 2

2 0

the distributed design environment is reduced (Crabtree, Fox et al. 1997; Siemieniuch and

Sinclair 1999; Pena-Mora, Hussein et al. 2000).

To summarize, the problems associated with a distributed engineering design environment

can be categorized as follows:

• The quantity of information structures (especially information and knowledge)

which the engineering designers have and need to handle/manage (e.g. search,

identify, retrieve, use/process, store) is already burdensome and is increasing at a

rapid pace.

• Designers’ knowledge and, therefore, performance depend on the readily available

information, which is not always of the appropriate quality.

• The above problems result in an unsatisfactory cooperation within the organization

and, consequently the intensification and recurrence of the same problems.

2.2.5 Changing the perspective

The existing approaches to distributed design generally apply a kind of “divide et impera”

(i.e. divide and conquer) methodology. This consists on identifying a certain aspect of a

distributed engineering design process that is simple enough to be studied. The result of the

study is usually materialized in a software tool that will improve a specific functionality or

will resolve local problematic issues. For example, the CAD tools such as ProEngineer and

SolidWorks improve the drawing ability of designers by providing a visual 3D

environment. In the author’s view, this approach led to a number of different strategies or

logics of organizing the design data and information, specific to the application in hand.

Some applications store the data in specific files while others use database systems (such

as Oracle or MySql). Moreover, specific to distributed engineering design, the human

actors generally come from different backgrounds and specialties, and hence have their

own professional and conceptual languages. The result is a semantical, functional and

organizational ‘breakdown’ of the design information resources. Therefore design

information sharing, reuse and integration are more a desirable situation than a reality. This

can lead to poor cooperation among the distributed design structures, which in turn can

result in difficult and costly design process management.

Given this situation, the author considers that, for achieving his research aim, the thesis

needs a change of perspective from a local reductionist approach towards a more holistic

approach to studying and implementing the distributed engineering design organization.

This is because it is not intended to provide a software-based solution to a particular aspect

Chapter 2

2 1

of the distributed engineering deign process, but to enable a global software-based solution

to the information setbacks of the distributed engineering deign organization. However,

this change of research perception needs to be informed, sustained and validated by

established scientific theory(ies). Moreover, given that the research is in an early stage, the

decisions taken at this point are having a milestone importance for the future work. With

all of these in mind, the author contends that the process of selecting the needed scientific

support is ‘apriori’ directed by the followings:

• The author’s mental models (which are the result of his personal history e.g.

experience, education and formation) and expertise

• The ‘immediate’ feedback from the ‘close-by’ researchers (e.g. colleagues,

corresponding fellow researchers)

‘A posteriori’, this selection process is supported (in the sense that is positively or

negatively confirmed) by the research results obtained at the different stages of the

research work.

As has been said above, the author proposes a change of perspective from local views to a

global view. Within the research community it is quite generally agreed that a global

approach actually necessitate a systemic approach. Therefore, the first criterion of the

selection process was to study and identify appropriate system’s theories in order to find

the needed support. The theories studied included General Systems Theory, Cybernetics,

Complexity Theory, Chaos Theory, Systems Dynamics, Adaptive Systems, Autonomic

Systems and Holonic Systems. A first conclusion of the investigations has been that all

these theories have (almost) the same understanding of the concept of system, the

differences generally consisting in the tools they are using for exploring this concept and

the fields of science that immediately benefit of the findings (e.g. probably the main

beneficiary of the Chaos Theory findings is meteorology). Therefore, given the research’s

time and other resources constraints, the other criteria of the selection process were the

author’s proficiency with the tools used by the different theories and the grade of

immediate benefit for the distributed engineering design domain. For example, the

Complexity Theory and Systems Dynamics seem to have instant results if used in the

research of distributed engineering design domain. However, they both require advanced

mathematics which, from the author’s expertise point of view would have been necessitate

some time to acquire. On the other hand, the author had the expertise for using Adaptive

Systems and Holonic Systems. However, it was not obvious for the author that these two

theories would have a straight impact on the research since they are mainly used in

sociology and biology. Therefore, based on his expertise and informed by discussion with

Chapter 2

2 2

specialists in engineering design the author has selected the General Systems Theory

(sometimes called only Systems Theory) and Cybernetics as the supporting scientific

theories. Another reason for this selection is that these two theories are somehow more

general than the other theories (and all the other theories can be seen as specializations of

one or the other of these two) and can be seen as the first steps towards a consistent and

systematic employment of system’s theories in studying the engineering design domain.

2.3 A Systemic Approach to Distributed Engineering Design

The author believes that the achievement of the (distributed) design goal, i.e. to reach a

good solution for a quality product with the least commitment of time and resources,

necessitates a seamingless administration of the organization as a whole. However, such an

administration requires a throughout understanding of the distributed engineering design

organization and its problematic aspects. Moreover, the understanding, or the knowledge

that can be acquired is constrained by Weltanschauung or the worldview one has about the

object in question (in this case distributed engineering design). In the following, based on

the literature, the author presents the overall perspective from which he sees and interprets

distributed engineering design.

If in the past, a designer or a group of co-located designers used to be sufficient to perform

an engineering design project, currently, the large-scale engineering design tasks require

the involvement of globally distributed “multi-disciplinary teams of individuals” (Olsen,

Cutkosky et al. 1994). From the literature, the author synthesized the following main

characteristics of such a design team (Harvey and Koubek 1998), (Siemieniuch and

Sinclair 1999), (Ahn, Roundy et al. 1999), (Lang, Dickinson et al. 2002), (Olsen, Cutkosky

et al. 1994):

• Distribution: - team members are geographically, temporally, functionally and

semantically dispersed.

• Multi-disciplinarity: - the team consists of members originating from different

engineering disciplines and/or scientific backgrounds.

• Concurrency: - the functioning of the entire process is conditioned by different

stages of the workflow that depend on each other.

• Parallelism: - team members can be required to work in parallel when it is possible

for a faster completion of the design process.

Chapter 2

23

The above acknowledged performer of the distributed engineering design process (i.e. the

distributed design team) together with the supporting methodologies and technologies (e.g.

computer networks, design tools, supporting software applications) form the distributed

engineering design organization. Hence, distributed design emerges as a kind of complex

organization headed towards an explicitly specified goal. It depends on the information

exchanges with its environment and has control mechanisms that monitor and manage its

internal functionality.

To summarize, the author contends that distributed engineering design is not some kind of

machine or organization built or manufactured in a laboratory, but a consistent set of self­

organizing structures interacting with certain conformity to some internal laws towards a

pragmatic goal. It is an evolutionary response to the forces that act in its environment (e.g.

market and legislative forces). In this light, distributed design can be viewed as a system or

a distributed engineering design system (DEDS). Additionally, not only is DEDS a system

but it will be also argued that it is an open cybernetic system.

This thesis offers insights of applying a different approach to the research in distributed

design, i.e. the systemic approach, as opposed to a reductionism approach. The systemic

approach “unifies and concentrates on the interaction between elements, studies the effects

of interactions and emphasizes a global perception” (Rosnay 1979; Rosnay 1997).

However, an introduction to systems theory and cybernetics is firstly required to formally

define the concept of systems.

2.3.1 Systems Theory and Cybernetics

Systems Theory has its roots in the belief that there is an implicit order in the Universe

(however complex and diverse the Universe is) (Rosnay 1979; Heylighen, Joslyn et al.

1993). It evolved as a field of science (also under the name of General System Theory or

GST) in parallel with a number of philosophical views, i.e. constructivist, functionalist and

holistic, as a balance to the reductionist approach (Heylighen, Joslyn et al. 1993; Skyttner

1996).

The theory is built on the concept of a system, which has accompanied human thinking

since its early history (Skyttner 1996). There are many definitions (both strong and weak)

of a system (see (Skyttner 1996; Backlund 2000) for a review), from which two are more

appropriate to this thesis. The first one is a pragmatic definition circulated in the realm of

management, and considers that “a system is the organized collection of men, machines

Chapter 2

24

and material required to accomplish a specific purpose and tied together by communication

links” (Skyttner 1996). The second definition has a more formal articulation and states that

a system is made by a set with a cardinality1 at least two and satisfies the following three

conditions (Ackoff 1981):

1. The behaviour of each element has an effect on the behaviour of the whole.

2. The behaviour of the elements and their effects on the whole are interdependent.

3. When subgroups of the elements are formed, all have an effect on the behaviour of

the whole but none has an independent effect on it.

Hence, a system is an heterogeneous collection of interdependent elements and group of

elements kept together by an overall purpose. It is not necessary for every element or group

of elements from the system to have specific local goals, but generally, the local goals

work together to achieve a global goal. In addition to organization and goal directness,

there is one more necessary condition required for something to qualify as a system, i.e.

“continuity of identity” (Skyttner 1996) or the capacity to preserve structure within a

changing environment.

Systems Theory is defined as the “trans-disciplinary study of the abstract organization of

phenomena, independent of their substance, type, or spatial or temporal scale of existence.

It investigates both the principles common to all complex entities, and the (usually

mathematical) models which can be used to describe them” (Heylighen and Joslyn 1992).

Moreover these organizations can be described and modelled by concepts and principles

that are independent of a specific domain (Heylighen, Joslyn et al. Oct 1, 1993 (created)).

Evidently, this model will not describe the real piece of the world exhaustively (Geyer

1994), but it will provide the researcher with (the necessary and) sufficient approximation

for studying it (Skyttner 1996; Backlund 2000; Heylighen, Joslyn et al. Oct 1, 1993

(created)).

The roots of Cybernetics2 come from a variety of disciplines including mathematics,

technology, biology, information theory, system dynamics, chaos theory and Artificial

Intelligence (Geyer 1994; Beer 2002; Heylighen, Joslyn et al. Oct 1, 1993 (created)), and

originated from a series of problems and projects concerned with feedback loops and

control systems for constructing intelligent machines. One of the earliest examples is

1 C ard ina lity measures the number o f elements o f a given (m athem atical) set.
2 Cybernetics derives from the Greek w ord fo r steersman (kybernetes) H eylighen, F., C. Joslyn, et al. (O ct 1,
1993 (created)). W hat are Cybernetics and Systems Science? P rincin ia Cvbernctica W eb. F. Heylighen, C.
Joslyn and V . Turchin, P rincip ia Cybernctica, Brussels.

Chapter 2

25

Shannon and Weaver’s problem of reducing noise in telephone lines (Shannon and Weaver

1963), which led to the development of information theory (Coming 2001).

The mathematician Norbert Wiener (whom is considered to be the father of cybernetics)

proposed one of the first well-received definitions. He defines cybernetics as “the science

of control and communication in the animal and the machine” (as cited by (ASC;

Heylighen; Beer 2002)). The definition stresses the close interdependence between the

concepts of communication and control. In order to control, communication is necessary.

Moreover, the concept of control does not mean “pulling levers to produce intended and

inexorable results” (Beer 2002), but refers to the observation that no matter how

complicated and unpredictable a non-trivial system is, “something can be done to generate

a predictable goal” (Beer 2002). Furthermore, the control is applied upon animal and

machine. In this way a unification of animal and human made artifacts is envisioned and

intended. Naturally, this definition has evolved towards an “interdisciplinary approach to

organization, irrespective of a system's material realization” (Heylighen). The main focus

of cybernetics is not the thing itself but the design and discovery of principles of regulation

and control (ASC).

At their core, Cybernetics and Systems Theory focus, in fact, on the same object, i.e.

organization independent of substrate (Joslyn 1992; Geyer 1994; Heylighen, Joslyn et al.

Oct 1, 1993 (created)). They differentiate in the approach they take to investigate their

object. While systems theory focuses on “the structure of systems and their models”

(Heylighen, Joslyn et al. Oct 1, 1993 (created)), cybernetics focuses on “how systems

function, that is to say how they control their actions, how they communicate with other

systems or with their own components” (Heylighen, Joslyn et al. Oct 1, 1993 (created)).

Because the similarities are considered to be greater than the differences, the two domains

(i.e. cybernetics and system theory) have practically merged. (Heylighen, Joslyn et al.

1993; Geyer 1994).

2.3.2 The Distributed Engineering Design System (DEDS)

The research carried out at the author’s institution has investigated the structure, the

characteristics, the properties and the functionality of the distributed engineering design

organization. Accordingly with observations made,

Based on characterization of the distributed engineering design organization (from section

2.2) the author considers that a different approach to studying the distributed design is

required, an approach that perceives the distributed design as a whole entity, i.e.

Chapter 2

26

Distributed Engineering Design System or DEDS. The initial phase of this approach

consists of three steps, as follows:

(1) It is argued that a generic DEDS complies with the characteristics of a generic

system, so therefore a DEDS is a system.

(2) More specifically, the structure of a generic DEDS is described in terms of an open

system.

(3) The behaviour of a generic DEDS is expressed from a cybernetic perspective.

(1) Distributed Engineering Design as a System

Based on Skyttner’s review of the literature, the hallmarks of system theory are as follows

(Skyttner 1996):

• Interrelationship and interdependence o f objects and their attributes - the elements

that constitute a system are related and or dependent on each other. Unrelated and

independent elements do not constitute a system.

• Holism - the overall system is more than the sum of its parts and this should be

possible to be defined in the system.

• Goal seeking - a system functions towards a goal or an equilibrium point.

• Transformation process - to achieve its goal, a system must transform inputs into

outputs. This, in fact, defines the overall functionality of the system.

• Inputs and outputs - The system takes some raw resources (e.g. information,

matter, and energy) as inputs and transforms them into some final forms, according

to its goal(s).

• Entropy - the amount of disorder and randomness present in any system (entropy)

tends to increase in time. When maximum entropy is reached the system cease to

function. However, it is possible to delay the increase of entropy by importing

additional resources (usually energy).

• Regulation - the components of a system have to be controlled and regulated, so

that the global goal(s) are achieved. This regulation includes the corrections of

deviations, so a feedback mechanism is required.

• Hierarchy - a system generally consists of a hierarchy of several sub-systems.

• Differentiation - or division of labor, implies that specialized units within the

system perform specialized functions.

Chapter 2

27

• Equality and multifinality - there is more than one way to reach an objective that

complies with the overall goal(s) and, in the same way there is more than one

objective (mutually exclusive) that complies with the overall goal(s).

Within a DEDS, human designers geographically distributed collaborate using

communication technologies (e.g. web cams, microphones, collaboration applications) and

negotiations strategies for the sharing of data, information and knowledge. Locally, the

designers use past cases and CAD tools for drawings, and stored (in books, reports, hard

drives, own memory and so on) information and knowledge for ideas or insights. Hence, a

DEDS consists of interrelated and interdependent elements.

Moreover, the DEDS itself is more than the sum of the individual designers, computer

networks and data, information and knowledge stored in the system. The complex

interactions among the distributed design components add value to the whole, value that is

not achievable by simply summing the individual values. It matters how and what

information is stored, the time to access it and the imaginative response of the designer to

the information in hand. Therefore, the DEDS has the property of holism.

As mentioned earlier, the necessity or need for a DEDS is triggered by specific legislative,

market and business needs and the primary goal is to generate better product specifications

in decreasing time and cost. The achievement of the goal necessitates employing an

information transformation process from raw information (input) towards a detailed design

(output).

However, the author contends that, without market feedback, or in the absence of

evolutionary tools and methodologies the DEDS will fail to provide proper solutions and

will finally disintegrate, i.e. it will reach its maximum entropy.

For the organization to function, management mechanisms are necessary to regulate and

control the function of the design components together with their intra/interactions. These

administrative components, usually consisting of humans (e.g. designers, team leaders,

project mangers, etc) helped by specific tools (e.g. PDM), based on the information at hand

to take decisions during the ‘unfolding’ of the engineering design process.

Depending on the state of the engineering design process or on the specific type of

intra/interactions required, specific tools are employed to handle it. For example, a

collaboration tool (such as IBM Lotus Sametime (IBM 2003)) together with specific

devices (e.g. web cams, headphone sets) can support a virtual brainstorming session among

a team of designers at the early stages of designing, while CAD tools (such as ProEngineer

or SolidWorks) are successfully used at later stages for visually representing the product

Chapter 2

28

structures. Such differentiation of labor can also be observed within the humans involved

in distributed engineering design organization (e.g. vertical hierarchies, horizontal division

of tasks, etc).

Finally, it is possible and probable to exist/find more than one final product specification

(there are a number of global ‘optima’) that is able to fulfill the initial requirements and

constraints, and there is more than one path that will lead from the initial conditions to a

global ‘optimum’. For example, even if the requirements for wireless telephony are almost

all the same, then the final product (i.e. mobile phone) differs from producer to producer

even if, after all they are approximately equal in what they are doing.

To conclude, a generic DEDS complies with the generic system characteristics, and

therefore acts as a system. The question is, does it behave as an open or closed system?

(2) DEDS as an Open System

The Newtonian model of the world, assumes that the studied system is closed (Hawking

2001). This means that the system does not interact with the outside environment, so no

exchange of matter and energy with the exterior occurs. Under this assumption, any system

contains inside its boundaries all the information needed to analyze and predict its

behavior. Hence, the study of the system is reduced to observations of the phenomena that

take place within the system. This reductionism simplifies the study of the considered

system, and in some cases the predictions correspond to what is observed (Barrow 1992;

Hawking 2001).

Nevertheless, this approach is “too often narrow and inclined towards a restricted area”

(Skyttner 1996). In his General Systems Theory, Bertalanffy argued that, there are systems

in the world that depend on matter and energy exchange with the environment (which in

fact are the most practical phenomena of the world) (Bertalanffy 1976). For this class of

systems, called open systems, the reductionism assumptions are simply impossible. This is

because a very important characteristic of such systems is exactly the interaction with

(other systems from) their environment. For example, a biological system having its

connections with its environment closed will most probably die o f starvation’ (Bertalanffy

1976).

The descriptions above, and the common-sense presupposition that a team of designers

operating in isolation will soon deplete/exhaust the available information and will fail in

finding an optimum solution, a priori suggest that DEDS could be an open system. For this

Chapter 2

29

reason, the DEDS will be judged in relation to the open system concepts in order to verify

the above supposition.

The main sets of concepts that characterize an open system (see figure 2.3) are as follows

(Bertalanffy 1976; Heylighen, Joslyn et al. 1993; Geyer 1994; Bennett, McRobb et al.

1999):

1. Boundary, input, output, throughput

2. Control, feedback, feed-forward, state of a system,

3. Hierarchies of systems.

System environment

Chapter 2

Figure 2.3 The main concepts of an open system (Bennett, McRobb et al. 1999)

1. Boundary, input, output, throughput

In order to discuss a system (e.g. structure, properties) it is necessary to distinguish the

interior of the system from the exterior of the system. Generally, a boundary separates the

system from its environment. Open systems interact with their environment. It is safe to

say that, in fact, they interact with other open systems from the environment. This

interaction has two components, i.e. the input and the output. The input defines what enters

the system from outside (e.g. client requirements, business, market constraints), while the

output defines what exits the system to outside (e.g. detailed information about a specific

artefact to be manufactured). The output of a system generally is different from and

30

depends directly or indirectly on the system’s input (e.g. the inputted raw information

determines how the outputted information is structured and detailed). Usually, it is not

possible to have an output without an input. The transformations that take place inside the

system, from input to output are called throughput. Within the DEDS, the throughput

subsumes all the internal processes and activities required by the concurrent engineering

design process (e.g. the engineering design itself, negotiations among engineers, CAD

assisted drawings, etc).

2. Control, feedback, feed-forward, state o f a system

An open system is also characterized by the set of advanced concepts, i.e. control,

feedback and. feed-forward. The control is the component in charge of the functionality of

the system. It can take decisions depending on the current state of the system and is in

command of the operation of the system as a whole (Heylighen, Joslyn et al. 1993)

(Bennett, McRobb et al. 1999). The DEDS needs a design management component to

control the information transformation process and to implement decision-making and

problem solving mechanisms. To improve the quality of the outputs, this design

management component needs feedback not only from the market, but also from

manufacturing, end of life department and users. Feed-forward information is also

necessary in order to cope with changing market, supplying and manufacturing conditions.

3. Hierarchies o f systems

As the open systems are usually complex systems, they can be split in a set of subsystems

(each subsystem acting as a system). Depending on the purpose of the researcher, an open

system generally contains a hierarchy of subsystems (Geyer 1994; Bennett, McRobb et al.

1999). Based on the findings concerning the distributed engineering design organization,

the DEDS can also be viewed as a hierarchy of systems, as follows:

• Infrastructure System - consists of the hardware and the software components and

tools located within DEDS;

• Human System - consists of all the designers and all other human actors involved in

the distributed design process;

• Engineering Design Model System - defines, characterizes and informs the

unfolding of the engineering design process itself, the methodologies, and methods

used to support the transformation of information.

Chapter 2

31

Each of the above mentioned subsystems could be further decomposed in simpler

subsystems. For example, a particular team of designers or a set of designers with the same

specialty is subsystem of the human subsystem.

In summary, in order to achieve its goals, a DEDS system must and needs to act as an open

system.

(3) DEDS as a Cybernetic System

Cybernetic systems are generally defined by a set of specific characteristics that include

the following (Joslyn 1992):

• Complexity refers to the fact that cybernetic systems consist of complex hierarchies

of heterogeneous interacting components;

• Mutuality describes the nature of interactions among system components. Usually,

the interactions occur in both real time and parallel and are mediated by

cooperation processes.

• Complementarity arises from the complex relations among the heterogeneous

system components that underlay information flows dependant on multiple

structures and on which multiple structures depend. In such cases, any reductionism

or any single dimension description is a priory incomplete. Any system description

requires “multiple complementary, irreducible levels of analysis” (Joslyn 1992).

• Evolvability portrays the characteristic of cybernetic systems to grow and evolve

based on the environment fluctuations and internal phenomena, rather than in a pre­

programmed manner.

• Constructivity refers to the fact that cybernetic systems are increasing in size and

complexity. This increase is based and depends on the previous system states and

can occur in an indeterministic manner.

• Reflexivity is a consequence of the complex positive and negative feedback

processes that take place within the system. The ultimate phases of these processes

consist in “reflexive self-application” (Joslyn 1992) that generate phenomena such

as self-reference, self-modelling, self-production, and self-reproduction,

The structural and functional analysis of a generic DEDS reveals that the DEDS system

complies with the above characteristics, for a number of reasons as follows.

Chapter 2

32

As already identified, structurally, a DEDS consists of human teams collaborating over

computer networks with the goal of generating formal structured information that describes

complex structures and behaviors (e.g. product specification). This activity is based on raw

information given in the form of requirements and constraints. This raw information is

particularly difficult to be synthesized as it is hidden in the users’ or markets’ informal

language or tacit knowledge. Manual or automated (usually in the form of software

applications) design models, methodologies and tools help in creating and structuring the

information. Therefore, a DEDS can be perceived as a complex organization made of

varied interacting components (e.g. functionally distributed humans, heterogeneous

information sources and resources, diverse design methods, methodologies and tools).

The distributed design model (see section 2.2.3) reveals some interactions that take place

during the cooperation process, as follows:

• Human-Human - necessary for the good functioning of a team of designers as well

as critical for the coordination of different teams of designers;

• Human-Computer - subsumes what is known in literature as human computer

interaction (HCI). It is also a key interaction in the process of the cooperation of

distributed humans (i.e. human to computer to human interaction);

• Human-Information - deals with the perception of information by humans,

especially the effect of information and the human response to the quantity and

quality of the information;

• Computer-Information - mediates between the hardware and software

architectures and the philosophy and logic for storing, retrieving and maintaining

design data, information and knowledge.

These interactions are critical for reaching the design goal(s) and neither/no main

component of the DEDS (e.g. infrastructure, human) can be analyzed without taking to

consideration the effects that the other components have upon it. Therefore, a DEDS can

be characterized by mutuality and complementarity.

Depending on the market needs and on past experience, a DEDS can be reorganized

accordingly, so that the mistakes will not be committed again and the good things will be

repeated. Advances in the ICT industry could also lead to the modernization of the system

infrastructure with improved computers (e.g. faster processors, bigger memories).

Moreover, the development of better software tools for design, collaboration and resources

Chapter 2

33

management will more than surely have a strong impact on DEDS structure and

functionality. Therefore, in order to attain a long-term viability, the author contends that a

generic DEDS needs to evolve.

The present structure and functionality of a DEDS is the result of the evolution of the

design process. In the past, a single designer managed the design process. In time, because

of specific needs, more and more human participants became involved in the process.

Moreover, in recent times, the design process gained important improvements in terms of

complexity management, speed and quality from the ICT revolution (both hardware and

software). Within a DEDS, the quantity and quality of human designers, infrastructure and

especially information resources tends to increase in time with every application of the

design process to existing data, information and knowledge. Therefore, constructivity is an

important characteristic of a generic DEDS.

The reflexivity characteristic, while not yet formally acknowledged within the DEDS, once

implemented could bring significant improvements in terms of data, information and

knowledge such as self-generated and self-organized information resources, self­

reproduction of successful work flows and self-simulation functionality for predictions.

Hence, DEDS functionality can only be improved once the reflexivity characteristic is

implemented (of course, the cost of implementing it should be considered). Anyway, pre-

reflexive characteristics are identifiable in the form of so-called circular processes: self­

organization, self-references and feedback cycles (Geyer 1994; Bennett, McRobb et al.

1999; Heylighen and Joslyn 2001).

2.3.3 A Distributed Engineering Design System M odel

The DEDS model summarises the findings of the systemic approach. The intension is to

adapt and restructure the distributed engineering design model (presented in section 2.2.3)

to the proposed view, incorporating the found perspective of systems theory and

cybernetics. Its purpose is not to mirror in detail the entire system, but to simplify it,

concentrating on a specific key facet, i.e. information position within DEDS. The result is

pictured in figure 2.4.

Chapter 2

34

Chapter 2

Figure 2.4 A high-level model of the DEDS

The DEDS is modelled as an organized collection of humans, machines and methodologies

working together to transform information-based inputted requirements and constraints

into appropriate product specifications information.

The adaptation of the previous distributed engineering design model includes the

conversion of the Human Component, Infrastructure Component and Engineering Design

Model into respectively the following DEDS subsystems (or systems):

Human System - the collection of organizationally and hierarchically distributed

multi-disciplinary engineering design teams working sequentially, concurrently

or in parallel to design products. Its main characteristics include distribution

(geographical, temporal, functional and semantical), concurrency and

parallelism, which emphasis the need for a welding cooperation process to enable

and support teamwork.

• Infrastructure System - the collection of manual and automated tools (e.g.

drawing boards, computers with their applications, books, reports) acting as the

medium or the workplace where the engineering design process takes place. The

existence of this subsystem is due especially to the importance that the computers

35

and their applications have gained in today’s design environments (see section

2 .2 .2).

Engineering Design Model System - integrated life cycle design methods and

methodologies for the development of products that guide and inform the process

of design.

The author contends that the behaviours and structures of these three subsystems influence

and condition each other during the overall progression of the engineering design activity,

by means of feedback (i.e. the sign) and feed-forward (i.e. the “+” sign) processes

(represented in the figure by the thick double arrowed lines). For example, the allocation

and configuration of human resources and activities together with the type of tools to be

used, depend on the phase of the engineering design process as expressed by the specific

design model employed. In this example the Engineering Design Model feeds forward the

Human and Infrastructure subsystems.

The performance of the engineering design process (i.e. the global behaviour) is

conditioned by the interoperations among the Human, Infrastructure and Engineering

Design Model subsystems. However, specific to the DEDS, these subsystems are

heterogeneous in their substance: the Human System consists of humans, the Engineering

Design Model System consists of cognitive and visual concepts which express

methodologies and methods, and the Infrastructure System consists of manual tools,

software applications, computers and other media formats. Nevertheless, the

interrelationships and interdependencies among subsystems are possible and are expressed

by means of exchanges of specific information structures using specific mediums. For

example, an information exchange between Human and Infrastructure system may use a

visual medium and may consists on mouse movements on the Human side and bits of data

and graphical translations of geometrical formulas on the Infrastructure side. Thus, while

the ‘information triangle’ may implicitly translate that the same kinds of information

structures are exchanged, it actually only says that information structures are exchanged.

Of course those information structures are specific, in terms of complexity, representation

and broadcasting medium to each dialog that takes place. Besides its beneficial aspect (e.g.

dialog is made possible), this situation results in a proliferation of irreducible

representations of data, information and knowledge within the system. Furthermore, the

relationships are enabled and supported by the cooperation processes, by means of

components co-location, communication, coordination and collaboration. Therefore, the

Chapter 2

36

cooperation process is viewed to hold a critical importance in the regulation of information

flows and, consequently, the regulation of the whole DEDS.

In summary, the author contends that, from a high level point of view, the distributed

engineering design activity is depicted as a complex of holistic inter and intra cooperation

processes among mutually dependent structures (i.e. Human, Infrastructure and

Engineering Design Model subsystems). The main material of the process is the

information (as a common denominator of the different system components), which is

distributed, assembled in vary degrees of complexity (i.e. data, information and

knowledge) and heterogeneously represented within the system.

2.3.4 Information Setbacks in Distributed Engineering Design System

As shown in section 2.2.3, a series of both qualitative and quantitative information-related

problems impinge on the effective operation of the cooperation process within a distributed

design environment. This, in turn, may lead to misunderstandings, errors and poor product

information structures. Therefore, local rather then ‘global’ design optima are more

probable. What is even more ‘unpleasing’ is that the inferior qualitative information

structures assembled in a mediocre cooperative environment will be used as informative

means or even reused as building blocks in later design processes (after all, the DEDS does

not disappear once a design process is finished, i.e. it has continuity in time). This

historical propagation of local ‘optima’ will further obscure the desirable global ‘optima’

(of course, a good manufacturing, usage and market feedbacks can hinder the above course

of events). Nevertheless, the réévaluation of the required quality and quantity of

information may prove to be too costly in terms of time and human resources allocated. No

wonder that, as the majority of human knowledge gains, the distributed engineering design

may be viewed as a trying and error process.

By applying the systemic reassessment of information related problems, the author

identifies that, as expressed in section 2.2.3, problems are human-centered. Designers need

to browse and search through the diverse, dispersed and huge amount of information

resources. Before being able to use information structures, they also have to interpret and

understand their meaning. Furthermore, designers have to share among each other not only

syntactics, but also semantics. Therefore, human processing or team processing

performance is the measure of the information performance of the entire DEDS.

Chapter 2

37

From the system perspective, this local state of affairs already creates difficulties for the

whole system. If the human information processing capacity critically influences the

quantity and quality of information that flows within the system, it means that no matter

how advanced the design tools, methods and methodologies are, once this (i.e. human)

processing limit is reached all the other system components can only do is to maximize

their quantitative features (which is an unacceptable under-use of their potential

capabilities).

Therefore, a designer’s limit to access, process and distribute information structures

propagates throughout the system and becomes a system’s (i.e. DEDS’s) limit to access,

process and distribute information. This state of affairs subjectively confines the other

system components’ development.

Hence, where possible, a redistribution/decentralization of information processing from the

human subsystem components to different DEDS components is critical. In this case, the

human component should have more of a feedback and feed-forward role, than a central

role in managing information structures. By doing this, the human designers can focus on

what they are much more superior than any other component, i.e. imaginative thinking.

In summary, an efficient functioning of the system can be reached by maximizing the

quality and quantity of information, which in turn can be achieved by distributing the

control of different information aspects (e.g. processing, storing, retrieving, searching,

validating, producing, consuming) among system components that are best prepared for the

specific role. In order to achieve this desiderate, the first step is to enable the access of the

different system components, especially machines, to information. In other words, it is

essential for the information to be not only human readable as it usually is (90% of

information is strictly human enabled) but also machine-readable.

2.4 Distributed Engineering Design System Requirements

A series of high-level preliminary requirements for a better functionality of the DEDS

concludes the systemic approach carried out. Their purpose is to deduce a minimal set of

necessary conditions under which the behaviour of the system can be controlled and can be

kept between certain feasibility parameters. Moreover, the requirements should identify the

features that enhance DEDS functionality and reduce its negative aspects.

Accordingly with the discussed issues, this thesis proposes the following requirements for

a solution system:

Chapter 2

38

• The design information structures should be organized so as to allow sharing, reuse

and maintenance of meaning along the various human and non-human DEDS

actors. This requirement necessitates that the information resources be map-able

(for translations both at the system and subsystem level), domain independent (in

order to support distribution and growth) and machine-readable (for inter­

subsystem interfaces).

• The DEDS cooperation process should consist of a hierarchy of cooperation

processes as follows: a cooperation process for each subsystem and a cooperation

process for each inter-system interface. In this way, the implementation of

cooperation at the subsystem level can take advantages of the positive

particularities of the concerned subsystem (for example communication between

humans should not be restricted by communication constraints specific to software

applications).

• The translations of information resources between DEDS and its environment and

inside DEDS should be as hidden as possible from the human user. This

requirement deals with non-technological issues, such as user acceptance of new

technologies and working environments.

• Subsystems interfaces should require minimal human intervention and should have

an advisor and informative types of roles. In this way, the designers can spend more

of their time designing and not undertaking secondary activities.

• The interfaces between the human subsystem and the other subsystems should be

autonomous (background work is performed without the awareness of the

designer), proactive (when possible information is brought to the designer when the

need arises and before he/she requested it) and should encourage learning and

support creativity.

In summary, the identified requirements convey the need for an efficient and useful

cognitive mean to model the distributed engineering design domain. The efficient and

useful terms translate to a minimal resource investment and minimal impact on the

organization structure (i.e. the implementation does not require massive business

reorganizations), while the quality of the added value is significant. Cognitive refers to the

necessity for the system to be semantically enabled and therefore to be able to deal with

whatever complex information structures (i.e. data, information and knowledge). The

solution system should model or represent the engineering design domain, which means a

Chapter 2

39

deliberate usage of structures of signs able to facilitate research, classifications, and

consequently knowing/knowledge.

The efficient, useful and semantically enabled mean3 for achieving the requisite solution

system wraps up the core of the identified requirements and consists of the following:

• Reusable, shared and formal structures of information kept together by the intrinsic

logic of the engineering design domain.

• Integrative mechanisms capable of translations and mappings between different

contexts (e.g. Human, Infrastructure, Engineering Design Model, other systems

from the outside environment).

• Control mechanisms able to regulate the functionality of the system.

The advances in the Artificial Intelligence field, particularly in Distributed Artificial

Intelligence provide the technologies for developing this necessary mean.

The research associated with this thesis has identified ontologies as the solution for

organizing the system’s information resources. The study of ontologies has developed

gradually from specific needs associated with the problem of knowledge management

within a computational environment and particularly from the problem of knowledge

sharing and reuse. Ontologies specify content specific agreements to facilitate knowledge

sharing and reuse among systems that submit to the same ontology/ontologies by the

means of ontological commitments (Spyns, Meersman et al. 2002). They describe concepts

and relations assumed to be always true independent from a particular domain by a

community of humans and/or machines that commit to that view of the world (Neches,

Fikes et al. 1991; Gruber 1993; Guarino 1997).

Coupled with ontologies, agent-based systems are able to provide that autonomous,

proactive and cooperative hard working helper that can both integrate disparate

components and regulate the behaviour of DEDS. Considered an important new direction

in software engineering (Jennings 2000; Wooldridge and Ciancarini 2001), agents and

multi-agent systems (MAS) represent techniques to manage the complexity inherent in

software systems and are appropriate for domains in which data, control, expertise and/or

resources are inherently distributed (Jennings, Sycara et al. 1998; Oliveira, Fischer et al.

1999).

Chapter 2

3 Mean has the sense from the “workers are the means of production”.

40

2.5 Conclusions

This chapter presented a literature-based characterization of the engineering design process

and of the distributed engineering design organization. Information related deficiencies of

current state of affairs have been identified and acknowledged.

The systemic approach to the distributed design organization (see figure 2.5) has been

identified as a viable research alternative.

Chapter 2

Figure 2.5 A systemic approach to distributed engineering design.

Once the key concepts of the proposed approach were defined, a characterization of the

DEDS has been depicted. Furthermore, a systemic (structural and functional) reassessment

of the DEDS has been performed. The cooperation process has been seen as being a critical

component for the DEDS functionality. The analysis also stressed cooperation’s reliance

on data, information and knowledge (as they form its working material).

Based on the existing problems of distributed engineering design interpreted from a

systemic perspective, a set of DEDS requirements was identified. Next the systemic

analysis of the DEDS concluded with what the author considers to be the problem

statement of this thesis, as follows:

41

• Within the distributed engineering design organization, negative issues exist which

cannot be disregarded. Moreover, such issues will become more acute in time.

• The proposed solution is to identify an efficient and useful cognitive mean to model

the distributed engineering design domain.

Further investigations identified two suitable technologies for supporting that mean, i.e.

ontologies and agent-based systems. Chapter Three will explore in depth the key issues

regarding these two technologies.

Chapter 2

42

Chapter 3

Distributed Technologies

3.1 Introduction

3.2 Ontologies

3.3 Software Agents

3.4 Conclusions

3.1 Introduction

This chapter introduces two of the most promising technologies for implementing semantic

enabled environments, i.e. ontologies and software agents (Gruber 1992; Genesereth and

Ketchpel 1994; Nwana 1996; Gomez-Perez 1998; Guarino 1998; Jennings, Sycara et al.

1998; Wooldridge 1999; Hendler, Bemers-Lee et al. 2002). These two technologies are

envisioned to form the next distributed computational environment, capable of managing

inherent complex and inherent distributed systems. Various kinds of software agents will

act in a semantically enabled (by the means of ontologies) environment. The relationship

between ontologies and software agents is mutual benefic. While both of them can function

independently their true performance is achieved by the means of each other. The software

agents will benefit of the shareable and machine enabled pool of knowledge, and the

ontologies will reach their full potential when exploited by software agents.

The first part of the chapter portrays what is advocated to be the enabler of human-machine

integration and knowledge sharing and reuse at a worldwide scale, i.e. ontologies. The

various definitions proposed in the literature are introduced and the most important ones

are also analyzed. The research in ontologies typologies and methodologies for engineering

ontologies are presented and discussed to further deepen the understanding.

The second part of the chapter presents the state of the art literature review of software

agents. The main characteristics of a software agent are discussed and analyzed. Following

the presentation of some of the most cited agent typologies and agent architectures, the

multi-agent system theory is introduced.

The chapter ends with a final set of conclusions regarding these two distributed

technologies.

3.2 Ontologies

The term ontology emerged outside philosophy as a fancy denotation of some results of

conceptual analysis and domain modeling (Guarino 1998) with an implicit understanding

of its meaning among researchers. This means that when a researcher or a group of

researchers would employ ontology-based meanings they would depict their own

understanding of the concept in their particular field for their particular needs. This is

because while the term “ontology” has an unquestionable defined meaning in the science

of philosophy, when imported in other domains it looses some of its characteristics and

gains others (specific to the borrowing domain) without any of these phenomena being

Chapter 3

44

explicitly explained and defined by the borrowers. These circumstances led to an inflation

of interpretations of the concept of ontology when used outside philosophy. However, as

the research in knowledge-based systems progressed, a shift of focus brought the term to

the attention of the researchers. An explicit understanding, as well as the formal study on

the methodological side has become necessary. Up until now, the results in formal

ontology research appear to be encouraging and give optimism not only within the

Artificial Intelligence (AI) field, but also to all researchers dealing with computational

environments in which explicitly represented knowledge serves as a communication

medium among people and machines.

3.2.1 Background

Ontologies have appeared from a need emerged within AI: sharing and reuse of

knowledge. Knowledge bases form the foundation of AI. They are bodies of information

used to formalize a universe of discourse by describing facts and assertions assumed to be

always true within a particular domain (Guarino 1997). Any knowledge base contains

background information about the specific domain to which it is applied (Gruber 1991;

Neches, Fikes et al. 1991; Gruber 1995; Guarino 1998). In other words they (i.e.

knowledge bases) are capturing the knowledge within the domain of interest so that

specific software applications can be developed (using neural networks, genetic algorithms

and other AI specific techniques) to take that background knowledge as an input (Gruber

1995) and process it. Therefore, the software programs are able to process not only data

but also knowledge. This has opened new perspectives concerning the scope, the role and

the power of the computational machines. In this way it is possible to build large and

powerful AI systems.

However, one of the main limitations of the knowledge bases is exactly their

submissiveness to the domain they are representing and formalizing. This is because

representing new knowledge (from adjacent or separate domains) and integrating it to the

already built system generally requires building the system from scratch (Neches, Fikes et

al. 1991). In this way, any knowledge engineering process becomes time consuming and

very expensive (Neches, Fikes et al. 1991; Gruber 1993). For the same reasons, once a

knowledge base system has been built, its maintenance and testing is a cumbersome task

(Gruber 1993). Therefore, finding ways of preserving, sharing and reusing the existing

knowledge bases across the different domains of the human endeavor has concentrated a

good deal of effort from Artificial Intelligence researchers (Gruber 1991; Neches, Fikes et

al. 1991; Gruber 1992; Guarino 1995; Fensel 2000). Neches et al have identified four

Chapter 3

45

critical impediments to knowledge base share and reuse, which are (Neches, Fikes et al.

1991):

1. Heterogeneous Representations. Across the knowledge representation field

different communities use different formalisms to represent knowledge. Hence, a

direct exchange and reuse of knowledge among different formalized knowledge-

based systems is syntactically and semantically impossible.

2. Dialects within Language Families. A formal knowledge representation language is

required to represent knowledge. Even if the languages within a language family

(that are submitting to the same formalism) are sharing a core philosophy and

terminology, there are still too many “arbitrary and inconsequential differences in

syntax and semantic” (Neches, Fikes et al. 1991) between different dialects for a

natural translation to be realistic.

3. Lack o f Communication Conventions. Knowledge-based systems lack on agreed-

upon standard protocols to facilitate knowledge exchange among them, or between

them and other software systems.

4. Model Mismatches at the Knowledge Level. Even if the above impediments (1, 2,

and 3) are to be resolved, an effective communication or knowledge exchange

would be quite difficult in the absence of a “shared vocabulary and domain

terminology” (Neches, Fikes et al. 1991).

Ontologies have been proposed to overcome the difficulties raised by “monolithic, isolated

knowledge systems” (Gruber 1991), by specifying content specific agreements to facilitate

knowledge sharing and reuse among systems that submit to the same ontology/ontologies

by the means of ontological commitments (Gruber 1995; Spyns, Meersman et al. 2002).

Hence, while the knowledge bases are characterized by “high internal coupling” (Gruber

1991) - that is the implicit assumptions made regarding facts, procedures, terminology,

and axioms of the specific domain - ontologies provide a way of building “external

coupling interfaces that would enable the developer to reuse software tools and knowledge

bases as modular components“(Gruber 1991).

From a functional point of view an ontology is seen as an equivalent of a database schema.

In general, a data model (e.g. database schema) “represents the structure and the integrity

of the data elements of the, in principle ‘single’, specific enterprise application(s) by which

it will be used” (Spyns, Meersman et al. 2002). Hence, a data model usually implements

some kind of informal agreement between the developers and the users of that specific data

model regarding the semantics of the data (i.e. the specific needs the application has to

Chapter 3

46

fulfill). But this agreement starts and end with the above mentioned developers and users

and it is not intended for sharing with other communities. An ontology, such as any

database schema is a partial account of a conceptualization (Guarino and Giaretta 1995;

Spyns, Meersman et al. 2002), so they both have the same functions (e.g. establishing

agreements, albeit in varying degrees). The difference is the domain they cover: database

schemas are task-specific and implementation oriented (Spyns, Meersman et al. 2002),

while ontologies are as generic and as task-independent as possible. These result in some

key differences between ontologies and databases, as follows (Fensel 2000):

- “A language for defining ontologies is syntactically and semantically richer

than common approaches for databases.”

- “The information that is described by an ontology consists of semi-structured

natural language text and not tabular information.”

“An ontology must be shared and consensual terminology because it is used for

information sharing and exchange.”

- “An ontology provides domain theory and not the structure of a data container.”

Therefore, an ontology lies somewhere between a knowledge base and a database schema.

Because of the encouraging results as well as the potential positive outcomes, ontologies

have widen beyond the boundaries of Al, in domains such as Database Theory and

Computational Linguistics (Guarino 1998). They (i.e. ontologies) are currently very

popular mainly within fields that require a knowledge-intensive approach to their

methodologies and system development, such as knowledge engineering (Gruber 1993;

Uschold and Gruninger 1996; Gaines 1997; Gomez-Perez 1998), knowledge representation

(Artala, Franconi et al. 1996; Guarino 1998), qualitative modeling, language engineering,

database design (Van de Riet 1998), information modeling (Weber 1997), information

integration (Bergamaschi, Castano et al. 1998; Guarino 1998; Mena 1998), knowledge

management and organization and agent-based design (Nwana 1996; Odell 2000; Chaib-

draa and Dignum 2002).

3.2.2 Definition

Because of some particular terminological and semantical issues raised by the concept of

ontology, a special attention has to be given to its interpretation in differentiae to concepts

and terms with which it came in contact. This means that the concept of ontology has to be

clearly delimited from the concepts and situations for which it was used as a synonym, i.e.

knowledge base, ontology as a philosophical term, knowledge sharing and reuse.

Chapter 3

47

The term of ontology has been borrowed from Philosophy where it is defined as a “branch

of metaphysics concerned with identifying, in the most general terms, the kinds of things

that actually exist. Thus, the "ontological commitments" of a philosophical position include

both its explicit assertions and its implicit presuppositions about the existence of entities,

substances, or beings of particular kinds” (Kemerling 2002).

This meaning was particulary useful in the first stages of its usage when the term was

pointed to some agreed-on formalism and conventions at a general level that should

“provide software interfaces to knowledge representation systems” (Neches, Fikes et al.

1991). As this line of research deepened it become clear that the AI interpretations of an

ontology differs from the philosophical understanding. While for a philosopher the

ontology is a “particular system of categories accounting for a certain vision of the world”

(Guarino 1998), independent on a particular language, for the AI researcher an ontology

refers to a “particular artifact constituted by a specific vocabulary” (Guarino 1998) that

describes a certain domain by explicitly constraining the intended meaning of the

vocabulary words. Usually the constraints are implemented in respect to the First Order

Logic form and the vocabulary words are unary (concepts) or binary (relations) predicate

names (Gruber 1995). Therefore, a commitment to a certain language should be assumed

in order to develop an ontology. From this point forward, in order to distinguish between

the philosophical sense and the AI sense, Guarino’s terminological distinction (Guarino

1998) will be adopted:

• Philosophy: as a language independent system of categories the Ontology is a

conceptualization;

• AI: an ontology as a language dependent formal artifact;

The role of ontologies is to represent knowledge in such a way so as to make possible the

communication between different machines and between machines and humans to a

knowledge level contrasting to communication at data level. The research in knowledge

representation and knowledge engineering, although successful, failed to provide by

themselves cost-effective and time-effective shareable knowledge, so that different

knowledge-based systems to be able to communicate between each other (Neches, Fikes et

al. 1991; Gruber 1993; Gruber 1995; Guarino, Borgo et al. 1997). A solution to this

deadlock is to use ontologies for describing concepts and relations assumed to be always

true independent from a particular domain by a community of humans and/or agents that

commit to that view of the world (Guarino 1997). In this way ontologies may be viewed as

knowledge bases integration mechanisms with the condition of an agreed-upon vocabulary

used. Therefore, while an ontology is a kind of a shallow knowledge base from the specific

Chapter 3

48

domain integration point of view, a generic knowledge base may also contain background

information explicitly and implicitly within its structure, describing a particular

instantiation or state of affairs (Guarino 1997).

Neches et al have proposed one of the early definitions of an otology. It states that “an

ontology defines the basic terms and relations comprising the vocabulary of a topic area as

well as the rules for combining terms and relations to define extensions to the vocabulary”

(Neches, Fikes et al. 1991). This definition of ontologies has been proposed within an

effort to envision a computational environment where knowledge-based systems, Al tools

and conventional software will interact at a knowledge level between each other by the

means of shared ontologies. As any knowledge base incorporates explicitly or implicitly an

ontology, a shared ontology will declaratively specify the “ground rules” (Neches, Fikes et

al. 1991) for modeling a domain in the form of top-level interconnected abstraction. In this

way, an ontological commitment is viewed as a semantical assurance for providing specific

services to systems (e.g. humans, agents, conventional software) that adopt a specific

ontology or a specific library of ontologies.

Gruber (Gruber 1993) proposed another definition of ontology, by establishing its

relationship with the concept of formal knowledge. A body of formally represented domain

knowledge generally consists of objects and relationships between objects (i.e. universe of

discourse) based on the conceptualization of that domain (Genesereth and Nilsson 1987;

Gruber 1993). A conceptualization is viewed as an “abstract, simplified view of the world”

(Gruber 1993) to be formally represented. Following those clarifications, Gruber states that

“an ontology is an explicit specification of a conceptualization” (Gruber 1993).

A vocabulary is also needed to explicitly represent the universe of discourse. The main

advantage of Gruber’s definition is that it requires the ontology to be explicit i.e. to be

publicly available, not implicitly incorporated in some knowledge base. In this way an

application no longer needs to have background knowledge about the specific domain in

order to have access to its inputs. It will be enough to commit to the ontology that

describes that domain. Therefore it is possible to separate the symbol level of an

application (where the internal algorithms are represented) from its knowledge level

(where the communication protocols are defined).

Gruber’s definition is based on the assumption that every system that incorporates formally

represented knowledge is explicitly or implicitly committed to a conceptualization. For this

reason, while Gruber’s definition is one of the most widely used definitions of ontology, it

Chapter 3

49

still needs further clarifications of the terms it uses, especially the distinction between

ontology and conceptualization.

Guarino and Giaretta distinguished between diverse interpretations of the term ontology

have among different researchers. They discovered seven angles of understanding that can

be classified in three classes (Guarino and Giaretta 1995) (see Figure 3.1).

In order to avoid possible confusions Guarino and Giaretta suggested a terminological

clarification of the three possible classes they identified as follows (Guarino and Giaretta

1995):

1. To use “Ontology” with capital “o” as the term to identify the philosophical

discipline.

2. To use the term “conceptualization” to identify a conceptual semantic entity.

3. To use the term “ontological theory” to identify a specific syntactic object intended

to represent knowledge.

Chapter 3

Figure 3.1 Possible interpretations of the term “ontology” after (Guarino and Giaretta

1995)

Therefore, while ontological theories are a special kind of artefact, conceptualisations are

their semantical counterpart, with the specification that “the same ontological theory may

50

commit to different conceptualizations, as well as the same conceptualization may

underline different ontological theories” (Guarino and Giaretta 1995).

Because of its wide use, special attention has been given to Gruber’s definition of ontology

from all other interpretations. While the term “explicit” seems not to raise any doubts when

explained as a “concrete, symbol level object” (Guarino, Carrara et al. 1994), not the same

thing can be said about the term conceptualization. Guarino et al argue that while the

meaning of the term conceptualization appears to be understood as “a set of extensional

relations describing a particular state of affainv”. the actual meaning it has is “an

intensional one [...] something like a conceptual grid which we superimpose to various

possible states of affairs” (Guarino, Carrara et al. 1994; Guarino and Giaretta 1995;

Guarino 1998). In other words, while an extensional interpretation states that different

snapshots of a universe of discourse represent different conceptualizations, the intensional

interpretation affirms that they are different states of affairs of the same conceptualization.

With all the above denotations clarified, “given a language L with ontological commitment

K, an ontology for L is a set of axioms designed in a way such that the set of its models

approximates as best as possible the set of intended models of L according to K ” (see

Figure 3.2) (Guarino 1998).

Chapter 3

Following all these terminological clarifications Guarino proposes a refined definition of

an ontology, by making clear the difference between an ontology and a conceptualization:

“An ontology is a logical theory accounting for the intended meaning of a formal

51

vocabulary, i.e. its ontological commitment to a particular conceptualization of the world.

The intended models of a logical language using such a vocabulary are constrained by its

ontological commitment. An ontology indirectly reflects this commitment (and the

underlying conceptualization) by approximating these intended models.” (Guarino 1998)

Borst et al have given an elaboration of Gruber’s definition, as follows: “Ontologies are

defined as formal specification of a shared conceptualization.” (Borst, Akkermans et al.

1997)

Generally a merge of both, Gruber’s and Borst’s et al, definitions is used in literature:

“Ontologies are explicit formal specification of a shared conceptualization” (Studer,

Benjamins et al. 1998). Studer et al have explained the terms as follows (Studer,

Benjamins et al. 1998):

• “explicit” - “the type of concepts used, and the constraints on their use are

explicitly defined”

• “formal” - “the ontology should be machine readable, which excludes natural

language”

• “shared” - “reflects the notion that an ontology captures consensual knowledge,

that is, it is not private to some individual, but accepted by a group”

• “conceptualization” - “abstract model of some phenomenon in the world by having

identified the relevant concepts of that phenomenon”

A pragmatic alternative, based on their experience in building ontologies, for defining an

ontology, has been given by Noy and McGuinness as follows: “an ontology is a formal

explicit description of concepts in a domain of discourse (classes (sometimes called

concepts)), properties of each concept describing various features and attributes of the

concept (slots (sometimes called roles or properties)), and restriction on slots (facets

(sometimes called role restrictions))”. (Noy and McGuinness 2001)

Uschold adopts a broader and more informal point of view when he proposes a working

definition of an ontology: “An ontology may take a variety of forms, but necessarily it will

include a vocabulary of terms, and some specification of their meaning. This includes

definitions and an indication of how concepts are inter-related which collectively impose a

structure on the domain and constrain the possible interpretations of terms. An ontology is

Chapter 3

52

virtually always the manifestation of a shared understanding of a domain that is agreed

between a number of agents.” (Uschold 1998)

Recently, Fikes and Farquhar have been given the following definition: "We consider

ontologies to be domain theories that specify a domain-specific vocabulary of entities,

classes, properties, predicates, and functions, and a set of relationships that necessarily

hold among those vocabulary items.” (Fikes 1999)

Sowa’s definition takes a philosophical perspective: “The subject of ontology is the study

of the categories of things that exist or may exist in some domain. The product of such a

study, called an ontology, is a catalogue of the types of things that are assumed to exist in a

domain of interest D from the perspective of a person who uses a language L for the

purpose of talking about D.” (Sowa 2000)

The common understanding of all the definitions and interpretations of an ontology orbit

around two main characteristics: formality and consensus. All of the definitions stress the

importance of representing the knowledge from an ontology in a consensual maimer, at

least among a specified group for knowledge sharing to be possible and implementable.

Not the same thing can be said about formality requirement. Uschold allows ontologies to

be expressed in a restricted and structured form of natural language, while Gruber’s line of

definition enforces a well-defined logical model for ontologies. Nevertheless, the general

vision is that ontologies should be machine-enabled and, if not directly human-readable,

they should at least contain plain text notices or explanations of concepts and relations for

the human user (Borst, Akkermans et al. 1997; Guarino 1998; Studer, Benjamins et al.

1998; Uschold 1998; Fikes 1999; Sowa 2000; Noy and McGuinness 2001).

A simple example of ontology is the Publication-ontology (found on Ontolingua Server)

that defines 13 classes and 28 relations (see table 3.1) (Benjamins, Fensel et al. 1998):

Chapter 3

Concepts - Class hierarchy Relations
On-Line-Publication
Publication

Article
Article-In-Book
Conference-Paper
Journal-Article
Technical-Report
Workshop-Paper

Book
Journal

IEEE-Expert
IJHCS
Special-Issue

Abstract, Book-Editor, Conference-Proceedings-Title,
Contains-Article-In-Book, Contains-Article-In-Joumal,
Describes-Project, First-Page, Has-Author, Has-Publisher,
In-Book, In-Conference, In-Joumal, In-Organization,
In-Workshop, Journal-Editor, Joumal-Number,
Joumal-Publisher, Joumal-Year, Last-Page,
On-Line-Version, On-Line-Version-Of, Publication-Title,
Publication-Year, Technical-Report-Number,
Technical-Report-Series, Type, Volume,
Workshop-Proceedings-Title

Table 3.1 Example of an ontology from Benjamins, Fensel et al. 1998)

53

Chapter 3

3.2.3 Typologies

Guarino proposes a classification of ontologies under three headings, as follows (Guarino

1997):

1. By the level of detail

a. reference (off-line) ontologies

b. shareable (on-line) ontologies

2. By the level of dependence of a particular task or point of view

a. top-level ontologies

b. domain ontologies

c. task ontologies

d. application ontologies

3. Representation ontologies

There are two types of ontologies depending on the level o f detail planned for building

ontologies, i.e. reference ontologies and shareable ontologies. An ontology approximates

the intended models of a logical language. (Guarino 1997; Guarino 1998) There is no

formula to calculate an optimal distance between the intended models of a logical language

(according to an ontological commitment) and the underlined ontology. This distance

depends on the practical needs that ontology should fulfill. Nonetheless, there are tradeoffs

between a detailed approach and a coarse approach to designing ontologies. While a fine­

grained (reference) ontology will specify more precisely the intended meaning of a

vocabulary (Guarino 1998) (and therefore can be used off-line for reference purposes), it

would be difficult to be assembled and reasoned on it (Guarino 1998). On the other hand, a

coarse (shareable) ontology would be much easier shared among its clients that “already

agree on the underlying conceptualization” (Guarino 1998), and therefore it can be used

on-line to support the system’s services (Guarino 1997; Guarino 1998).

The need for classifying ontologies by the level o f dependence was raised by a major

application area of ontologies, i.e. information integration. (Guarino 1997; Weber 1997) In

other words, in what conditions can two systems communicate at a knowledge level, and

how such a communication can be enabled.

To solve this kind of difficulties, Guarino proposes a bottom-up approach to developing

“different kinds of ontology according to their level of generality” (Guarino 1998). Hence,

54

depending on their level o f dependence on a particular task or point of view, there are four

types of ontologies (see Figure 3.3) (Guarino 1997; Guarino 1998). The top-level

ontologies specify very general concepts, “which are independent of a particular problem

or domain” (Guarino 1997; Guarino 1998)(e.g. engineering, person, agent); domain

ontologies and task ontologies specialise these concepts (of top-level ontologies), referring

to, respectively, a generic domain (e.g. mechanical-engineering, software-engineering, car

disposal) or to a generic task or activity (Guarino 1997; Guarino 1998) (e.g. requirements

analysis, disassembly); at application ontologies' level further specialization is involved by

describing concepts “depending on a particular domain or task” and are often “roles” of

domain or task entities performed during a certain activity (Guarino 1997; Guarino 1998)

(e.g. disassembly time).

Chapter 3

Figure 3.3 Kinds of ontologies, according to their level of dependence on a particular task

or point of view. Thick arrows represent specialization relationships (Guarino 1997;

Guarino 1998).

Representation ontologies stand for a special kind of meta-level ontologies “describing a

classification of the primitives used by a knowledge representation language (like

concepts, attributes, relations)” (Guarino 1997). An example of a representation ontology

is the Frame Ontology (Gruber 1993) introduced within the Ontolingua system for

capturing “common knowledge-organization convention” (Gruber 1993) with the purpose

of enabling translations among different knowledge representation languages.

While agreeing that any ontology development, after all, depends on particular

circumstances and needs (so any typology should depend on the practical use of

ontologies), Uschold sets out three main dimensions by which ontologies may be

classified, as follows (Uschold 1996):

1. Formality: “the degree of formality by which a vocabulary is created and meaning

specified”

55

2. Purpose: “the intended use of the ontology”

3. Subject Matter: “the nature of the subject matter that the ontology is characterizing”

While some authors’ request an ontology language to be formal, Uschold adopts a weak

position regarding the formality requirement. Hence, along the formality dimension, he

identifies four kinds of ontologies stretching from ontologies with no formality

requirement at all to ontologies articulated in a meticulous formal language, as follows:

a. ontologies “expressed in loosely natural language” (Uschold 1996) in the case of

highly informal ontologies;

b. adding some degree of structure to the natural language results in structure

informal ontologies that are “expressed in a restricted and structured form of

natural language, greatly increasing clarity by reducing ambiguity” (Uschold 1996);

c. an artificial language has to be developed for expressing semi-formal ontologies;

d. rigorously formal ontologies are expressed by “meticulously defined terms with

formal semantics, theorems and proofs of such properties as soundness and

completeness” (Uschold 1996).

The purpose dimension deals with the intended use an ontology may have. Three main

application areas have been identified, as shown in figure (see Figure 3.4).

Chapter 3

COMMUNICATION
between people and

organizations

INTER-OPERABILITY
between systems

Specification Reliability

Reusable Components Knowledge Acquisition

SYSTEM ENGINEERING

Figure 3.4 Uses for Ontologies (Uschold 1996)

The main categories of the purpose dimension (i.e. Communication, Inter-operability,

System Engineering) can be further granulated into categories and subcategories (e.g.

within communication between people one may want to specify who the intended users

are). (Uschold 1996) A special kind of category related to purpose dimension is genericity,

56

which “is the extent to which an ontology can or is intended to be reused in a range of

different situations” (Uschold 1996). These sorts of ontologies cover efforts that range

from organizing human knowledge (in the case of upper-level ontologies) to particular

knowledge systems for specific applications (in the case of application ontologies). Noy

and Hafner have identified four classes of ontologies relative to their genericity dimension,

as follows: natural language applications, theoretical investigations, knowledge sharing

and reuse, simulation and modelling ontologies (Noy and Hafner 1997).

The subject matter dimension covers all the topics an ontology may represent, that is

anything conceivable, under the following headings (Uschold 1996) :

• the subjects area like medicine, engineering design, geography

• the subject matter o f problem solving

• the subject matter o f knowledge representation languages

Ontologies concerned with different areas of science or so (e.g. medicine, engineering

design, geography) are usually called domain ontologies; ontologies involved in problem

solving are called task, method or problem solving ontologies; ontologies used for

knowledge representation languages are denoted representation ontologies or meta­

ontologies (Uschold 1996).

3.2.4 Methodologies for Building Ontologies

WordNet defines the term methodology as follows (Miller, Fellbaum et al.):

1. “the branch of philosophy that analyzes the principles and procedures of inquiry in

a particular discipline“;

2. “the system of methods followed in a particular discipline”.

A method is defined as “a way of doing something”, especially a “systematic one; implies

an orderly logical arrangement (usually in steps) “. Hence, from the point of view of this

thesis, a methodology is a systematic approach to conducting an engineering project that

suggests the activities to be performed at certain stages of the ontology development

process.

Before illustrating the main attempts to formulate a methodology for building ontologies a

set of terms used in ontology design are introduced, as follows:

• Taxonomy consists of a set of terms that alongside their definitions and relations

among them form an ontology. Sometimes a taxonomy is viewed as a simple

Chapter 3

57

ontology. (Gruninger and Fox 1995; Guarino 1998; Femandez-Lopez, Gomez-

Perez et al. 1999; Gomez-Perez 1999; Noy and McGuinness 2001)

• Axioms are formal sentences that are always true (Guarino 1998; Gomez-Perez

1999).

• Concepts / Classes are general, abstract or concrete notions within a domain of

discourse. An ontology is formally describing a domain by describing its concepts.

(Uschold and King 1995; Gomez-Perez 1999; Noy and McGuinness 2001)

• Relations represent “a type of interaction between concepts of the domain”

(Gomez-Perez 1999) (e.g. subclass-of connected to).

• Slots / Roles / Properties represent the various features and attributes of a concept.

(Noy and McGuinness 2001)

• Facets describe restrictions on slots. (Noy and McGuinness 2001)

• Instances represent elements (Gomez-Perez 1999).

In his attempt to enable knowledge sharing and reuse, Gruber suggests a set of overall

guidelines for converting a possible “monolithic system into reusable building blocks”

(Gruber 1991). He proposes the use of three important proven decomposition techniques

from Artificial Intelligence (Gruber 1991):

1. “Separate knowledge from programs with a declarative knowledge representation

language.”

2. “Identify general classes and relations underlying application specific facts, and

organize knowledge to enable inheritance from these constructs.”

3. “Characterize general problem solving tasks (e.g. classification) and classes of

inference (e.g. subsumption), and design corresponding methods and algorithms.”

Two more methods need to be employed to these three techniques (specific to software

engineering), in order to obtain shareable and reusable knowledge bases (Gruber 1991):

4. “Specify a canonical form for declarative knowledge.”

5. “Define common ontologies [...] with agreed upon definitions in form of human

readable text and machine-enforceable, declarative constraints on their well-formed

use.”

While presented in this form, these five engineering tools do not satisfy the requirements

for a methodology (as defined above), they are still useful for they pinpoint the main

procedures an ontology developer is performing.

Chapter 3

58

Generally, the practice of building ontologies is highly dependent on the context and goals

of a specific project. For this reason, the first (historically speaking) methodologies

proposed were based on the experience gained while developing a certain project. Two of

the most well known methodologies are the ones created within the Enterprise Ontology

project and respectively he TOVE project.

The methodology proposed by Uschold and King (Uschold and King 1995) is based on the

experience gained within the Enterprise Ontology project. It provides guidelines for

developing ontologies as follows (Uschold and King 1995):

1. Identify purpose - why the ontology is being built and what its intended users are

2. Building the ontology

a. Ontology capture - a middle-out approach for identifying the most important

concepts rather then most general or most particular ones, followed by

generalization and specialization process in order to obtain the remainder of the

hierarchy.

i. Identification of the key concepts and relationships in the domain of

interest (scoping).

ii. Production of precise unambiguous text definitions for such concepts

and relationships.

iii. Identification of the terms to refer to such concepts and relationships.

iv. Agreeing on all of the above.

b. Coding - explicitly representing the knowledge/conceptualization captured at

the sub-step above, in a formal language.

c. Integrating existing ontologies — during either or both of the capture and coding

processes, there is the question of how and whether to use ontologies that

already exist.

3. Evaluation - it is adopted the definition of (Gomez-Perez, Juristo et al. 1995): “to make

a technical judgment of the ontologies, their associated software environment, and

documentation with respect to a frame of reference .. .The frame of reference may be

requirements specification, competency questions, and/or the real world.”

4. Documentation - guidelines to be established for documenting ontologies, possibly

differing according to type and purpose of the ontology.

Chapter 3

59

The methodology proposed by Gruninger and Fox (Gruninger and Fox 1995) based on the

development of the TOVE project ontology consists of the following (Gruninger and Fox

1994; Gruninger and Fox 1995):

1. Capture o f motivating scenarios. The motivating scenarios are story problems or

examples that rise from a given situation. In the case of ontologies they (e.g.

motivating scenarios) motivate their development and suggest possible solutions that

further provide informal intended semantics for the objects and relations that will form

the ontology. Any ontology development process should start by describing one or

more motivating scenarios and the set of the intended solutions for the problems

presented in the scenarios.

2. Formulation o f informal competency questions. The competency questions are based

on the motivating scenarios obtained in the preceding step and can be considered as

expressiveness requirements that are in the form of questions. An ontology must be

able to represent these questions using its terminology, and be able to characterize the

answers to these questions using the axioms and definitions. There is no single

ontology associated with a set of competency questions. Instead the competency

questions are used to evaluate the ontological commitments that been made to see

whether the ontology meets the requirements.

3. Specification o f the terminology o f the ontology within a formal language.

3.1. Getting informal ontology. The set of the terms used by ontology can be

extracted from the available competency questions. These terms will serve as a

basis for specifying the terminology in a formal language.

3.2. Specification o f formal terminology. The terminology of the ontology is

specified using a formalism such as Knowledge Interchange Format (KIF), and

later (step 5) will allow to express the definitions and constraints.

4. Formulation o f formal competency questions using the terminology o f the ontology.

Once the competency questions have been pose informally and the terminology of the

ontology has been formally defined, the competency questions are defined formally.

5. Specification o f axiom and definition for the terms in the ontology within the formal

language. The definitions of terms in the ontology and the constraints on their

interpretation are expressed as first-order sentences using axioms. Simply proposing a

set of objects alone, or proposing a set of ground terms in first order logic does not

constitute an ontology. Axioms must be provided to define the semantics of these

terms.

Chapter 3

60

6. Establish conditions for characterizing the completeness o f the ontology. Once the

competency questions have been formally stated, the conditions under which the

solutions to the questions are complete must be defined.

When building ontologies, there is nothing to help the developer in selecting the proper

technique(s) and tools for his/her needs. After analysing the developing process of a set of

representative ontologies (e.g. TOVE and Enterprise Ontology), Uschold has created a

general framework that helps the developers to “better understand how to chose the most

appropriate techniques for their particular set of circumstances” (Uschold 1996). The

framework should identify the common steps and techniques applicable in all the cases and

the conditions that require specific steps and techniques (Uschold 1996). The framework

consists of a set of five sequential steps every step containing sub steps and/or techniques

to apply and/or guidelines to follow (Uschold 1996):

1. Identify the purpose of the ontology: detection of the target users, the specification of

the purpose relative to the range of purposes already identified (see above Uschold

typology for ontologies), the elaboration of motivation scenarios and competency

questions for further clarifications of the purpose, and the writing of a user requirement

document.

2. Decide the level o f formality.

3. Identify the scope (what is and what is not in the ontology): motivating scenarios and

informal competency questions, brainstorming and trimming.

4. Build the ontology.

a. In the case of simple and small ontologies, any or all of the steps presented above

may be ignored and the building of ontology is just done without any prerequisites.

b. Also for small and simple ontologies, after the first steps are covered, the formal

encoding may begin.

c. From the results of the previous steps a complete document, that is an informal

ontology, has to be generated. In some cases this can also be the final result, but

usually it represents the starting point for formal encoding and is also viewed as the

documentation.

d. The construction of the informal ontology can be replaced with the process of

identifying the formal terms from the set of informal terms generated at the third

step. These (i.e. the formal terms) are used to translate the informal competency

questions in formal competency questions that in turn, would enable the

specification of axioms and definitions (i.e. the ontology).

Chapter 3

61

Chapter 3

The METHONTOLOGY approach (Fernandez, Gomez-Perez et al. 1997; Gomez-Perez

1998; Femandez-Lopez, Gomez-Perez et al. 1999) has been developed within the

Laboratory of Artificial Intelligence at the Polytechnic University of Madrid and is used

for building ontologies either from scratch, reusing other ontologies as they are, or by a

process of reengineering them. The skeleton of the Methontology framework is based on

the IEEE 1074-1995 standard (Femandez-Lopez 2001), for Developing Software Life

Cycle Processes (IEEE96 1996). The framework is supported by the ODE (Ontology

Development Environment) tool (Blazquez, Fernandez et al. 1998; Femandez-Lopez,

Gomez-Perez et al. 1999) and WEB-ODE, a scalable workbench for Ontological

Engineering (Arpirez, Corcho et al. 2001). The proposed framework includes the following

main processes (Blazquez, Fernandez et al. 1998):

1. Identification o f the Ontology Development Process

1.1. Project Management Activities', planning, control, quality assurance;

1.2. Development-Oriented Activities-. specification, conceptualization,

formalization, implementation and maintenance;

1.3. Support Activities', knowledge acquisition, evaluation, integration,

documentation and configuration management;

2. A life cycle based on evolving prototypes.

3. Particular techniques for carrying out each activity

The Ontology Development Process identifies what activities need to be carried out when

building an ontology and consists of three categories of activities as shown in table 3.2

(Femandez-Lopez, Gomez-Perez et al. 1999; Femandez-Lopez 2001) (Fernandez, Gomez-

Perez etal. 1997).

5. Evaluate/Revise

Category of
Activities

Activity Description

Project
Management

Planning
(Fernandez, Gomez-
Perez etal. 1997)

• Identify which tasks are to be
performed and how they will be arranged;

• Determine how much time and what
resources are needed for the completion of
the tasks identified;

Control • Guarantees that the planned tasks are
completed in the manner they were intended
to be performed;

Quality Assurance • Assures that the quality of each and
every product outputted is satisfactory;

62

Chapter 3

Development-
Oriented

Specification
(Fernandez, Gomez-
Perez et al. 1997)

• Why the ontology is being built;
• What are its intended uses;
• Who are the intended users;

Conceptualization
(Fernandez, Gomez-
Perez et al. 1997)

• Structures the domain knowledge as
meaningful models at the knowledge level;

Formalization
(Fernandez, Gomez-
Perez et al. 1997)

• Transforms the conceptual model into a
formal or semi-computable model;

Implementation
(Fernandez, Gomez-
Perez et al. 1997)

• Builds computable models into a
computable language;

Maintenance • Updates and corrects the ontology;
Support Knowledge acquisition

(Fernandez, Gomez-
Perez etal. 1997)

• Acquires knowledge of a given
domain;

Evaluation
(Gomez-Perez, Juristo
et al. 1995; Fernandez,
Gomez-Perez et al.
1997)

• Makes a technical judgment of the
ontologies, their associated software
environments and documentation with
respect to a frame of reference during each
phase and between phases of their life cycle
(Gomez-Perez, Juristo etal. 1995);

Integration
(Fernandez, Gomez-
Perez et al. 1997)

• Required when building a new
ontology by reusing other ontologies that
are already available;

Documentation
(Fernandez, Gomez-
Perez etal. 1997)

• Details, clearly and exhaustively, each
and every one of the phases completed and
products generated;

Configuration
management
(Fernandez, Gomez-
Perez et al. 1997)

• Records all the versions of the
documentation, software and ontology code
to control the changes;

Table 3.2 The Ontology Development Process.

The ontology life cycle (see Figure 3.5), based on evolving prototypes, identifies the set o f

stages through which the ontology moves during its lifetime. It also describes what

activities are performed during each stage and how the stages are related (Fernandez,

Gomez-Perez et al. 1997; Femandez-Lopez 2001).

63

Chapter 3

i ’Unify

♦

Figure 3.5

The construction of each prototype starts with the specification process, sustained by the

knowledge acquisition activity. Once the first prototype has been specified, the ontology

building continues with the development of the conceptual model, formalization and

implementation. During all these phases, the knowledge acquisition activity supplies the

ontology development activities with needed knowledge. Also, control, quality assurance,

integration, evaluation documentation and configuration management activities are carried

out simultaneous to development-oriented activities. Some of these activities have different

degrees of intensity during specific life cycle stages (e.g. evaluation and knowledge

acquisition are more intense during conceptualization, while the integration activity is

more important at the specification time). The Methontology methodology enables a

dynamic control of interconnected ontologies (e.g. different activities performed when

building an ontology may require performing other activities on already build or under

construction ontologies). It also supports the process of ontological reengineering, that is,

the process of retrieving and mapping a conceptual model of an implemented ontology to

another, more suitable conceptual model, which is re-implemented by the means of reverse

engineering, restructuring and forward engineering activities (see Figure 3.6) (Chikofsky

and II 1990).

Management a d d it if s

Control

Ontology life cycle in the Methontology approach (Femandez-Lopez 2001)

64

Chapter 3

Figure 3.6 The Ontological Reengineering process after (Chikofsky and II 1990),

There are other approaches to methodologies for building ontologies such as Cyc

methodology, KAKTUS methodology, SENSUS methodology and OTK (On-To-

Knowledge) methodology, but they are usually project specific and they, actually,

represent a technical document of how a specific ontology has been built. In fact, the lack

of collaboration among different ontology research groups has resulted in a variety of

proposals for ontology building methodologies (for each group applies its own

methodology).

A unified methodology is needed for the ontology field to be removed from research

laboratories into computational world. Moreover, none of the methodologies proposed are

as mature as methodologies from the knowledge engineering and software engineering

fields. This is because no one has undergone a complete test and validation process. On

one hand, there are no tools available for the test and the validation of methodologies for

building ontologies, and on the other hand, because of its relatively young age, there are

not many/enough ontology developers to practically test the different methodologies.

Given this current state, the Methontology methodology seems to be the most appreciated

one since the Foundation for Intelligence Physical Agents (FIPA) has recommended it for

ontology construction (Gomez-Perez 1999).

3.3 Software Agents

Software agents represent an important and fast growing area of AI and more generally of

Computer Science (Bradshow 1997; Green, Hurst et al. 1997; Jennings 2000). The starting

point for software agents was formed by Multi-Agent Systems (MAS) which is one of the

three research areas of a relatively youthful branch of AI - Distributed Artificial

Intelligence (DAI). Therefore, agents inherit potential benefits from both DAI e.g.

modularity, speed, reliability and AI e.g. operation at knowledge level, easier maintenance,

reusability, platform independence (Nwana 1996).

3.3.1 Background

65

Started in the early eighties, the research in the area of software agents and MAS evolved

into what is now “one of the most active areas of research and development activity in

computing generally” (Wooldridge and Ciancarini 2001). Dealing with collections of

interacting, coordinated knowledge-based processes (Gasser 1998), DAI demonstrates a

distinct feature through the communication and coordination among intelligent and

autonomous agents during a problem solving process. This approach decomposes the

complexity of the domain problem (agents work together in a problem solving team as

opposed to a single agent dealing with a problem) and enhances the system’s performance

(Chu, Srihari et al. 1996).

Based on a vast experience in using agent-based techniques, Jennings suggests the

necessity of using autonomous agents for developing robust and scalable software systems.

He brings two arguments to this statement (Jennings 2000):

1. The Adequacy Hypothesis: “Agent-oriented approaches can significantly enhance

our ability to model, design and build complex, distributed software systems”.

2. The Establishment Hypothesis: “As well as being suitable for designing and

building complex systems, the agent-oriented approach will succeed as a

mainstream software engineering paradigm”.

Jennings believes that agent-based techniques will become widely adopted since “the

agent-based approach can be viewed as a natural next step in the evolution of a whole

range of approaches to software engineering” and “agent-based techniques are the ideal

computational model for developing software for open, networked systems” (Jennings

2000).

Also, Wooldridge and Ciancarini indicate that intelligent agents and MAS represent

techniques to manage the complexity inherent in software systems. The reasons why

agents are considered an important new direction in software engineering can be

summarised as follows (Jennings 2000; Wooldridge and Ciancarini 2001):

• Natural metaphor. “Just as many domains can be conceived of consisting of a

number of interacting but essentially passive objects, so many others can be

conceived as interacting, active, purposeful agents”.

• Distribution o f data or control. The overall control of many software systems is

distributed across different computing nodes that can be geographically and

temporally dispersed. “In order to make such systems work effectively, these nodes

must be capable of autonomously interacting with each other - they must be

agents”.

Chapter 3

6 6

• Legacy systems. “A natural way of incorporating legacy systems into modem

distributed information system is to agentify them”.

• Open systems. In order to make open systems work effectively, “the ability to

engage in flexible autonomous decision-making is critical”.

3.3.2 Definition

Over the last years, many researchers in the area of agents and agent-based systems have

offered a variety of definitions for the notion of agency. Nwana notes, “we have as much

chance of agreeing on a consensus definition for the word agent as AI researchers have of

arriving at one for artificial intelligence itself’ (Nwana 1996). This general problem in AI

of defining “intelligence” led to an extensive discussion about whether "some particular

system is an agent, an intelligent agent or merely a program" which generated as many

definitions as there are researchers (Anumba, Ugwu et al. 2002).

Table 3.3 summarizes the most important definitions proposed by researchers in the area of

Chapter 3

software agents.

Author(s) Reference Definition
S. Russell
P. Norvig

(Russell and Norvig
2003)

An agent is anything that can be viewed as
perceiving its environment through sensors and
acting upon that environment through effectors.

P. Maes (Maes 1995) Autonomous agents are computational systems
that inhabit some complex, dynamic environment,
sense and act autonomously in this environment,
and by doing so realize a set o f goals or tasks that
they are designed for.

H.S. Nwana (Nwana 1996) When we really have to, we define an agent as
referring to a component o f software and/or
hardware which is capable o f acting exactingly in
order to accomplish tasks on behalf o f its user.

S. Franklin
A. Graesser

(Franklin and
Graesser 1996)

An autonomous agent is a system situated within
and part o f an environment that senses that
environment and acts on it, over time, in pursuit
o f its own agenda and so as to effect what it
senses in the future.

Y.Shoham (Shoham1998) An agent is an entity whose state is viewed as
consisting o f mental components such as beliefs,
capabilities, choices, and commitments.

N.R. Jennings
M. Wooldridge

(Jennings and
Wooldridge 1998)
(Wooldridge 1999)

An agent is a computer system that is situated in
some environment, and that is capable o f
autonomous action in this environment in order to
meet its design objectives.

67

Chapter 3

fipat
(standard)

(Poslad, Buckle et
al. 2000)

An agent is an encapsulated software entity with
its own state, behavior, thread o f control, and an
ability to interact and communicate with other
entities - including people, other agents, and
legacy systems.

Table 3.3 Various definitions of an agent

Although many definitions have been given, most researchers agree that autonomy is a

crucial property of an agent (Nwana 1996; Wooldridge 1999; Jennings 2000). Autonomous

agents act on behalf of their users, so therefore they can take decisions without the

intervention of humans or other systems. These decisions are based on the individual state

and goals an agent has. An agent should act in such a manner as to pursue its internal

goals. Autonomy implies that agents have control both over their internal state and over

their behaviour (Wooldridge 1999; Jennings 2000).

Other than autonomy, many researchers consider that an agent should also be characterised

by one or more of the following properties (Nwana 1996; Wooldridge 1999):

1. Reactivity. An agent is situated in an environment and is able to perceive this

environment and to respond to changes that occur in it (reactive behavior).

2. Pro-activeness: An agent should have the ability to take the initiative in order to

pursue its individual goals (goal-directed behavior).

3. Cooperation'. An agent should have the capability of interacting with other agents

and possibly humans via an agent-communication language.

Being embedded in a particular environment, agents receive inputs about the state of that

environment through sensors and they can perform actions through effectors. Jennings et al

refer to this concept using the term situatedness (Jennings 2000). The actions of an agent

will potentially affect its environment. Wooldridge refers to this ability of an agent to

modify its environment through the performance of an action as the agent’s ejfectoric

capability (Wooldridge 1999). An action has a set of associated pre-conditions that specify

the possible situations when it can be performed.

Nwana considers pro-activeness a key element of an agent’s autonomy (Nwana 1996)

while Wooldridge and Ciancarini list autonomy and pro-activeness as two separate

properties an agent should have (Wooldridge and Ciancarini 2001). Furthermore, these

properties are more challenging than they seem. Agents should attempt to achieve their

1 Foundation for Intelligent Physical Agents (Tittpi/Av-ww.fipa.org/O is a non-profit standard organization
established in 1996, which promotes the creation of specifications of generic agent technologies.

68

goals but not continuously: that is, agents should cancel actions when it is clear that those

actions will not work (because of some factors that modified the environment for example)

or when the goal of the action is not longer valid. In such a situation, reactivity should be

demonstrated: the agent should react to the events that occur in its dynamic environment.

While pro-activeness (in a system that exhibits goal-directed behavior) and reactivity (in a

purely reactive system) can be easily implemented independently, integrating goal-directed

and reactive behaviour within a system turns out to be very difficult. This problem of

achieving an effective balance between pro-activeness and reactivity represents one of the

key problems of the agent designer and is basically still open to discussion (Wooldridge

and Ciancarini 2001).

The third property of an agent i.e. cooperation involves the ability of an agent to

dynamically negotiate and coordinate (Wooldridge 1999). Nwana considers cooperation to

be the reason for having multiple agents situated in an environment instead of having just

one agent in an environment. Because of their social ability, agents can cooperate with

other agents and humans. However, Nwana notes that coordination among different agents

is possible without cooperation (Nwana 1996).

Some researchers in the area of agents and MAS add a number of other properties to

characterise agents as follows (Franklin and Graesser 1996; Nwana 1996; Bradshow

1997):

• Learning: An agent should have the ability to learn while acting and reacting in its

environment.

• Mobility-. A mobile agent has the ability to move around a network (even from one

platform to another) in a self-directed way.

• Temporal continuity-. The actions of an agent are performed through a continuous

running process (over long periods of time).

• Personality-. An agent should manifest a believable character and emotional state.

To summarise, this thesis considers that a software agent is a computer system situated in

an environment that acts on behalf of its user and is characterised by the properties such as

autonomy, cooperation, reactivity, pro-activeness, temporal continuity and learning.

Autonomy is definitely the most important property of an agent without which the notion

of agency would not exist. Furthermore, cooperation among different software agents may

be very useful in achieving the objectives an agent has. The ideal is an agent characterised

Chapter 3

69

by all the above-mentioned properties but the design and implementation of such an agent

is yet a very difficult and complex task.

3.3.3 Typologies

As indicated in the previous section, the term “agent” is an elusive one. Psychology,

sociology, economics and AI (and Computer Science more generally) are using it with

equivalent meanings but through different perspectives. There are several classification

schemes or taxonomies proposed in the agent research community from which the

following three are well acknowledged:

1. Gilbert’s scope of intelligent agents (Bradshow 1997)

2. Nwana’s primary attribute dimension typology (Nwana 1996)

3. Franklin and Graesser’s agent taxonomy (Franklin and Graesser 1996)

1. Figure 3.7 presents Gilbert’s scope of intelligent agents (Bradshow 1997).

Chapter 3

Agency

Service interactivity

Application interactivity

Data interactivity

Representation of user

Asynchrony

Intelligent
Agents

Static

Mobile scripts

Mobile objects

Intelligence
Preferences

Reasoning

Planning

Learning

Figure 3.7 Scope of intelligent agents (adapted from Gilbert et al. by (Bradshow 1997))

Gilbert at al described intelligent agents using the following three dimensions (Bradshow

1997):

• Agency “is the degree of autonomy and authority vested in the agent, and can be

measured at least qualitatively by the nature of the interaction between the agent

70

and other entities in the system. At minimum, an agent must run asynchronously.

The degree of agency is enhanced if an agent represents a user in some.” (Gilbert et

al. 1995 as cited by (Bradshow 1997)).

• Intelligence is the degree of reasoning and learned behaviour. Furthermore,

intelligent agents should learn and adapt to their environment in terms of the user’s

objectives and the resources available.

• Mobility is the degree to which the agents travel through the network.

2. Nwana uses the three minimal characteristics an agent should exhibit i.e. autonomy,

cooperation and learning to classify agents in four categories as follows (see Figure 3.8)

(Nwana 1996):

• Collaborative agents'. There is more emphasis on cooperation and autonomy than

on learning

• Collaborative learning agents: There is more emphasis on cooperation and learning

than on autonomy.

• Interface agents'. There is more emphasis on autonomy and learning than on

cooperation.

• Smart agents: These agents implement all three properties equally.

Chapter 3

Figure 3.8 Nwana’s agent typology (Nwana 1996)

Mobility can also be used to classify agents in static or mobile while the presence of a

symbolic reasoning model results in deliberative or reactive agents. Combining these types

of agents with the ones already identified based on the ideal and primary attributes of an

agent (as considered by Nwana) can produce other categories of agents such as static

71

deliberative collaborative agents, mobile reactive collaborative agents, static deliberative

interface agents, mobile reactive interface agents, etc. Another classification proposed by

Nwana uses the roles of agents and is exemplified with information or internet agents. This

category of agents manages large databases in wide area networks like the internet. The

last category of agents identified by Nwana is hybrid agents, which combine two or more

agent philosophies. Furthermore, Nwana uses these agent typologies to identify only seven

types of agents as follows (Nwana 1996):

1. Collaborative agents are “able to act rationally and autonomously in open and

time-constrained multi-agent environments”.

Key characteristics: autonomy, social ability, responsiveness and pro-activeness.

2. Interface agents support and assist the user when interacting with one or more

computer applications by learning during the collaboration process with the user

and with other software agents.

Key characteristics: autonomy, learning (mainly from the user but also from other

agents), and cooperation with the user and/or other agents.

3. Mobile agents are autonomous software programs capable of roaming wide area

networks (such as WWW) and cooperation while performing duties (e.g. flight

reservation, managing a telecommunications network) on behalf of its user.

Key characteristics: mobility, autonomy and cooperation (with other agents - for

example, to exchange data or information).

4. Information/Internet agents are designed to manage, manipulate or collate the vast

amount of information available from many distributed sources (information

explosion). These agents “have varying characteristics: they may be static or

mobile; they may be non-cooperative or social; and they may or may not learn”.

5. Reactive agents act/respond to the current state of their environment based on a

stimulus-response scheme. These agents are relatively simple and interact with

other agents in basic ways but they have the potential to form more robust and fault

tolerant agent-based systems.

Key characteristics: autonomy and reactivity.

6. Hybrid agents combine two or more agent philosophies into a single agent in order

to maximise the strengths and minimise the deficiencies of the most relevant

techniques (for a particular purpose).

7. Smart agents are equally characterised by autonomy, cooperation and learning.

Furthermore, heterogeneous agent systems are obtained by combining agents from two or

more of these categories. Unlike hybrid agent architectures, this agent category refers to an

Chapter 3

72

integrated set-up of at least two or more types of agents (including hybrid agents). Agent-

based software engineering facilitates the interoperation of miscellaneous software agents.

An agent communication language is necessary for the communication process among

different agents (Nwana 1996). This category of agent systems is generally referred to (by

most researchers) as multi-agent systems and is discussed in more detail in the next section

of this thesis.

3. Franklin and Graesser proposed the taxonomy of autonomous agents presented in Figure

3.9 (Franklin and Graesser 1996).

Chapter 3

Figure 3.9 The taxonomy of agents proposed by Franklin and Graesser (Franklin and

Graesser 1996)

This taxonomy includes biological, robotic and computational agents at the kingdom level,

software agents and artificial life agents at the phylum level and task-specific agents,

entertainment agents and computer viruses at the class level. A further taxonomy can be

performed using schemes such as classification via the agent’s control structures (e.g.

regulation, planning and adaptive), via environments (e.g. database, file system, network,

internet), via languages (in which the agent is written) and via applications. These sub­

classification schemes provide a collection of features for an agent and therefore a possible

category of classification (Franklin and Graesser 1996).

3.3.4 Multi-Agent Systems

MAS researchers study the behaviour of a group of autonomous agents (possibly pre­

existing), which are working together towards a common goal. Including several

interacting agents, MAS systems represent a great potential of agent-based systems. MAS

73

systems are ideal for solving complex problems for which some or all of the following

apply (Jennings, Sycara et al. 1998):

• Multiple problem solving methods

• Multiple perspectives

• Multiple problem solving entities

The increasing interest in MAS research is motivated by many potential advantages

including the following (Bradshow 1997; Green, Hurst et al. 1997; Gasser 1998; Jennings,

Sycara et al. 1998; Martin, Plaza et al. 1998):

• MAS systems provide robustness, efficiency, flexibility, adaptivity and scalability.

• MAS systems allow inter-operation of multiple existing legacy systems (e.g. expert

systems, decision support systems).

• MAS systems have the ability to solve problems that are too large or complex for a

single centralised agent

• MAS systems can cope with domains in which data, expertise, or control is

distributed (in domains such as distributed sensing, medical diagnosis or air-traffic

control, knowledge or activity is inherently distributed).

• MAS systems can enhance speed, reliability and extensibility.

• MAS systems offer conceptual clarity and simplicity of design.

Jennings et al define the term MAS as a “loosely coupled network of problem solvers that

work together to solve problems that are beyond the individual capabilities or knowledge

of each problem solver” (Jennings, Sycara et al. 1998). The problem solvers from this

definition are autonomous and possibly heterogeneous agents. A MAS system is

characterised by the following (Green, Hurst et al. 1997; Jennings, Sycara et al. 1998;

Oliveira, Fischer et al. 1999; Lazansky, Stepankova et al. 2001):

• A MAS system consists of a collection of agents.

• Each agent acts autonomously.

• The agents in a MAS system are able to interact in order to reach an overall goal.

• Each agent has a limited set of problem solving capabilities.

• There is no global system control.

• Data is decentralized.

• Computation is asynchronous.

Chapter 3

74

It is clear from the definition and from the main characteristics of a MAS system, that

inter-operation among autonomous agents is essential to successfully find a solution to a

given problem.

Agent-oriented interactions include simple information interchanges as well as planning of

interdependent activities for which cooperation, coordination and negotiation are

fundamental. Jennings notes that these agent interactions differ from those that occur in

other computational models from two perspectives (Jennings 2000). Firstly, an agent

knows which goals should be followed and, therefore, agent-oriented interactions are

conceptualised as taking place at the knowledge level. Secondly, agents are flexible entities

in an environment over which they have partial control and, therefore, they have to make

run-time decisions about their interactions that were not foreseen at design time (Bradshow

1997; Green, Hurst et al. 1997; Jennings, Sycara et al. 1998; Oliveira, Fischer et al. 1999).

Since agents in a MAS system have to exchange information and knowledge in order to

solve a problem coherently, the following areas have become of crucial importance in

MAS research (Green, Hurst et al. 1997):

1. Coordination'. The agents in a MAS system must coordinate their activities (to

determine the organisational structure in a group of agents and to allocate tasks and

resources).

2. Negotiation-. Agents must negotiate if a conflict occurs.

3. Communication-. Any agent in a MAS system must be able to communicate with

other agents. An agent communication language (ACL) enables agents to

collaborate with each other providing them with the means of exchanging

information and knowledge (Labrou, Finin et al. 1999).

Coordination is considered a central issue to MAS research. Agent-oriented interaction

would be ineffective without a valuable coordination among cooperative agents working

together towards a common goal. Nwana et al define coordination as “a process in which

agents engage in order to ensure a community of individual agents acts in a coherent

manner” (Nwana, Lee et al. 1996). Coordination is considered an essential aspect of MAS

systems for several reasons as follows (Nwana, Lee et al. 1996; Green, Hurst et al. 1997):

• Coordination prevents anarchy or chaos during conflicts. Such a situation is

possible because each agent has a partial view over its environment and therefore,

its actions might interfere with rather than support other agents’ actions.

Chapter 3

75

• Agents’ behaviours have to be coordinated to meet global constraints e.g. a MAS

system constructing a design has to work within the constraints of a pre-specified

budget.

• Coordination is necessary because agents in a MAS system have different and

limited capabilities and expertise (distributed expertise, resources or information).

• Interdependent activities require coordination (an agent’s action might depend on

the completion of another agent’s task).

• Coordination enables efficiency. One agent can discover information that is of

sufficient use to another agent even if their activities are independent.

Nwana et al indicate that coordination may require cooperation (although coordination can

also occur without cooperation) but cooperation among agents does not necessarily result

in coordination. Also, communication among agents may be required for coordination but

agents can also be coordinated without communication via organisation provided they

possess models of each other’s behaviours (Nwana, Lee et al. 1996). Furthermore,

coordination does not imply reciprocation since an agent can coordinate its activities with

those of another agent unaware of its presence (Durfee 2001).

Researchers have proposed various coordination techniques including the following

(Nwana, Lee et al. 1996; Green, Hurst et al. 1997; Oliveira, Fischer et al. 1999):

• Organisational structuring (Werkman 1990; Carver, Lesser et al. 1993;

Tsvetovatyy, Gini et al. 1997)

• Contract Net Protocol (CNP) (Nwana, Lee et al. 1996; Green, Hurst et al. 1997)

• Multi-agent planning (Lesser and Corkill 1981; Durfee and Lesser 1991; Nwana,

Lee et al. 1996; Green, Hurst et al. 1997)

• Social laws (Chaib-draa 1996; Green, Hurst et al. 1997)

• Computational market-based mechanisms (Oliveira, Fischer et al. 1999)

Many researchers have studied the subject of negotiation providing many and diverse

techniques and definitions for this term through a vast literature (Nwana, Lee et al. 1996;

Green, Hurst et al. 1997; Jennings, Sycara et al. 1998; Oliveira, Fischer et al. 1999). Used

for conflict resolution, negotiation is a significant aspect of the coordination process

among autonomous agents in a system. Furthermore, negotiation is seen by many agent

researchers as a key coordination technique also used to address several DAI issues

(Nwana, Lee et al. 1996; Jennings, Sycara et al. 1998). Bussman and Muller define

negotiation as “the communication process of a group of agents in order to reach a

Chapter 3

76

mutually accepted agreement on some matter” (as cited in (Green, Hurst et al. 1997)).

Jennings et al consider the following to be the main characteristics of negotiation

(Jennings, Sycara et al. 1998):

• The existence of a conflict.

• Self-interested agents have to resolve the conflict in a decentralised manner.

• Bounded rationality.

• Incomplete information.

Many researchers argue that agents must reason about beliefs, desires and intentions of

other agents for an effective negotiation process (Rao and Georgeff 1995; Nwana, Lee et

al. 1996). The available negotiation techniques involve the use of human negotiation

strategies, logic, case-based reasoning, multi-attribute utility theory, belief revisions,

distributed truth maintenance, model-based reasoning, optimisation and game theory

(Zlotkin and Rosenschein 1989; Nwana, Lee et al. 1996; Zlotkin and Rosenschein 1996;

Green, Hurst et al. 1997; Jennings, Sycara et al. 1998; Oliveira, Fischer et al. 1999;

Shintani, Ito et al. 2000).

To any MAS system, communication is essential in order to benefit from the added value

provided by a collection of agents. Because agents generally have only a partial view over

their environment, they will probably be required to communicate (to exchange

information and knowledge in a distributed environment or to request the performance of a

task) with each other in order to effectively cooperate. Nwana and Ndumu place

communication “at the heart of cooperation and competition germane to multi-agent

systems” (Nwana and Ndumu 1999). An agent communication language (ACL) should

facilitate the interactions between two or more agents (through communication by

exchanging messages) (Genesereth and Ketchpel 1994; Nwana and Wooldridge 1996;

Green, Hurst et al. 1997; Labrou, Finin et al. 1999; Chaib-draa and Dignum 2002). Chaib-

draa notes, “the main objective of an ACL is to model a suitable framework that allows

heterogeneous agents to interact, to communicate with meaningful statements that convey

information about their environment or knowledge” (Chaib-draa and Dignum 2002). The

most known ACLs are the Knowledge Query and Manipulation Language (KQML)

proposed by the Knowledge Sharing Effort (KSE) consortium (Finin, Fritzson et al. 1994)

and the FIPA ACL proposed by the Foundation for Intelligent Physical Agents (FIPA)

(http://www.fipa.org; Labrou, Finin et al. 1999; Poslad, Buckle et al. 2000).

Chapter 3

77

http://www.fipa.org

Besides an ACL, a common understanding of the concepts used among agents is necessary

for a meaningful agent communication. This is because agents may have different terms

for the same concept or identical terms for different concepts (Odell 2000). Therefore,

ontologies are used for representing the knowledge from various application domains. The

ACL remains just syntax without a shared common ontology containing the terms used in

agent communication and the knowledge (e.g. definitions, attributes, relationships between

terms and constraints) associated with them (Nwana and Wooldridge 1996).

3.3.5 Final Remarks

Generally, the researchers in the area of agents and MAS systems believe that agent-based

computing has the potential to improve the conceptualisation, design and implementation

of complex distributed software systems. Even if the software agents are still bounded to

the research laboratories, significant advances have been made towards defining an agent-

oriented methodology and implementing agent languages and environments.

The available methodologies for the analysis and design of agent-based systems can be

classified in two groups as follows (Iglesias, Garijo et al. 1999; Wooldridge and Ciancarini

2001):

• Methodologies that extend or adapt object-oriented methodologies e.g. AAII

(Kinny, Georgeff et al. 1996), Gaia (Wooldridge, Jennings et al. 2000), MaSE

(DeLoach 1999), AUML (Odell 2000).

• Methodologies that adapt knowledge engineering models or other techniques e.g.

CoMoMAS and MAS-CommonKADS (Iglesias, Garijo et al. 1999), DESIRE

(Brazier, Dunin-Keplicz et al. 1997).

Although numerous languages and platforms have been created by different research

groups and companies to support the development of agent-based applications, traditional

languages are still used to construct agent applications. Nwana and Wooldridge indicate,

“typically, object-oriented languages such as Smalltalk, Java or C++ lend themselves more

easily for the construction of agent systems” (Nwana and Wooldridge 1996). The reason

for this is that Agent Oriented Programming (AOP) and Object Oriented Programming

(OOP) techniques share some properties such as encapsulation, inheritance and message

passing.

While there are still many problems associated with the design and implementation of

agent-based applications, MAS systems "provide a powerful model for computing in the

Chapter 3

78

21st century, in which networks o f interacting, real-time, intelligent agents seamlessly

integrate the work o f people and machines, and dynamically adapt their problem solving to

effectively deal with changing usage patterns, resource configurations and available

sources of expertise and information” (Lesser 1999).

3.4 Conclusions

The present chapter has depicted the state of the art in the research concerning ontologies

and software agents, the two technologies that are envisioned to enable semantics among

human designers and their machines within the distributed engineering design system.

Specifying content specific agreements in a consensual manner, the ontologies facilitate

knowledge sharing and reuse among systems by the means of ontological commitments

(Gruber 1995; Spyns, Meersman et al. 2002). The general vision is that ontologies should

be machine-enabled and, if not directly human-readable, they should at least contain plain

text notices or explanations of concepts and relations for the human user (Borst,

Akkermans et al. 1997; Guarino 1998; Studer, Benjamins et al. 1998; Uschold 1998; Fikes

1999; Sowa 2000; Noy and McGuinness 2001).

The agent-based approach is suitable and beneficial for environments that are naturally

modeled as societies of autonomous cooperating components (the agent is a natural

metaphor) as well as for systems that contain legacy components (Jennings and

Wooldridge 1998). These environments are generally open, distributed, complex, highly

dynamic and require flexible interaction and openness (Oliveira, Fischer et al. 1999)

(Wooldridge 1998).

The combined capabilities of ontologies and software agents make them the appropriate

candidates to semantically enable and manage DEDS, a system in which data, control,

expertise and resources are inherently distributed.

The next chapter will recommend a supporting ontology-based and agent-based

architecture to enable cooperation management within the DEDS.

Chapter 3

79

Chapter 4

Semantic Framework for the Distributed Engineering

Design System

4.1 Introduction

4.2 Thinking the Distributed Engineering Design System

4.3 The Need for Semantic Support

4.4 Proposed Framework for Enabling Semantics within the DEDS

4.5 Conclusions

Chapter 4

4.1 Introduction

The systems approach to the distributed engineering design organization has defined

cooperation as a critical component for the system’s information management (see

chapter two, sections 2.2.3 and 2.3.3). The approach has also stressed the cooperation

process’s reliance on data, information and knowledge (as they form its working

material). Consequently, a set of requirements for improving DEDS functionality, in

terms of information management, has been proposed (in chapter 2). These

requirements together with the underlining approach will further translate into an

architectural framework that is aimed to be proposed in this chapter.

Systems Thinking provides an holistic and practical mode of thinking about complex

systems (such as DEDS) as wholes (Richmond 1994; Mulej, Vezjak et al. 1999;

Bartlett 2001). The author will show that Systems Thinking facilitates a deeper and

more intimate understanding of the DEDS as a whole, as distinct from the case of

“when the only tool you have is a hammer, every problem begins to look like a nail”.

Given the critical importance attributed to the cooperation process, it will be argued

that, the main pattern of the DEDS, concerning its information structures dynamics,

consists of a hierarchy of cooperation processes whose ramifications are stretching to

all system components.

After acknowledging the pivotal role of the cooperation processes in the DEDS

information flows dynamics, the author will be argued, based on the requirements that

concluded the second chapter of this thesis, that probably one of the most critical

deficiencies for the functioning of the distributed engineering design organization is

the poor semantic integration of the information structures into the whole (i.e. the

DEDS system). Therefore, the need to provide semantic support is seen as significant

for improving the way engineering design is performed in distributed environments.

Moreover, given the importance of using computers for designing not only as

advanced tools, but also as an engineering design medium or workplace, the semantic

support required to be implemented in the form of software tools.

As the result of the conclusions and findings of the research to date, an architectural

framework model is proposed to characterize a DEDS context in which ontologies

and software agents will be used to implement a computational support for

cooperation processes. A structural and functional description of this architecture

defines the computational space and behavior of the supporting system.

81

Chapter 4

4.2 Thinking the Distributed Engineering Design System

Systems Thinking is a cognitive and applied mode of thinking aimed at understanding

the system as a whole, its behavior and its emerging properties in terms of its

structure, its interdependencies and the patterns that describe it (Richmond 1994;

Mulej, Vezjak et al. 1999; Bartlett 2001).

In practical terms, thinking a system means to emphasize the whole over the

individual parts. While the literature describes various frameworks, skills and

methods, a consensus to apply this mode of thinking requires the followings (Draper

and Swanson 1990; Sterman 1991; Richmond 1994; Ossimitz 1997):

• To think in models and to distinguish between them and reality. This implies

that models are to be used to focus the awareness on the components or

behaviors of main importance for the specific research.

• To identify the feedback and the feed-forward loops that interrelate structures

and processes and not just one-way cause-effect relations. This approach

enables the understanding of how local and global behaviors interact with each

other and therefore how the parts work together.

• To recognize patterns and not just events.

• To steer the system by applying the right action at the right time in the right

place.

In the context of this thesis, the main purpose of systems thinking is to facilitate an

intimate understanding of the DEDS from which an implementational evaluation of

the requirements for a supporting framework, can be carried out.

4.2.1 Prerequisites

As identified in chapter two, the distributed engineering design can be seen as a

system, i.e. DEDS (see figure 2.3.3), consisting of a hierarchy of three subsystems, as

follows:

• Human System - the collection of organizationally and hierarchically

distributed multi-disciplinary engineering design teams working

sequentially, concurrently or in parallel to design.

Infrastructure System - the collection of manual and automated tools (e.g.

drawing boards, computers with their applications, books, reports) acting as

82

Chapter 4

the medium or the workplace where the engineering design process takes

place.

• Engineering Design Model System - integrated life cycle design methods

and methodologies for the development of products that guide and inform

the process of desig.

The performance of the engineering design process is conditioned by the

interoperations among the Human, Infrastructure and Engineering Design Model

subsystems. Furthermore, these interoperations are mediated by means of information

structure exchanges which, in turn, are supported by cooperation processes, which

control and regulate these exchanges by facilitating inter and intra subsystem

communication, co-location, collaboration and coordination.

Due to the fact that the performance of a complex system, such as a DEDS, depends

on how all the parts work together, not on how each part performs when taken

separately, the author will argue that, in fact, the key information-focused patterns of

the DEDS are cooperation processes organized in closed-loop (feed-forwards and/or

feedbacks) mechanisms that enable the transformation of engineering design

information structures from initial requirements and constraints towards final product

specification.

4.2.2 The Cooperation Process

Cooperation is not considered a subsystem, but an emergent property of the DEDS, as

the cooperation process causes and is caused by a meaningful operation and co-

working of the DEDS components acting as a whole. The author contents that the

cooperation process has the following dual nature:

• It is a human-made artifact consisting of specific hardware (e.g. audio and

video mechanisms, boardrooms, blackboards, and so on), dedicated software

(e.g. messenger type of applications), and methods and methodologies (e.g.

meetings, brainstorming, broadcasting, conferences, negotiation strategies).

• It is a control mechanism that regulates the functionality of all the parties (i.e.

Human, Infrastructure and Engineering Design Model subsystems) involved

in the system.

83

Chapter 4

Therefore, the cooperation process implements inter and intra-subsystem interfaces.

That means that the cooperation process influences and determines the exchanges

(notably of information structures) between the subsystems and within the

subsystems. These behaviors are supported by means of communication, co-location,

coordination and collaboration processes.

Communication

Based on the model originally developed by Shannon and Weaver (Shannon and

Weaver 1963), in their endeavor to lay out the basis for a communication science,

Van Cuilenburg et al (VanCuilenburg, Scholten et al. 1991) recommend a

fundamental model of communication (see figure 4.1) for representing the

communication process.

Feedback

Sender Coding Channel
y+z

Decoding Receiver — K». Effectit-

Background
Noise

Figure 4.1 The fundamental model of communication (VanCuilenburg, Scholten et al.

1991)

The essential concept of the model is the concept of message (i.e. typographically

codified as x, y, z, y+z, x’ in figure 4.1), which represents the actual information or

signal sent from a sender to a receiver. For the message to be circulated, the following

components and procedures are needed (Shannon and Weaver 1963; VanCuilenburg,

Scholten et al. 1991):

• Sender (or Encoder): An information source; a person or device that originates

a message.

• Coding: The procedures and operations required to code a message from

receiver’s representation (i.e. x) into a representation suitable to be transmitted

through the channel (i.e. y).

• Channel (or Medium): The method used to transmit a message (e.g., print,

speech, telephone).

84

Chapter 4

• Background Noise\ Technical or semantic obstacles; i.e. anything that

interferes with the clear transmission of a message (e.g., audio disturbances,

reduced refreshing rate for video frames, poor ink quality, unknown language,

different interpretations of the same concept).

• Decoding'. The procedures and operations required to decode a message to a

representation suitable for the receiver (i.e. x ’).

• Receiver (or Decoder): The audience for a message; also known as the

addressee.

• Feedback. Information about a message that a receiver sends back to the

sender; the receiver's reaction or response to a communication.

• Effect'. The consequence a message has upon the receiver.

Another important concept, not pictured in figure 4.1, is the concept of interpretation,

which subsumes all the operations performed by a receiver in order to decode and

understand a message. A communication process can be considered successful when

the receiver’s interpretation of the message x’ corresponds to the sender’s meaning of

message x. Therefore, communication is achieved when the representation x of the

message is semantically equal or equivalent with the representation x’ of the message.

Within a DEDS, generally human designers assume the position of the receiver or the

sender of a message. Nevertheless, a knowledge base, a computer or a software

application can also act as senders and receivers. Therefore, the author contends that

the communication process can be initiated or can be receipted by any component of

the DEDS.

Generally, the material of the message consists of data, information or/and

knowledge. Therefore, communication and hence, cooperation heavily rely on how

the system information structures are managed. A poor administration of information

and knowledge will amplify the semantic or syntactic noise (or will increase entropy)

as well as can weaken the message itself.

Co-location

When considered within a human society context, the co-location process refers to the

bringing together of participants (i.e. human beings) geographically and temporally, to

enable them to use a wide variety of communication channels, such as language,

gestures, mimics, and other non-verbal aspects of speech (Chira 2002) with which to

85

Chapter 4

communicate. Within a distributed environment, where the resources (especially

human) are geographically dispersed, the role of co-location is greatly reduced, being

more idealistic than practical. Nevertheless, a good interface design and the

development of applications that implement virtual environments could enhance its

positive effects.

When considered within the context of a distributed engineering design environment,

the co-location process subsumes the infrastructure to provide effective

communication among the distributed participants (i.e. human beings, software tools,

information sources, etc). For example, in the scenario that a design engineer needs to

know what available materials have a better eco-indicator while with comparable

fastening characteristics with a material called matx, the co-location process may

consist of the followings:

1. the designer knows where the appropriate information concerning available

materials is, or knows how to find out (e.g. the material department, a folder

on his/hers personal computer);

2. the designers knows how to establish the connection with the source of

information (e.g. a telephone number and a telephone line, a physical location

within the company and the pathway to that location, an OS path to the

folder);

3. the designer establishes the connection to the source of information (e.g.

making a call, paying a visit, opening a file).

Once these steps are successfully executed, a communication process can then be

initiated with the information source (e.g. an employee of the material department, a

paper or a computer file, a bill of materials, etc) for fulfilling the initial information

needs (i.e. material names).

Coordination

Based on the characterizations presented in chapter two (see section 2.2.2), the author

pictures the coordination process as the management of resources, information

structures, and communication processes. Its role is to establish a harmonious

combination of co-location and communication relations or actions. Therefore, the

coordination process describes strategies to synchronise design resources (e.g. human,

information, etc) with the purpose of increasing the efficiency of the co-location and

the communication of information structures.

86

Chapter 4

In the above scenario, a good coordination process can assure that somebody from the

material department will answer the phone and will have access to the needed

information. In the case that the collocation process may be achieved by simply

opening a computer file, the coordination process supports a strategy to keep that

specific file updated at all times.

Collaboration

The collaboration process consists of creating a shared understanding in a distributed

environment, so that the DEDS actors can work with one another. This means that the

interacting actors from the DEDS share common or equivalent languages at both

syntactic and semantic levels.

For example, in the case of the designer requesting material information and the

professional from the Material Department, the collaboration process responding to

that request means that:

1. they both speak English and,

2. the technical description or query provided by the designer is understood by

the Material Department specialist

3. the technical answer of the Material Department specialist is understood by the

designer

Equivalently, in the case that the needed information is on a computer file,

collaboration means that the designer knows to read the file and then understands the

terms used therein.

From a structural and functional perspective the cooperation process is the result of

the following four interlaced processes:

1. the communication process which describes a mechanism for physically

exchanging messages (i.e. information structure),

2. the co-location process which provides the physical and informative

infrastructure for implementing communications,

3. the coordination process which synchronizes design resources, co-locations

and communications, and
4. the collaboration process which is responsible for semantically integrating

collaborations, co-locations and communications in a comprehensible and

intelligible whole.

87

Chapter 4

From this perspective, the main role of cooperation is to enable and support the

exchanges of data, information and knowledge, by integrating the DEDS actors in a

common syntactical and semantical enabled pool of information structures. This, in

turn, provides the cooperation process with the means to supervene and influence the

control and regulation of the DEDS, as will be shown in the next section.

4.2.3 Cooperation Processes as the Main Information Flow Patterns

The systems approach facilitates the understanding of how local and global behaviors

interact with each other. In other words, the systems approach reveals how the parts

work together. Knowing the repeating patterns from which the specific system is

constituted, will inform this understanding because, in expressing key behaviors, the

patterns are more easily comprehended and managed than collections of various

structures connected in a web of interdependencies.

After acknowledging (chapter two and above) its critical importance, the author

argues that the main pattern within a DEDS consists of a fractal cooperation process

(i.e. a pattern that repeats itself on an increasingly smaller scale or a set of self-similar

patterns).

As already mentioned, the engineering design process is an information

transformation process. Equivalently, at the highest level, the distributed design

system is an information transformation system from raw, unstructured information

representing the initial requirements and constraints (that may come from different

sources) to structured, detailed information representing an artifact or a product (as

depicted in figure 4.2).

Figure 4.2 A black-box view on DEDS as an information transformation system.

At a closer examination, this process can be represented in a closed-loop model as a

cooperation process (see figure 4.3).

Raw
Information

Distributed
Engineering Design

System

Detailed
Information

(I2)(Ii)

8 8

Chapter 4

Figure 4.3 High-level DEDS - Environment interaction (“ + ” sign stays for positive

enforcing or feed-forward, “ - “ for negative enforcing feedback).

As pictured in figure 4.3, specific external needs (e.g. markets in general, but not

exclusively) trigger a series of events (e.g. informative meetings and negotiations

between the parts, contracts, etc) with the purpose of feeding the DEDS with

information that informally describes the desired situation. The co-location and

collaboration of the involved parts is required in order to enable the identification of

information to be fed forward (therefore to start the design process) into the system.

Once these prerequisites have been met, the information that describes the needs and

the eventual constraints needs to be represented in an agreed form or message (i.e. Ii

in figure 4.3). In other words, the information is encoded in a message understood by

all parties involved. Afterwards, the initial message undergoes a series of specific

transformations inside the DEDS, after which the result (i.e. h in figure 4.3) is

outputted to the external environment. Its decoding fulfils the triggering needs,

therefore changing the state of the environment, which in turn provides the DEDS

with feedback, which can further generate other needs. As a fractal, this “high-level”

cooperation process repeats its structure within the DEDS.

At the system level (i.e. DEDS level), the Human System, based on and following the

methodological specifications defined by the Engineering Design Model System,

transforms information structures in a working space determined by the Infrastructure

System. In other words, according to the specific phase of the design or depending on

specific needs, the cooperation process is dynamically initiated among the DEDS

89

Chapter 4

subsystems. Therefore, it is inaccurate to consider that the solely the engineering

designers (i.e. Human System) perform the transformation of information (i.e. the

engineering design activity). The author argues that it is the inter-operation or the

cooperation among the three subsystems that execute or carry out the engineering

design activity (see figure 4.4).

Engineering

Figure 4.4 The transformation of information from Ii to I2 is performed through the

cooperation of Human System, Engineering Design Model System, and Infrastructure

System.

As the engineering design activity progresses, depending on the partial results,

feedback mechanisms may trigger changes, reorganizations or reiterations of activities

within the three subsystems (e.g. a delay in the performance of a design team may be

dealt with by assigning to it designers proficient in working with CAD tools).

At the next level of detail, the overall cooperation process consists of simpler

cooperation processes: cooperation among the three subsystems is made up of the

interactions of ‘simpler’ one-to-one co-operations. The access of Human System to

the necessary methodologies from the Engineering Design Model System requires

cooperation between these two subsystems. Similarly, the ability of the Human

System to perform in the distributed engineering design environment is conditioned

by its cooperation with the Infrastructure System. Moreover, a superior performance

of the Infrastructure System (e.g. better CAD tools, enhanced process management

90

Chapter 4

software, etc) depends on the inter-exchanges with the Engineering Design Model

System (e.g. detailed and formalized methodological steps can trigger software

specifications).

Furthermore, the level of detail can be deepened to the subsystem plane and, even

further, to the subsystem component level. Whatever the depth (even in the mind of a

single designer), the pattern remains the same. A transformation and/or exchange of

information is involved. Generically, a cooperation process will, therefore, look like

in the following:

• The need for cooperation arises;

• Co-location(s) process ‘puts together’ the participants (components involved

in the cooperation);

• Collaboration(s) process generates a shared understanding among the

participants;

• Coordination(s) process manages the resources needed for cooperation and the

flow of information structures;

• Communication(s) process implements the effective exchange of information

structures among participants.

In conclusion, the DEDS, viewed as an information transformation system, consists of

an hierarchical series of closed-loops cooperation processes (forming a fractal

structure). The material of the structure is made of information configurations, i.e.

data, information and knowledge. The participating actors can be any component

(however simple or complex) of the DEDS.

4.3 The Need for Semantic Support

Using Systems Thinking, as an holistic technique for gaining knowledge and

understanding of the distributed engineering design organization (or DEDS), it has

been argued (in section 4.2.) that the DEDS is (informationally) ‘kept together’ by

information structures and cooperation processes dynamics. The information

structures of the system (i.e. data, information and knowledge) are the means by

which the interactions among heterogeneous structures (of Human, Infrastructure and

Engineering Design Model Systems) are possible. The cooperation processes, in turn,

form (by means of communication processes), enable (by means of co-location

91

Chapter 4

processes), regulate (by means of coordination processes) and support (by means of

collaboration processes) these information-mediated interactions.

In the followings, based on the analysis of the requirements that concluded the second

chapter of this thesis, it will be argued that probably one of the most critical

deficiencies for the functioning of the distributed engineering design organization is

the poor semantic integration of the information structures into the whole. Therefore,

given the pivotal role that the information structures play within the DEDS, the need

to provide semantic support is seen (by the author) as significant for improving the

way engineering design is performed in distributed environments. Moreover, given

the importance of using computers for design not only as advanced tools, but also as

an engineering design medium or workplace (as shown section 2.2.2), semantic

support is further required in the form of software tools. As will be shown, the DEDS

cooperation processes qualify for the role of semantic integration, whereby ontologies

and multi-agent systems provide the necessary technological infrastructure for

implementing the cooperation processes.

4.3.1 A DEDS Requirements Analysis

The requirements needs for a better functionality of the DEDS, as identified in chapter

two, can be grouped along the following three dimensions:

1. The need for reusable, shared and form al structures o f information

maintained by the intrinsic logic of the engineering design domain.

2. The need for integrative mechanisms capable of translation and mapping

between different contexts, i.e. Human, Infrastructure, Engineering Design

Model, and other systems from the outside environment with which the DEDS

may interact (e.g. Manufacturing, Suppliers, EndOfLife, Market, etc.).

3. The need for non-human/software-based control mechanisms able to regulate

the functionality of the system (i.e. the human intervention in administrating

and controlling system functionality should be minimal, as this would have a

beneficial effect on designers’ concentration and time spent on effective

design).

The first dimension of requirements, i.e. of reusable, shared and form al information

structures, means that the design data, information and knowledge employed, created,

92

Chapter 4

modified, and used should be easily accessed by any DEDS component (especially the

components of Human System, e.g. engineering designers) that may need them.

Therefore, given the identified role of the overall DEDS cooperation process, the

design information structures should be enabled for any cooperation process within

the DEDS.

Furthermore, this requires that the design information structures be represented in

such a manner so that their codifying and de-codifying at the sender’s respectively

receiver’s points are achievable, no matter what DEDS components are involved (or,

in other words, the information structures circulated within the DEDS are independent

on their representation at consumer and producer level). Therefore, the basic strategy

adopted requires the representation of system information in a common-agreed form

(or pool of knowledge) that transcends the diverse irreducible and irreconcilable local

representations. Moreover, this system-level representation should allow the re­

representation of information structures into the specific local representations.

In order to achieve such a reversible representation (or a common denominator

representation) of system information structures, it is imperative to preserve their

meaning and, therefore the relationships among the design information structure. The

reason for this is that, once the basic meaning is agreed upon and codified in a formal

representation, the re-structuring of information structures for local needs (i.e. its

translation towards data or information understood by specific DEDS components)

requires only simplifications and reductions, which are easily achievable.

For example, presume that a formal representation of a generic product structure is

agreed upon, and the respective information structures are stored accordingly. In order

to provide information to a local CAD tool (e.g. ProEngineer), so that specific

structural product information can be presented to a designer in a visual form, all that

is required is to identify the proper subset of concepts (e.g. product, assembly, part,

feature, parameter) and relations (e.g. isjpart_of, has_feature, has_parameter) and the

necessary instances (e.g. smoke_alarm, cover, button, circularshape, 25 radius) that

are transmitted to the Application Program Interface (API) of the tool. The specific

data or information fed to the CAD tool generally does not have any sense or meaning

outside the tool or, in other words it does not have a meaning for the system as a

whole. This situation greatly reduces the possibility of sharing information and

therefore this information may be lost for other tools (e.g. SolidWorks) or other

system components that may require product structure related information (e.g. bill of

93

Chapter 4

materials). On the other hand, when the meaning is preserved at the system level it is

possible to obtain a local representation (usually meaningless at the system level but

meaningful at the local level) for a specific component (provided of course that the

respective component has an interface to the system). In summary, metaphorically,

the author considers that, while it is improbable to obtain meaning from meaningless,

it is possible to obtain meaningless from meaning.

The second dimension of requirements, i.e. the integrative mechanisms, refers to need

for specific means of ‘plugging-in’ the various DEDS components into a functional

unit, thus enabling inter-component dialog (or relations). The author identifies two

kinds of integration, as follows:

1. Static integration

2. Dynamic integration

A component that is statically integrated can access the most current state of the

system. In other words, since for the present research the system is thought and

described in terms of its information structures, the statically integrated component is

enabled to read the appropriate up-to-date system information regardless of its

distribution (geographical, semantical or functional). For example, suppose that a

project manager wants to check the overall progress of the current project that

involves several teams geographically distributed. If he or she is statically integrated

into the system, then, when asking its integration mechanism (e.g. a software

application) to open the current project, the appropriate and necessary up-to-date

information (which is not necessarily the last approved information) is automatically

collected from throughout the organization, brought locally and presented in a suitable

predefined form (e.g. the product structure in a CAD or other visualization

application, the temporal progression in a project planning application and so on). The

advantages of this scenario are obvious, since all the project manager has to do for

collecting the proper information is to use a single application.

A component is dynamically integrated when it is able to enter into dialog or establish

relationships with any other DEDS component that, of course, is also dynamically

integrated. For example, in the above scenario, if the project manager is dynamically

integrated, then his or her integration mechanism would be able to talk to other

components. Thus, when a change in the state of the system occurs and that change is

94

Chapter 4

interesting for the manager, the integration mechanism would be able to know about

the change and announce such a change to its dynamically integrated user.

As a final point, since the inter-component relationships are mediated by means of

information structures through cooperation processes, the integrative mechanisms

need to be able to perform translations of data and information (or even knowledge

when and where possible) from specific local representations, as produced by the

various system components, in the system form emphasized within the first dimension

and vice-versa.

The third dimension of requirements needs, i.e. the control mechanisms, concerns the

human role in controlling the DEDS functionality. Traditional approaches generally

necessitate explicit user actions (e.g. mouse clicks, keyboard inputs) to control the

logic flow. This makes them (i.e. the traditional approaches) significantly dependant

on user reaction times and expertise. Moreover, in the case of a complex application,

the user is required to spend time learning how to operate the application and to spend

time administering it. This situation can have a detrimental effect on the user’s real

productivity, as she or he is required to continuously shift focus between using the

tool and working with the tool. Therefore, the proposed solution system should not be

human-centered, i.e. its core functionality should not need human mediation.

Moreover, from the system’s control and regulation point of view, humans need to be

seen as any other component of the system (in fact, structurally and functionally

humans are part of the Human System). Of course, the human is a very important

component for the reason that it is the main producer and consumer of information

and, as the same, it is the cause and the purpose of the system. For all these reasons,

the human should use the system at maximum effectiveness and delegate something

else to work with the system on her or his behalf. Hence, as any other system

component, the human component is integrated or plugged-in by means of the

integrative mechanisms. However, since the human inputs and human requirements

from the system are much more diverse and complex than more of the other

components, the author contends that the human needs special integrative mechanisms

that are adaptive, capable of learning and especially tailored for each individual.

Concluding the requirements analysis, the system information structures need to be

represented in such a way that their semantics are preserved independent of the local

95

Chapter 4

informational representation needs. Moreover, it is necessary to allow the translations

among system level and local levels representations (so the local information

structures can be shared and reused). These information-related characteristics will

enable the cooperation processes to reach any DEDS components for which

integrative mechanisms are implemented, and therefore to facilitate the inter­

component dialog. Furthermore, by enabling this intra-system dialog (so therefore the

DEDS components are able to interact biasing the human mediation) when possible,

the control and regulation of some of the time consuming system behaviors can be

shifted from the human components towards automated and autonomous software

tools.

4.3.2 Cooperation Processes - the Semantic Enablers

In the preceding section it has been shown that semantics can facilitate a superior

functionality (or behaviour) of the cooperation processes and, therefore, given that the

main patterns within the DEDS consists of cooperation hierarchies, semantics can

play a major role in the improvement of the distributed engineering design activity. In

the subsequent section, the author intends to show that, while semantics can augment

the cooperation processes, the cooperation processes themselves have the potential

and capability to enable semantics along the DEDS components.

It has already been shown that the main functions of the cooperation processes are to

facilitate, support and perform the exchanges of Information structures within and

among the DEDS subsystems. However, the semantics are qualitative characteristics

of usually complex information structures (as expressed in chapter two), extensionally

articulated in terms of relationships (as shown in chapter three). Therefore, given their

significant role concerning the information structures, it is natural to assume that the

cooperation processes are also the ones that can enable semantics within and among

the DEDS subsystems.

It has also been shown that structurally, the DEDS consists of three subsystems with

each subsystem consisting of hierarchies of subsystems. Taking into consideration

that the DEDS behavior (or functioning) is facilitated by cooperation processes and

that the behavior is the result of the system structures functioning as a whole, then,

functionally, the DEDS is made of an arbitrary number of ad-hoc or predetermined

96

Chapter 4

functional entities with a life span conditioned by the specific function(s) that has(ve)

to be performed. Basically, any function handled by the proposed architecture is a

cooperation process, a part of it, or a combination of them. Hence, a functional entity

is a temporal functional cell consisting of system’s structural components engaged in

a dialog (i.e. a cooperation process).

A generic scenario involving a functional entity can be characterized as follows.

Suppose that two structural components (called cl and c2) need to exchange some

information structures. This desired situation requires setting up a dialog between the

two components, which further translates to the need for a cooperation process. The

underlining functional entity will therefore, consist of the structural components cl

and c2, plus the cooperation relationships (called lcoop2) established between cl and

c2.

Specific to the engineering design process, the DEDS structures are highly

heterogeneous and, therefore, it is fairly probable that the components cl and c2 will

need different local representations for the information they require for a proper

functioning. However, for a dialog to be possible some information exchanges are

required. Moreover, the information that is exchanged has to have sense, i.e. meaning,

at the both cl and c2 component levels. A solution would be that each component

would ‘understand’ or at least ‘know how to codify’ the information required by the

other component and then a cooperation process would be employed to effectively

execute the dialog. Alas, this simplistic view of the cooperation process results either

in an implementation of monolithic systems or in a support for quite simple and too

plain information structures that can be exchanged.

Nevertheless, a proper use of the cooperation process (i.e. lcoop2) should take

advantage of its possibility to (at list conceptually) reach almost anything that

qualifies as an information structure. Suppose that, a commonly agreed representation

of information is reached at the system level. Then, the collaboration constituent of

the lcoop2 will find the most appropriate representation that can be shared by both

component cl and component cl. Further, the coordination constituent of lcoop2 will

identify the activities for transformation or mapping the information from the

representation local to cl, to the DEDS shared representation and further, to the

representation local to c2 and vice versa if necessary. Next, the co-location constituent

of lcoop2 will discover the channel between cl and c2 and, finally, the

97

Chapter 4

communication constituent will effectively perform the exchange of information

structures between cl and c2 components. Therefore, the lcoop2 process will be

capable of enabling the dialog, i.e. to preserve the semantics of local information

structures, between the cl and c2 components without the need for cl and c2 to be

aware of each other’s local information logic.

In summary, in case that some prerequisites are met (e.g. system level information

structures can and are represented in a common agreed form by the DEDS

components), the cooperation process can converse semantics among the DEDS

components. Moreover the components are not required to sacrifice their otherwise

beneficial autonomy for the sake of enabling necessary dialogs.

4.3.3 Ontologies and Software Agents - the Technological Enablers

It has been demonstrated that the cooperation processes are capable of preserving and

moving semantics between the DEDS components. Therefore, it is possible for DEDS

components to exchange meaningful information structures, thus making possible

inter-component complex conversations. This situation can only enrich the

conversation capabilities since the expressiveness of the dialog is not limited to

simple strings of data.

However, with few exceptions, the DEDS structural components will generally not be

aware of each other, and will not even be aware of the existence of cooperation

processes. For example, the components from the Human System can establish

conversations with each other or with other components (with the condition that they

know how to operate them), unlike the case with the non-human components, which,

if not explicitly (or by nature) enabled for conversations, they will not be able to

actively pursue a dialog. Thus, the need for interfaces that are able to enable the

various DEDS components for dialog. For the present thesis, the author confines

himself to characterizing the computer-mediated interfaces (i.e. software based

interfaces).

The author has identified two technologies, i.e. ontologies and software agents (see

chapter three), which, working together, can support the implementation of computer-

mediated interfaces for enabling the inter-component dialog in a distributed

environment (such as the environment underlined by the DEDS).

98

Chapter 4

Resulting from the findings to date, the author considers that there are two critical

issues concerning the use of computer-based technologies for supporting a software

implementation of the cooperation process. They are as follows:

1. How can the system level inherently distributed information structures (i.e.

engineering design information) be represented in a common agreed form by

the DEDS components?

2. How exactly are the DEDS structural components (for example cl and c2

from the scenario above) capable of (i) recognizing that a dialog is necessary,

(ii) initiating a dialog, and (iii) carrying out the dialog?

While both the first and the second issues are dealt with by the unitary employment of

ontologies and software agents technologies by implementing a semantic enabled

environment (Gruber 1992; Genesereth and Ketchpel 1994; Nwana 1996; Gomez-

Perez 1998; Guarino 1998; Jennings, Sycara et al. 1998; Wooldridge 1999; Hendler,

Bemers-Lee et al. 2002), the ontologies will especially be used for the former and the

software agents for the later (this state of affairs it is also used for clarity reasons).

Question 1: How can the system level inherently distributed information structures

(i.e. engineering design information) be represented in a common/shared agreed form

by the DEDS components?

Answer 1\ By developing various ontologies for various behaviours and different

ontologies for different levels of details, a semantically enabled computational

environment is shaped. Moreover, this environment follows the different levels of

granularity required by the DEDS components and indeed, by the different

ramifications of the cooperation process. However, as mentioned above, the

ontologies enable the sharing of the DEDS information structures for applications
(especially software applications) and not specifically for the DEDS components.

This state of affairs introduces the second issue, for the reason that, actually, for

implementing computer-based cooperation support, it is not necessary for the DEDS

information structures to be shared directly among the DEDS components. It is

enough to obtain agreed representations among applications, i.e. software agents,

which will act as an interfaces of DEDS components to the cooperation processes.

99

Chapter 4

Question 2\ How exactly are the DEDS structural components (for example cl and c2

from the scenario above) capable of (i) recognizing that a dialog is necessary, (ii)

initiating a dialog, and (iii) carrying out the dialog?

Answer 2\ The DEDS structural components can be interfaced or computationally

modeled by software agents, which are capable (i) of recognizing a dialog triggering

change in environment, (ii) based on which to request a conversation (by means of an

ACL and common agreed ontology) and (iii) can start cooperating with other agents

(based on agreed upon ontologies).

In conclusion, using collections of ontologies as manifestations of a shared

understanding of the DEDS domain that is agreed between a number of software

agents (based on (Uschold 1998)), a cooperation enabled semantic environment can

be obtained. Moreover, the environment has its information structures represented in a

reusable, shared and form al way (by means of ontologies), it consists of the

integrative mechanisms (software agents) that interface DEDS components, and it is

controlled by non-human mechanisms (cooperating agents enabled by ontologies).

4.4 Proposed Framework for Enabling Semantics within the DEDS

In the subsequent sections, the author will propose an architecture that will describe

the framework for implementing a solution agent-based software system to the

identified information related problems within the DEDS. The anticipated architecture

intends to portray a suitable and viable framework for enabling semantics for the

cooperation processes within a distributed design environment. Suitable refers to the

fact that, with minimal changes within the DEDS, the underlining software system

should overcome the critical information concerned impediments that impair the

functionality of the engineering design process in a distributed environment. Viable

means that the system will be able to bear evolution and change without functionality

losses. An important point is that this thesis, and therefore the proposed architecture,

does not intend to change distributed design in what it is or in the way is carried out. It

is planned to provide a information-focused support mechanism that improves the

positive outcomes of the distributed design and that eliminates or minimizes its

negative aspects, as identified in chapter two. Therefore, the components of a real

distributed design environment are viewed as given components of the DEDS. The

human participants (in the design process), the design methodologies and tools

100

Chapter 4

(including CAD tools) and the design information structures are not intended to be

replaced. However the intention is to better integrate them into the distributed

engineering design environment by means of autonomous (i.e. not mediated or

performed by humans) cooperation processes.

4.4.1. The Architectural Framework

Given that the architectural specifications are the direct result of the findings from the

previous sections and of the author’s view of the DEDS, and based on the available

semantic enabler technologies, the author proposes the architectural framework model

depicted in figure 4.5. The proposed framework describes the author’s description or

characterization of the space in which an eventual software implementation (for

supporting semantics within the DEDS) will act.

so
■a I

.a, I

/ / / / / /
Human Engineering Infrastructure
System

/
Design Model

System /
System

/

\ / * \1 r\ '

/ ion

FI

m
ic

s Information Management /
Center /

Ontology Library
wcd c

E &
1 Q V

osI _c
Instance Interface A gen ts^/

Object
Library Instance Library

1 Object
Layer

Integration
Layer

Schema
Layer

Instance
Layer

Figure 4.5 The proposed DEDS Architectural Framework

The proposed architectural framework is structurally and functionally built around

two main information flows:

1. The Engineering Design Process viewed as an information transformation

activity (as characterized in chapter two, especially in section 2.2.1)

101

Chapter 4

2. The Information Flow Dynamics viewed as an inter and intra DEDS

components relationships enabler (as characterized in chapter two, especially

in section 2.3.3)

Within the Engineering Design Process, the unstructured, informal and generally

highly abstract information structures (i.e. requirements and constraints) are

continuously organized, formalized and detailed with respect to each phase of the

engineering design process, until a suitable structure (or global optimum) is achieved.

Of course, the progress is not linear but is characterized by a circular ‘tree-like’

configuration, consisting of a series of divergent dead-ends and returns, until a

convergence towards the global optimum is reached. Accordingly, the different stages

of the design information are captured in the form of working, released (including

version control) or obsolete structures.

In order to support this transformation of information process, external information is

required and produced for later stages (e.g. document management activities, i.e.

check-in, check-out, obsolete, release and version control). This kind of support is

provided by the Information Flow Dynamics, which ‘backs-up’ the Engineering

Design Process by providing its building blocks and the informative ‘know-how’.

Moreover, it mediates the dialog among the generally heterogeneous performers (i.e.

the various DEDS components) of the engineering design activity. Therefore, the

Information Flow Dynamics manages and deals with the information needs of the

Engineering Design Process, thus vertically supporting the horizontal unfolding of the

engineering design process.

For intelligibility reasons, the author will further describe and characterize the

architectural framework from two perspectives, identified as the structural perspective

and the functional perspective.

From a structural perspective (guided by the results of the systems thinking

introduced in this chapter), the proposed architecture consists of four layers as

follows:

1. The Object Layer consists of the distributed engineering design performers or

actors (e.g. designers, CAD tools) together with their local typically implicit

information structures (e.g. data, information and knowledge a designer has,

data files used by a CAD tool);

102

Chapter 4

2. The Integration Layer consists of specific mechanisms that create and support

information mediated connections between components from Object Layer

and the rest of the architecture.

3. The Schema Layer consists of patterns and logics that define the forms in

which the information structures are represented within the architecture. It also

consists of the cooperation processes regulation and control mechanisms.

4. The Instance Layer consists of the architecture information structures

instances together with the mechanisms that serve them.

From a functional perspective (guided by the appropriate technologies as identified

and characterized in chapter three), the proposed architecture can be described

through two planes as follows:

1. The Ontological Plane specifies the hierarchy of ontologies that defines the

concepts, the relations and the inference rules that compose the machine-

enabled framework in which DEDS information resources are circulated and

stored.

2. The Agent System Plane specifies the types and behaviors of the software

agents required for the DEDS components integration, user interfaces,

reasoning and system control.

4.4.2. The Architectural Layers
The architectural layers describe the structural context that characterizes the

computational environment required for implementing cooperation processes among

interfaced DEDS components.

Object Layer
The Object Layer consists of the three categories (as identified in chapter two) of

‘physical’ or ‘real’ objects that are engaged in the distributed engineering design

process (i.e. the components of the Human, Infrastructure, and Engineering Design

Model subsystems). Actually, this layer subsumes the distributed design organization

itself made of human designers, integrated circuits and coaxial cable computer

networks, various software designing tools, paper or electronic based design methods

and methodologies, specific design information, and so on. The engineering design

process is effectively performed at this ‘physical/reality’ layer level. In order to

103

Chapter 4

facilitate the architecture’s performance, the material, structural and functional Babel

of physical objects need to be syntactically homogenized.

An Object Instantiation process represents the first step in accomplishing this

necessity. As a prerequisite, the formal class hierarchies need to be identified and

explicitly described in the Ontology Library. Then, for every object, the following

needs to be accomplished:

• Identify the most specific class to which a particular object belongs

• Instantiate (i.e. represent) the object filling the information required by the

slots that characterize the respective class

• Store the object’s representation in the Object Library

Finally, the Object Layer is conceptually modeled in the Schema Layer and

extensionally and formally represented in terms of information structures in the

Object Library, since this is the place where engineering design activity is actually

performed. However, it cannot be disregarded (in the sense that its ontological

schemas and the object instances can replace it) when considering implementing

semantic support for DEDS. This is mostly for the reason that the Object Layer still

remains the driving layer of the architecture since it is here where the distributed

engineering design actually occurs.

Integration Layer
The Integration Layer defines and employs the interfaces between the Object Layer

and the rest of the architecture. Therefore this is the place where the integrative

mechanisms (as identified in the requirements analysis, section 4.3.1) carry out the

‘plugging-in’ of the DEDS components (i.e. the objects from the Object Layer) in a

syntactically and semantically information enabled workspace. Whilst this function

(i.e. integration) is supported by both ontologies and agent-based software

technologies, the main performers are a set of Object Interface Agents, which will be

described later.

The Integration and Object layers define the space where the information flows of the

Engineering Design Process progress.

104

Chapter 4

Schema Layer
The Schema Layer is responsible for formally defining the patterns of representation

of all the information structures that are circulated within the Information Flow

Dynamics stream, by the means of the Ontology Library. It is also the place of the

main structure that controls and regulates the architecture’s behavior, i.e. a Multi-

Agent System called Information Management Center (IMC). While the inter-layer

cooperation processes may not need its assistance, the inter-layer cooperation

processes are mediated by the IMC. Further clarifications are detailed later.

Instance Layer
The Instance Layer is the place where the system information structures that obey the

representation rules as defined by the Ontology Library are stored. For their local

needs (e.g. security, soundness, read, write, query) a set of software agents, called the

Instance Interface Agents is responsible. The Object Library contains the formal

representations of the objects from the Object Layer as resulted after the application

of the Object Instantiation process. The Instance Library, for a change, stores their

information needs.

4.4.3. The Architectural Planes
The Architectural Planes, consisting of the Ontological Plane and the Agent System

Plane (see figure 4.6 for a graphical representation), determine the characteristics and

the scope of the technological enablers, i.e. ontologies embodied by an Ontology

Library and agent-based systems embodied by a group of software agents and multi­

agent systems.

The Ontological Plane specifies the hierarchy of ontologies (i.e. the Ontology Library

that reflects the structural and functional granularity of the DEDS) defining the

concepts, relations and inference rules that compose the machine-enabled framework

in which the system’s information resources are circulated and stored. It also includes

engineering knowledge instantiated (i.e. in Instance Bases) according to the rules

specified by the Ontology Library. The Ontological Plane intends to provide a

homogeneous schema for representing the distributed engineering design domain. The

Agent System Plane specifies the types and behaviours of the software agents required

for the system’s components integration, user interfaces, reasoning and system

control. It intends to facilitate the access, retrieval, exchange and presentation of data,

105

Chapter 4

information and knowledge to distributed design teams through agent systems such as

the Object Interface Agents, the Instance Interface Agents and the Information

Management Centre.

I I Software Agent Agent Communication Language ̂ J Agent System

Information Management Centre

Integrative
Mechanisms

V Multi-Agent
f Plane

Object Interface Agents

Syntactic & Semantic

Instance Interface Agents

Integration

Shared

Specification

t Instance
Bases

Ontological
Plane

Ontology Library
Figure 4.6 The bi-plane model view of the DEDS architectural framework

The Ontological Plane
If one can imagine an analogy, where the DEDS is the world, then the three

subsystems (i.e. Human, Infrastructure and Engineering Design Model) represent the

continents. Each continent is structured into countries, with each country consisting of

regions, counties, cities, towns and villages. The village-town-city- ... - country-

continent relations are the subsystem’s structural relations. It is also possible to have

countries that span two or more continents. In this case inter-subsystems structural

relationships are involved. The roads that link different settlements are the functional

relationships. These may be regional, national, continental, or even intercontinental.

Furthermore, as the geographical maps represent the world with all its necessary detail

in a bid to visually manage the large-scale complexity of the Earth itself, the Ontology

Library provides a homogeneous schema for representing the distributed engineering

design domain (its concepts and relationships) in a bid to manage its cognitive

complexity and diversity.

106

Chapter 4

Concluding the analogy, if the DEDS is the globe, then the Architecture is the globe’s

map and the Ontology Library is the agreed map key.

As identified in section 4.3.3, the hierarchy of ontologies (i.e. the Ontology Library)

needs to reflect the structural and functional granularity of the DEDS. Its main

purpose is to represent (i.e. reorganize), in a commonly agreed syntactic and semantic

information makeup, the structural and functional components of the DEDS.

Therefore, where an information exchange process is concerned, the hierarchy of

ontologies should reflect as close as possible the degree of granularity (neither too

coarse, nor too fine-grained) required by the components that form the cooperation

cell. Thus, there are two kinds of ontologies, i.e.

1. structural ontologies and

2. functional ontologies,

both of which specialize a high-level ontology that describes the most general and

fundamental concepts and relations of the DEDS and notwithstanding its architectural

role, represents the system introductory card for the outside world.

The structural ontologies conceptualize and formally describe the structures that form

the DEDS (i.e. all the three subsystems and their components, together with their

characteristics). They form the schemas used by the Object Instantiation process for

translating the ‘real’ structures from the Object Layer into the information structures

from the Instance Layer.

A top-level structural ontology with an informative kind of role reflects the structure

and the relationships of the structural ontologies hierarchy. At the next level, another

three hierarchies of ontologies reflect each of the three DEDS subsystems, as follows:

1. The Infrastructure hierarchy conceptualizes and formally describes the

hardware and the software components located within the DEDS. It provides a

formal way of describing computers in terms of their memory and storage

capacity, operating system, network identifier, etcetera. It also formally

represents the applications used by the designers. This later point is of main

importance for the Information Translation Agents (as it defines how to mine

for applications information and vice versa, how to feed applications with

information).

107

Chapter 4

2. The Human hierarchy describes the designers and all other human actors

involved in the distributed design process based on their agreed profile. This

hierarchy enables and supports the performance of the User Interface System

Agent.

3. The Engineering Design Model hierarchy models the engineering design

process itself. It contains the general description of any engineering design

process, its necessary stages and the appropriate methods and methodologies.

Furthermore, each engineering design phase (for example Requirement

Definition, Functional Requirements, General Design and Detailed Design) is

encoded in a dedicated ontology that will also include life-cycle information,

(e.g. Raw Material, Manufacture, Use and End of Life) with the purpose of

integrating the engineering design activity in the larger product realization

process.

The functional ontologies formally specify the concepts and relations needed by the

cooperation processes that take place among the different DEDS components or

software agents. They also include mapping ontologies that relate and equalize

concepts from different structural and/or functional ontologies (e.g. ID from ontology

XI is the same with Identificaton number from ontology X2).

Similar to the structural ontologies, at the top level of the functional ontologies resides

an ontology that reflects the structure and the relationships of the hierarchy. The next

levels are inhabited by ontologies with different degrees of specializations that

describe the context of the collaboration process. This (i.e. the context) includes

parameters such as:

• The types of interaction (e.g. dialog, monolog, informative);

The kinds of messages (e.g. request information, save information, check

consistency);

The structures of information (e.g. product features, user profile, tool

description);

Finally, the DEDS Ontology Library needs to be an open structure, i.e. it can be

modified, extended, or even decreased if necessary. This feature of openness is

necessary because the distributed engineering design domain is a dynamic,

108

Chapter 4

changeable environment and, therefore the ontologies (as conceptual reflections of the

domain) should be capable of reflecting these characteristics of the DEDS.

The Agent System Plane
The interoperation of multiple agents within the DEDS is achieved through an agent

communication language (or ACL) and a common shared Ontology Library. The

ontology library creates a shared (i.e. design semantics are the same for all agents that

commit to the ontology libraiy), formal (i.e. design semantics are agent enabled)

understanding of the design domain. This machine-enabled pool of data, information

and knowledge represents the environment in which multiple agents act within the

DEDS.

The author considers that the agent-based system plane consists of software agents

that are characterized by autonomy, reactivity, pro-activeness, cooperation and

temporal continuity. The following two kinds (by the function or role performed

within the DEDS) of software agents:

1. Operational Agents perform operational roles and are responsible for the

functions that the architecture performs.

2. Regulation and Control Agents form a Multi-Agent System called Information

Management Center that is in charge of the architecture’s behavior.

The Operational Agents are information-based sensors and effectors. They are able to

react to informative stimuli generated by the component they attend, which they can

also activate (i.e. the specific component) when necessary. The environment in which

these agents act has the following properties (based on (Russell and Norvig 2003)

classification on environment properties):

• Accessibility - the agents can obtain complete and accurate information about

their environment because they act locally (at Object Layer or Instance Layer

level) and generally interface well with described components (by the means

of the Ontology Library);

• Deterministic - any action performed by an agent has a single guaranteed

effect (e.g. capture information, store, retrieve, browse, search and so on);

109

Chapter 4

• Dynamic -the environment is changed not only through agent actions (this can

raise some problems for designing agents);

Since the Operational Agents are essentially the integrative mechanisms, the

following kinds have been identified:

• The Instance Interface Agents interface and manage the data, information and

knowledge instances that are ontology-compliant, and are stored on the

system’s computers. They perform specific functions such as storing,

retrieving, consistency checking, revision control and maintaining. All the

other agents have to summon these agents for their information needs (e.g.

retrieving or storing information).

• The Object Interface Agents interface and manage the connection of the

physical objects to the system’s information and consist of the following

agents:

o Information Translation Agents - translate or re-represent information

from an internal format as specified by the ontologies into an external

format as required by the specific component that is served and/or vice-

versa. They implement the interface with the software tools used during

the design process, being are activated by application specific events (e.g.

save, load). Each agent is tailored for a specific application (e.g.

SolidWorks) so it ‘knows’ where and how the application keeps its

information structures. They also know how to translate the application

representation of information into internal representation, as defined by the

ontology library. Once activated, they initiate a cooperation process with

specific Instance Interface Agents for either storing or retrieving

information

o User Interface Agents - are actually a special type of information

translation agents, forming an agent-based system that assists the humans

in using and working with the system, being capable of memorizing user

patterns, behavior and operational needs. They are autonomous agents that

deal with any user specific aspect within the DEDS, e.g. collaboration with

other DEDS participants by enabling a virtual collaborative environment

(e.g. chat, audio and video conferences, file sharing, whiteboard-ing),

110

Chapter 4

captures of and requests for information. They are tailored (and ideally

able to model themselves through learning) according to specific user

needs and preferences, and act autonomously in the distributed design

environment.

For the coordination and for the good performance of the Operational Agents, the

Regulation and Control Agents, or the Information Management Center plays a

critical role.

The Information Management Center forms a Cooperative Multi-Agent System

responsible for the management and administration of the entire architecture. It

represents a distributed mechanism that supervises system’s behavior and makes sure

that the system performs within normal parameters. Feedback and feed-forward

mechanisms continuously inform specific control centers about the current state of

different parts of the system, so proper actions can be taken in case of functional

disturbances. The feedback and feed-forward mechanisms are in fact sensors that

capture the current states (e.g. sleep, activate, wait, action and so on) of all the agents

from the system. They also inform about the states of the different active cooperation

processes (e.g. running, successfully finished, unsuccessfully finished with the error

code xxx, pending, bottleneck). Having direct access to the Ontology Library, the

Information Management Center also intervenes/interferes in the inter-layer agent

cooperation processes, by identifying the most specific ontology that can be used in

the desired cooperation process. In addition, it identifies and names the proper

Instance Interface Agent required by an Object Interface Agent. Moreover, the

Information Management Center also implements the securities policies necessary in

the organization, based on the digital signature that every agent in the system has to

have. To summarize, the Information Management Center functionally connects the

different layers of the Architecture based on access rights and actively supervises the

performance of the system’s agents.

4.5 Conclusions
Applying Systems Thinking, as an holistic technique for gaining knowledge and

understanding of the distributed engineering design organization, it has been argued

111

Chapter 4

that the DEDS centripetal1 force consists of information structures and cooperation

processes dynamics. The information structures of the system are the means by which

the interactions among the heterogeneous structures (of Human, Infrastructure and

Engineering Design Model Systems) are possible. The cooperation processes, in turn,

form (by means of communication processes), enable (by means of co-location

processes), regulate (by means of coordination processes) and support (by means of

collaboration processes) these information-mediated interactions or dialogs.

Also, the need to provide computational semantic support in order to improve the

performance of the engineering in distributed environments has driven the research to

the conclusion that the DEDS cooperation processes qualify for the role of semantic

integration. Moreover, from a technological point of view, using collection of

ontologies as manifestations of a shared understanding of the DEDS domain that is

agreed between a number of software agents, a cooperation enabled semantic

environment can be obtained.

Such an environment has been architecturally modelled, dimensionally along two

main information flows (i.e. Engineering Design Process and Information Flows

Dynamics), structurally along four layers (i.e. Object, Integration, Schema and

Instance Layers), and functionally along two planes (i.e. Ontological and Agent

System Planes).

The next chapter will provide an implementation-al validation of the computational

context or framework described by the proposed architecture.

1 Centripetal force - an force acting on a body causing it to move towards a centre Pollard, E. and H.
Liebeck (2000). The Oxford Paperback Dictionary. New York, Oxford University Press Inc.

112

Chapter 5

An Instantiation of the Proposed Architectural Framework

5.1 Introduction
5.2 An Ontology-based Software Agent (OSA) System
5.3 An OSA Prototype
5.4 Conclusions

5.1 Introduction

The investigations carried out in the preceding chapter concluded with the description of

an architectural framework (see chapter four, section 4.4) that bounds the author’s view on

the representation of the computational space describing any software system that supports

machine-enabled DEDS cooperation processes. This architectural framework, supported by

semantic technological enablers, i.e. ontologies and software agents, provides the

‘skeleton’ for implementing software systems in order to facilitate the access of DEDS

components to however complex information structures.

In this chapter, a conceptual instantiation of such a software system (called OSA -

Ontology-based Software Agent system) will be introduced with the purpose of testing and

validating the results of the current research, i.e. the proposed architectural framework.

Certainly, the anticipated system is not the only one possible to be modelled according to

the architectural model, since the proposed architecture acts as a frame and not as software

specifications. However, given the articulated reason, the author contends that a single

functional instantiation of the OSA system is sufficient in order to accomplish the needs of

this stage of the research.

This proposed OSA model will also provide the basis for the implementation of an

operational prototype of the OSA system. The author argues that, being possible to

implement a software prototype following the specifications of OSA system, which, in

turn, obeys the structural and functional specifications of the proposed architectural

framework, results in the validation of the architecture.

5.2 An Ontology-based Software Agent (OSA) System

The overall goal of the OSA system is to fulfil the DEDS requirements as identified in the

previous chapters:

1. Reusable, shared and formal structures of information

2. Integrative mechanisms

3. Non-human software-based control mechanisms.

This typology of requirements articulates the need for (i) the system information structures

to be represented in such a way that their semantics are preserved independently of the

local informational representation logics and, moreover, to allow the translations among

system level and local levels representations; (ii) DEDS object interfacing or ‘plugging-in’

mechanisms for enabling inter-object conversations or dialogs; and (iii) regulation and

control mechanisms capable of functioning without human mediation.

The OSA system intends to do the followings:

Chapter 5

114

• To improve the designer’s access (qualitative=semantics and quantitative=about

the right amount of information to be brought forward) to the distributed design

information

• To do this by instantiating the architectural framework and, thus

• To validate the architectural framework

In summary, the proposed architectural framework is the cognitive result of this research

process which synthesizes the results of the investigations carried out in the preceding

chapters and recommends a both functional and structural solution context to the above

requirements, which the author contends will improve the manner in which the distributed

engineering design process is carried out.

From the functional perspective, the architecture proposes the use of two kinds of

ontologies (i.e. structural and functional ontologies) grouped in an Ontology Library and

two kinds of software agents (operational and regulation and control agents). In

combination, these two technologies can generate a computational system capable of

operating at knowledge-level and therefore, suitable for supporting complex DEDS

behaviors.

From the structural angle, the architecture is divided into four autonomous parts or layers,

with each layer being responsible for specific functions and therefore, being served by

specific functional architectural components, as follows:

1. The Object Layer is a special layer that subsumes the actual performers of the

distributed engineering design process. However, even if it does not have dedicated

functional components, it actually represents the rationale of all the other layers.

2. The Integration Layer defines the place where a specific type of operational agent

acts, i.e. the Object Interface Agent that consists of Information Translation Agent

and User Interface Agent.

3. The Schema Layer represents the brain of any architectural implementation since it

identifies the place where the Ontology Library resides and the regulation and

control agents (i.e. the Cooperation Management Center) act.

4. The Instance Layer is the place where any OSA system will store its main working

material (i.e. information structures) in the form of distributed Instance Bases,

which are interfaced by a second type of operational agent, called Instance

Interface Agent.

Chapter 5

115

The holistic summation of these layers obtains a cooperation enabled semantic

environment, thus further resulting in computer assisted DEDS behavior (i.e. the

distributed engineering design process) at a knowledge level.

5.2.1 The Proposed OSA System

The OSA system facilitates the access of interested DEDS parties (e.g. design engineers,

Materials department employees) to up-to-date design information. The proposed system

deals with the following two issues (that were identified in section 2.2.4 and which actually

have driven this research work) concerning the access to information structures:

1. The qualitative issue: the OSA system intends to bring to its users the right

information with minimum expertise required.

2. The quantitative issue: the OSA system intends to limit the amount of information

brought forward so as to avoid possible information overloads.

At the core of the OSA system resides the concept of service. Based on dictionary

definitions, the notion of “service” is understood to be as follows (Pollard and Liebeck

2000):

• “A system or arrangement that performs work for customers or supplies public

needs”

• “Use, assistance; a helpful or beneficial act”

• “Provision of help for customers or clients”

Thus, the role of the OSA system is to assist by supplying services for its clients or users,

i.e. DEDS components that are integrated into the architecture by means of Operational

Agents. Actually, the OSA services are conceptualizations of DEDS behaviors, e.g. search

a specific instance base, browse the structure of product, initiate a chat session.

Formally represented in a dedicated ontology, the concept of service can have the structure

presented in figure 5.1.

Each OSA service is made up of the following constituents:

Chapter 5

116

Chapter 5

Figure 5.1 An ontological model of the service concept

1. Type o f service is an ontological conceptualization of a DEDS behavior, hi this

particular case the author proposes the use of three structures for formalizing

the DEDS services. For example, in the simple case of a service of type browse

service (that is implemented in the proposed prototype) the tree structure

consists of the root browse and the four leafs (material, product, fastener,

resources). Thus four atomic services are made available, i.e.. browse material,

browse_product, browse_fastener and browsejresource. The main reason

behind this logic is to be able to design agents capable of serving sub-trees of

services (in opposition to designing agents for each atomic service).

2. The Requester (or the receiver of the service), an Object Agent, needs and

requires specific services on behalf of its user. The services available to the

Requester depend on the actual DEDS object the agent interfaces, i.e. the

Object Profile that is predefined and stored in the Object Library.

3. The Provider (or the sender of the service), a CMC agent or an Instance

Interface Agent, performs the specific operations defined with the particular

type of service.

4. The Message Ontology, a functional ontology, names the ontology needed by

the Requester and the Provider in order to communicate. If this ontology is not

117

a standard FIPA1 ontology (which is known by any agent), then is the most

detailed functional ontology to which both parties commit.

The proposed OSA system (see figure 5.2) fulfills the needs of the distributed engineering

design process performers (e.g. human designers) for appropriate design information, by

supporting an improved cooperation process between the interested parties (i.e. the DEDS

object and the design information structures).

Chapter 5

DEDS
Object

A need for information arises Design
Information

Object
Layer

Services
available

Personal
settings

Identify
service

Ontology
Library

Services
Initiator

Profile
Broker Services

Advertiser

Object
Profile

Service
Broker

(c3)
Send result

(b2)
Request
service

(a) Register service

(a)
Retrieve (cl)

activate■ivate• S e rv ic e ^ '''\
Provider

Object
Library

(c2)
Specific operations

k

____________. . .

Instance
Library

Instance
Layer

Figure 5.2 The proposed OSA system to support the access to design information.

y Integration
Layer

Schema
Layer

(°4)
Activate result

1 FIPA - Foundation for Intelligent Physical Agents www.fipa.org

118

http://www.fipa.org

Chapter 5

In order to accomplish the need for design information of a DEDS object, the OSA system

proposes the following phases:

(a) This phase consists of operations performed at the activation of the OSA

agents, i.e. retrieving of the object profile (in the case of an Object Agent) and

service registration (in the case of a Service Broker).

(b) At this phase the service provider is identified (sub-phase bl), and the service is

requested (sub-phase b2).

(c) This phase subsumes all the operations performed for accomplishing the

required service, i.e. the activation of the specific service performer (sub-phase

cl), which actually implements the service (sub-phase c2), sends the results to

the requester sub-phase c3) and activates the results (sub-phase c4, for example

the activation of a GUI for presenting the design information to the DEDS

object).

The Object Layer of the OSA system is the place of the DEDS components (i.e. Human,

Infrastructure and Engineering Design Model subsystems). At this layer the need for

design information occurs. The purpose of all the other proposed layers is to fulfill the

DEDS Object needs for design information structures, by means of performing services.

The Schema Layer of the OSA system contains three special kinds of services that do not

implement DEDS behaviors. However, they are used by OSA system to regulate and

control the behaviors of all the other agents. The agents that implement these behaviors are

as follows:

1. The Profile Broker agent provides a special kind of service required by all the

Object Agents at their activation, i.e. it retrieves the Object Profile based on the

credentials of the particular agent that asked for it. The Object Profile describes

the services available to the respective agent and may also contain (in the case

of User Interface Agent) specific personal settings (e.g. service history, CV,

display specific requirements).

2. The Service Advertiser agent plays the role of Yellow Pages for the OSA

agents. The providers of services publicize themselves within it, while the

requesters of services identify the required providers) from it.

3. The Service Initiator agent captures messages that are broadcasted within the

system and, when a specific (predefined) change occurs (e.g. a write operation

119

in the material base or a change of a subassembly in the detailed design base), it

announces the agents that may be interested in it (e.g. the User Interface Agent

of a person from the Materials Department or of a design engineer)

The Integration Layer consists of Object Agents or Requesters of services. When

activated, they request their up-to-date profile from the Profile Broker agent. In the case

that their personal profile has been changed while active, the Profile Broker agent

(informed about the update by the Services Initiator agent(s)) will proactively transmit the

new profile to the concerned party. When (e.g. mouse click, some change in the state of the

system) an Object Agent needs a service, it will consult the Services Advertiser agent(s)

about the possible provider. If the proper provider(s) is(are) identified, that Object Agent

will initiate a Service Message-based conversation with it.

The Instance Layer is the place where the Providers agents act. It also includes the Object

Bases (that store the personal profiles of the Object Agents) and the Instance Bases (i.e.

design information stored accordingly to the definitions from the structural ontologies from

the Ontology Library). When becoming active, the Provider agents register themselves

with the service(s) they supply. A Provider supplies a category of services. That means that

each local Provider (called Service Broker) supplies the same kind of service (e.g. search,

browse, query) for all local Instance Bases. Since the OSA Instance Bases (e.g. Materials

Instance Base, Product Structure Instance Base) can be stored on more than one computer

(after all, the DEDS resources are distributed), the same Service Broker agent can be found

on different computers. When a certain service is required, the Service Broker will activate

the proper Service Provider, which knows what to do in order to accomplish the tasks

required on the particular Instance Base by the required service. Therefore, each set of

local Instance Bases are interfaced by a Service Broker who controls a set of Service

Provider agents, which, in turn, actually perform the services specific to each type of

Instance Base.

5.3 An OSA Prototype
The main and sole purpose of the OSA prototype is to demonstrate that the OSA system is

functional. Given the vastness of the (distributed) engineering design domain, only a small

set of behaviors has been implemented. However, as shown in chapter four (see section

4.2), the main information flow patterns of the DEDS concerning this research work have a

fractal nature, i.e. the overall cooperation process repeats itself at the different levels of

Chapter 5

120

granularity within the system. Therefore, the author argues that, even the implementation

of a small subset of cooperation-mediated behaviors can give a measure of the validity of

the OSA system

5.3.1 Prototype Characterization
The proposed prototype consists of instantiations and implementations of the kinds of

ontologies and software agents characterized in the architectural framework model (figure

4.5) and more specifically identified by the OSA model (figure 5.2). From the available

tools and technologies, Protégée 2000 (http : //prote ge. stanford, cdu/) and JADE

(http://iade.tilab.com/, (Bellifemine, Poggi et al. 1999; Caire 2002; Bellifemine, Caire et al.

2003; Bellifemine, Caire et al. 2003; Bellifemine, Caire et al. 2003)) have been used for

the Prototype implementation.

Protégée 2000 “is an integrated software tool used by system developers and domain

experts to develop knowledge-based systems. Applications developed with Protégé-2000

are used in problem-solving and decision-making in a particular domain”

(http://protege.stanford.edu/doc/users_guide/index.html). Protégée 2000 has been used as

an ontology editor and as a knowledge base editor.

Java Agent Development Framework (JADE) is an Open Source project defined as “an

enabling technology, a middle-ware for the development and run-time execution of peer-

to-peer applications which are based on the agents paradigm and which can seamless work

and interoperate both in wired and wireless environment” (Bellifemine, Caire et al. 2003).

JADE provides the necessary libraries for developing software agents and some basic

services necessary to distributed peer-to-peer applications.

In order to keep the OSA system flexible and adaptable, the author found that the agents

should have the ‘minimum’ necessary intimate knowledge (or knowledge implemented in

their algorithms at development phase) about the overall environment in which they act.

An example of such kind of knowledge is the fact that the Object Agents ‘know’ about the

existence of the Directory Facilitator agent and also ‘know’ about the fundamental role of

the service provided by the Profile Broker agent. However, in order to be useful and

efficient, the agents need to ‘know’ their local environment. For example, (i) an Object

Agent ‘knows’ that its user’s behaviours are conditioned by a user profile document; (ii) a

Service Broker agent ‘knows’ what kinds of Instance Bases are stored locally (i.e. on the

computer the agent resides); and (iii) a Service Provider agent ‘knows’ the ontology that

defines the representation logic for the kind Instance Base it interfaces. In summary, the

Chapter 5

121

http://iade.tilab.com/
http://protege.stanford.edu/doc/users_guide/index.html

author designs and develops software agents that are aware only of the local environment,

with the belief that an overall intelligence can spawn from complex local interactions.

5.3.2 The Ontological Plane
Before describing the proposed instantiation of the prototype’s Ontology Library, several

preliminary specifications or critiques concerning the ontologies development are

necessary. Given that, actually, ontologies are describing and storing complex information

structures by establishing agreements, their implementation and especially their design are

highly dependent on the particulars and the negotiations carried out by individuals that

performed them. For example a designer could require the detailed description of the

product physical structure and a summary description of the manufacturing process, while

for a manufacturing engineer this situation could be inversed. How the actual ontology will

look like will therefore depends on how the above mentioned individuals are negotiating

agreements. Of course, the more individuals are involved, the more difficult could be to

establish ‘detailed’ ontological agreements. Moreover, the ontological purposes which

these developers are having in mind subjectively influence the ontologies development

process. For example the ontologies proposed in this thesis are primarily intended to

demonstrate the sharing and reusability possibilities opened by the usage of ontologies and

agents. Therefore, these ontologies, while improbable to contribute to the effort of

developing an universally engineering design ontology, are intended to contribute to the

process of starting the effort of developing an universally engineering design ontology.

Given all these theoretical issues concerning the development of ontologies, the author

tries to make clear the fact that the form, the structure, the content and the extent of his

Ontology Library, which is the agreement established among three IT specialists and two

mechanical engineers specialists, is arbitrarily constrained by this thesis purpose and

therefore may differ from other Ontology Libraries.

The Ontological Plane consists of the Ontology Library and the distributed Instances Bases

(see section 4.4.3). The Ontology Library for the proposed Prototype consists of the

following hierarchy of ontologies (see figure 5.3):

• Engineering Design Ontology

• Functional Ontologies

Chapter 5

122

Chapter 5

• Structural Ontologies

Figure 5.3 Prototype’s Ontology Library

The Engineering Design (ED) Ontology is the generic ontology that describes the

ontologies that make up the hierarchy (in this case the two functional and the four

structural ontologies). It also represents the DEDS introductory card for the outside

systems.

The Service Ontology and Agent Communication Language (ACL) Ontology are the

functional ontologies of the implementation. The software agents use them to implement

DEDS behaviors. The ACL Ontology is a FIPA compliant ontology implemented by the

JADE framework and is used by agents in order to effectively communicate and exchange

messages. The Service Ontology defines and describes the two categories of services

which the prototype supplies, i.e. Browse Service and Search Service. Each category of

services further consists of ‘atom’ services specific to each type of DEDS instance base

(e.g. Browse Material service, Browse Product service, Search Product service).

123

Chapter 5

The Product Ontology, Material Ontology, Fastener Ontology and Resource Ontology are

structural ontologies. They define the schema for storing the actual design information

structures. The Product Ontology defines the schema of any product structure at the

detailed design phase (see figure 5.4).
p̂’EngtnücrtnfjDttSlQM Proté^-2000 (D:\ovi\tlc taalc si bückup\onlolarjy\otlüiir'.eiii' OPhQtflctiilfig

Project Window Help PAL Cotts1i<)iiits

U M ® ® i
Cl as sa s I ! slßSIots G For in s

i xIteUithinslitp SiflK.. V

©.■THINS
©- © :8Y8TEM- CUSS *

© ¥a1eMal::PR0JHCT»AN NOTATION
©-©Material.Maierial
©• © Resourceflssource A
9 © Manufacture

© Process
9 ©Product*

©Assembly
©■©Fastener
<? © Part

<? ©Batterle
©BaterrleLi-lon
© BattarisAlkallne
©BatterieMiCd

©inlegratedClrcults
©PC0
© SmalEngine
©Transformer

$ ©Property*
© Feature
© Joint
©Parameter

M* T

Superclasses + -
ci Produci"

Instances 44 Queries Classes & Instances PAL Queries PAL Constraints

© P j i I (lyiio ;:S IANDARI) C l . A S S) _____________ [CM<

Ndim? DocuniiiMation Cimimi,lints V G
Part Represents a part (can not have

any components).
Kote

Concrete

template Slots ,y y C

Name I TYPe Cardinality O ther Facets
finishing
has„feature
has_materlal
hasjsarameter
has_protesB
is_component_ofI
label
(unction
has_aulhor
has.manager
mass
name
version

Siring
instance
Instance
Instants
Instance
Instance
Symbol
String
Instance
instance
float
String
Float

single
multiple
multiple
multiple
multiple
single
single
multiple
multiple
single
single
required single
single

c lasses= {F ea lu re)
ciasses=(M,iteriil Material)
classes={P arann8ter}
c la s se s = (P ro ce ss }
c iasses= {A ssem b ly }
al lowed-va lu es= | Labe II ed , I

c iasses= (R e source ;H um ar
c lasses= (R e sou rce :H um a i

Figure 5.4 The Protégé 2000 view of the Product Ontology.

Each product is viewed as an hierarchy of assemblies and parts, with each assembly being

further made-up of further assemblies (also called subassemblies) and parts. The main

constraint defined is that, while a part can be component of an assembly, an assembly

cannot be a component of a part. Furthermore the assemblies and the parts are defined in

terms of their characteristics (e.g. name, mass, version) and relations (hasauthor,

has manager, has features, hasmaterial) that can link them to instances from other

ontologies (see figure de la sf. de sectiune).

The Material Ontology (see figure 5.5) describes the materials information, needed for

designing, in terms of properties such as category/class (e.g. ceramic ferro-metal, fibre,

glass, laminate), subcategory/subclass (e.g. carbide and traditional ceramic for ceramic

category) and properties (e.g. name, density, colour, texture, impact strength, tensile

strength, fatigue, sustainability and environmental issues).

124

Chapter 5

rf*' Material P ro tê t -21J00 (IV.\ov»\<l« I o«V.e *t i-Kicku|)\oiitoldOy\<JClcJttl\Miit€;nalp(M i)

Project Window Help

(IM ® i f%M
Classes TsI i| Slots Forms

Ruldtionship Superclass »

9 © Male rial

9 © C eram ic

© Carb ide

©TradltlonalCeramic

9 ©Ferro-metal

© Casllron

© StatnlessSteei

© S te e l

9 © F ib re s

©Carbon
© GlassFibre

© Synthetic

©Vegetable

9 © Glass
©DecorGlass
© F lo a t

©ToughenedGlass
©WireGlass

9 ©Laminate
© Polymer-Mela I

9 ©Mleellaneous

© F u e l
o © Non-ierroMetai

© PaperBased

©■ © Polymer

©Wood

v 'c i>
Instances ¿4 Queries j

© Material (type^ST ANDARP CLASS) m
Name

Material

Role

Concrete

Template Slots

Documentation

Name Type Cardinality

_Sj Fatigue Float single

S] Sustainability Boolean single

|OTensile_Slrengiii Float single

Si biodegradable Boolean single

.SJ color Siring single

S] density Float required single

S] ecoJndicator_S5 Float single

Is] eco_indicator_99 Float single

|s] hazardous Boolean single

Is] lmpact_slrenglh Float single
S]name String required single

U recyclable Boolean single

JS) recycled Boolean single

S i texture String single

Slyoungs_modulus Float single

Figure 5.5 The Protégé 2000 view of the Material Ontology.

The Fastener Ontology provides a schema for storing fastener related information

structures, such as classes and subclasses of fasteners, properties (e.g. name, mass, type,

function, weld). This ontology also provides details for the assembly and disassembly

processes, such as the tool needed and time the required.

The Resource Ontology defines the design resources involved in the distributed

engineering design activity. At this stages only the human resources have been

implemented in terms of characteristics such as name, department, role, e-mail and

telephone.

While the Ontology Library defines the logic of storing the DEDS information, the

Instance Bases actually store the design information structures. Together they (i.e.

Ontology Library and Instances Bases) enable the machines (i.e. software agent systems)

to work with complex structures of information. For example, figure 5.6 shows part of a

machine-enabled design artefact of a smoke alarm.

125

Chapter 5

Figure 5.6 A part (two subassemblies and two components) of a Smoke Alarm design

information (bold texts represent instances of ontological concepts, i.e. ontological

instances).

126

In figure 5.6 the thick straight arrows represent structural relationships (i.e. is component of

relationships), the normal arrows represent functional relationships (e.g. has material, has

fastener), the elbow arrow connectors (e.g. between Cover Assembly and Assembly)

stand for ‘is instance o f relation (e.g. Cover Assembly is an instance of Assembly

concept) and the curved arrow connectors (e.g. between Assembly and Product

Ontology) stand for ‘is concept from’ relation (e.g. Assembly is a concept described in the

Product Ontology). In this example, all the design information concerning the Smoke

Alarm is explicitly represented and stored in instance bases in a form defined by the

Ontology Library and, therefore is ready to be used by software components (i.e. software

agents).

5.3.3 The Software Agents Plane

The first phase in the validation of the OSA system consisted of enabling the access to and

the sharing of design information structures (by means of ontologies and their instance

bases). The next necessary phase focused on the development and implementation of

software agents that (i) integrate the DEDS actors in this pool of information (by means of

OSA services) and (ii) regulate and control the system services.

The Prototype implements the following integrative mechanisms:

• Object Agents developed only for the human users (i.e. usemame:MyAgent)

integrates the DEDS human actors;

• Service Broker and Service Provider agents (Browse and Search services for

Product, Material, Fastener and Resource ontologies) integrate the instance

bases;

The Prototype also uses the following regulation and control agents:

• Profile Broker agent that retrieves the available services based on the Service

Ontology definitions and Requester (i.e. username :MyAgent agents)

credentials. The Personal Profile service has not been implemented.

• Service Advertiser agent is provided by the JADE framework through the

Directory Facilitator;

At its activation, an username:MyAgent agent sends a request message to the Profile

Broker. Based on the received username, the Profile Broker agent retrieves the available

services for this particular agent and sends them back to the username :MyAgent agent. In

Chapter 5

127

accordance with the returned messages, the username: My Agent activates its GUI and waits

for the user to request services. Figure 5.7 shows the GUI of Cami’s Object Agent.

Chapter 5

Figure 5.7 The GUI of cami:MyAgent agent.

The Service Broker agents are instantiated on each machine that stores Instance Bases.

While its main behaviors are the same (register its services with the Directory Facilitator,

instantiate and execute Service Provider agents) for each instance of the agent, some

differences that depend on the kind(s) of Instance Base(s) with which it interfaces, exists.

As already mentioned the Prototype provides Browse and Search services for each kind of

structural Instance Base. This two categories of services for four kinds Instance Bases

equals eight atomic services (i.e. browse_product, search ̂ product, browsematerial,

search_material, browse_fastener, search_fastener, browseresource, search_resource).

Each of the above eight mentioned services are actually provided by a specific

implementation of the Service Provider. Therefore, the local Instance Base(s) is(are)

interfaced by two Service Broker agents, i.e. Browse Broker and Search Broker which will

instantiate and lunch Instance Base specific Provider Agents (i.e. browse_product,

search_product, browse_material, search_material, browse_fastener, search_fastener,

browse resource or search resource Provider agent). After performing specific operations

on the particular Instance Base, the Service Provider agent will return the result to the

username: My Agent, the requester agent.

Further clarification of the behaviors implemented by the OSA Prototype will be described

in two scenarios, i.e. request for browse and request for search services.

Request for Browse Service

128

Suppose that an engineer designer wishes to browse the Material Base. At this time he/she

has to explicitly tell his/her agent to do it (i.e. mouse click on the Material button under the

Browse tab, see figure 5.8).

Chapter 5

''Browse I Search |
Select a category tu Browse

bb^pan: 1099/JADE
Browse Product
Agent camt found the following browse services:
bb^pan: 1099/JADE
Browse Material
Agent camt found the following browse services:
bb@pan 1099/JADE

2k.

Material

Product

Fastener

Resource

(3

£2

uJ

¿3

Close Agent

Figure 5.8 Cami has requested the Material Browse service

Once the proper broker agent(s) is(are) identified (from the Directory Facilitator), the

operations performed by the Prototype to deliver the service are presented in figure 5.9

129

Chapter 5

User desktop

C ami: My Agent

o
MaterialBrowse

Provider

Step 6: Activate GUI

Storage Place

Step 1 : Request Material
Browse service o

Step 3: Inform atiouC
the Requester

Browse Broker

Step 2: Instantiate
Material Browse
Provider

MaterialBrowse
Provider

i Step 4: Read and
store internally the
proper instances

s '— ^

Material Base

Material Browser
Material Types
C3 Material
©- C 3 Lam inate
© *C 3 G lass

Fibres
9 C 3 Polym er

Q E lastom er
Q Thermosets
Q Reinforced
Q Foam
Q C om m odity
0 Engineering

9 C3 Ceram ic
Q Trad itionalC erarn ic
Q C arb ide

<? C 3 M lce llansous
□ Fuel-

Material Instances
MateriaLtl0134
MaterlaL00135
Material_00136
Material_00137
Material 00138

Property nam e Property value
type tiap^/pan.nulg3hvay.le/M alerl3 l#Fuel
b iodegradable (rue__________
color b lack
density 1500.0
e c o jn d ic a to r_ 9 5 1.8
eco_ ind icatqr_09 1.0?__________________
nam e _________ C oal
labe l C oa l _____ ________

LU
exit

Figure 5.9 The material_browse Service Provider’s GUI presented to the requester.

Of course, for each Material Base stored within the system, a material browse Service

Provider will move on the Requester’s computer and will display its GUI, dealing in this

130

way with the distribution of design information. Therefore, it is possible for the user to

have more than one browsing window for materials instances.

Chapter 5

Request for Search Service

131

The providing of the Search Service has the same internal logic as for the Browse Service

(the Search Broker agent instantiates and activates the provider of the service, which in

turn will perform specific operations and will move the result on the Requester’s

computer). However, the inter-agents interactions and behavior are a little bit more

complex, as can be seen in figure 5.10.

The GUIs presented to the Requester of the search_product service (step 6,7 and step 13)

may look like the ones in the figure 5.11.

Chapter 5

ProductSearch Query Builder agent
Bfc Product Search ^ ■ S k iiü l
Product Type« Search €r tier ta fur Part type

1C3 Product Property Nam» Number ContiUU.jh J value
9 C3 Part version No Condition

C3 Batterle
D Transformer

mass Less than or equal to ...0 1

0 0ma]lEngfne
Q integral© cfClrcuits
D pob

O- C3 Fastener
D Assembly Property Name j Strino Condilion '] value

label Like Not
finishing No Condition
fu nello ri iNo Condition
name Noi Condition 1

Property Name Instance Condition □ Valili?ha$_pararrt6fer No Condinon
hasjîrocess No Condition
ls_compon«nl_ol' No Condition
hasjfeakire No Condlllon
i hâ matenai Like 6B
haŝ manager No Condition
haB_i&uihor No Condition
! J

SEARCH j EXH]

RDOL aeenl
e r a

* Property name I Prop any value ______ ______
' tjpa him./-pan ri nî rdway.ĵ ogineGfifigDesignyrart
. function Provides comesi cover for ino diffusei
label NoLLatieHwd
mass 0.0040
name Diffusero over ____
! version .1.0
label piffueerCOvar
iŝ cornponant_oi hïtpjVpan nul y 3i.vayle/E n gl neerl n gDe 5 i gn#EnglneeiinBDê gn_00204
has_YaaUira__ hllp//pan.nulgalwavle/GngfneerlngDeslpn#EnijinoeflnrjDG£jgn„0033G

' h pararne?ter Mlp //pa n n u[yalway.te/Engineerl ng Des ignffE 11 tjineetIngOesign_Q 0337
! h parem ©ter http -/flatin n u Ig pfŵv/l e/Engin een ng Da s I gnsEn g I noe ring Designaci 0335)
! h a s _ p a i am e ter nil p: Up « n n u Igiw ay \ e/En {lineerf ng Do s I yn #E n g I nee i In g De 51 g n_0 034O
: h a$_pararrteter _ ¡hlipVffp an milg a Iway, i e/E nj ? i n ee rfn g De iï gît #6 n g I neailn g De si gn jn0341
haajeaturo hüpï/pan nulgalway ie/EnglneerlnyDeslgt>î nglnounngDo9ignjD0342
has.pâtameter http-f/pan nuigsiway ie/Engin8oringPe§jgn̂ ngineerinapjsign̂ 0û34 3
bas., parameter nttpi/pan nuig3iway,ieÆrigineeringDf'Sign̂ Entilneenr,Dp9Slgn_0O344
has_parameter ’hllp̂/pan nulgalway.leÆnglneerlngDee!gnl«EnglneertnpDesjgn_00345

: hac_parameter http://pan milg3tway,leiEnglnoBringpe9jgn#£nglnoof]ngüo5irjn_.0034iï
has.material thttpiZ/protego stanford edu/MatertaffMatarial..OOOfl8_________

c»r I
Figure 5.11 The GUIs presented to the user cami by the ProductSearch Query Builder

agent and RDQL agent

& Query Hex ti l l*
Engineer ingDeslun J.KJ?17
E ngineer in gDe tUg n JJOP22
Engineer ingOe 5lgnJ3Ü3tï7
Enralneorinfj[>esignJ]03t3{ì
Engineering J>esi tinJJD308 EngineaflngDestanjOOSdl
Em)ineerintiI>eiM|jn_00392
Enginee r in kDosì|jtì_00393
EngineerIn (¿Design _OO304
Engineer îngDüslgn„00 3îîB

132

http://pan

The complexity of the Search Service arises from the already mentioned approach to the

development of software agents, i.e. as much as possible the agents should ‘know’ only

about their local environment. Therefore, since the search service requires Requester’s

inputs accordingly to ontological descriptions, there was the need for a ProductSearch

Query Builder agent, which will instantiate and activate the RDQL agent (which will

provide the result of the service). In this case two agents play the role of the Service

Provider agent from the OSA model, i.e. the ProductSearch Query Builder agent and

RDQL agent. However, this complex behavior is the result of interactions between simple
agents.

5.4 Conclusions

In this chapter the author introduced the OSA system built along the architectural

specifications as synthesized and described in chapter four (see section 4.4). This OSA

system actually acts as an instantiation of the proposed architectural framework. By

providing specific DEDS services, the OSA system intends (i) to enable the reusing and

sharing of design information structures, (ii) to integrate the DEDS objects in a cooperation

enabled environment, and (iii) to employ non-human software-based control mechanisms

for its administration.

Furthermore, based on the deduced specifications of the OSA system, a prototype

consisting of instantiations of the kinds of ontologies and software agents characterized in

the architectural framework model (figure 4.5) and more specifically identified by the OSA

model (figure 5.2) in terms of OSA services, has been proposed. The prototype has been

implemented using Protégé 2000 tool for the designing and developing of the Ontology

Library and JADE framework and JAVA programming language for the implementation of

the OSA software agents.

The author contends that, beside the logic of thought that led to the proposed architectural

framework, the specified OSA system and its implemented prototype further validate the

viability and practicability of the architectural framework for the DEDS.

In the next chapter the author will summarize the research he carried out and the results

obtained. Based on the research results further developments and recommendations for

future work will be proposed.

Chapter 5

133

C h a p t e r 6

Conclusions and Future Work

6.1 Research Summary

6.2 Research Results

6.3 Further Development and Recommendations for Future Work

6.4 Final Remarks

6.1 Research Summary

The object o f this research is the distributed engineering design, understood both as a

process and as an organization. Based on the literature review, the author characterizes the

process o f designing as an information transformation activity performed and supported by

designers’ problem solving and decision making skills (Luckman 1984; Pugh 1991; Hubka

and Eder 1996; Gero 2000) (Roche 1999). The input consists o f abstract statements of
design requirements and the output represents detailed information that specifies the

product (Hubka and Eder 1996; Chira, Chira et al. 2003). Besides the accomplishment o f
the initial requirements under the initial constraints, any end product generally has some

other characteristics such as: it responds to consumer demand, it is economically

manufactured, and it fulfills a human need (Feilden 1963; Pugh 1991; Lang, Dickinson et

al. 2002). Moreover, the engineering design process represents the starting phase o f a

process consisting o f a set o f interrelated phases that also include manufacturing, supply,

use, maintenance and disposal (Eder 1998; Roche 1999; Lang, Dickinson et al. 2002).
Concerning its organization, the author found that the key characteristics o f the distributed

engineering design are (i) the inherent distribution o f design resources, especially o f

designers (Cutkosky, Englemore et al. 1997) (Olsen, Cutkosky et al. 1994; Siemieniuch

and Sinclair 1999) and design information (Cross 1994; Pahl and Beitz 1996) (Bertola and

Teixeira 2003); (ii) the importance of effective teamwork and collective effort (Olsen,

Cutkosky et al. 1994; Cross and Cross 1995) (Siemieniuch and Sinclair 1999) (Patel,
D'Cruz et al. 1997); (iii) the critical need for a robust cooperation process (Lawson 1990;

Brereton, Cannon et al. 1994; Olsen, Cutkosky et al. 1994; Harvey and Koubek 1998;

MacGregor 2002), and (iv) the role of the computer which acts not only as a tool but also

as a engineering design workplace (MacGregor 2002).
Focusing on the role that information structures play (in distributed engineering design),

the author categorized the problems associated with distributed engineering design, as

follows:

• The quantity o f information structures that designers need to handle (e.g. search,
identify, retrieve, use/process, store) is already burdensome and is increasing at a

rapid pace.

• Designers’ knowledge and, therefore, performance depend on the readily available

information, which is not always o f the appropriate quality.

• The above problems result in an unsatisfactory cooperation within the organization

and, consequently the intensification and recurrence o f the same problems.

Chapter 6

135

These shortfalls o f distributed engineering design outline the drivers for this research.

Therefore, it has been proposed to find and describe, based on current advances in

computer-related technologies, an architectural framework that would characterize a

software system for improving the quantitative and qualitative access o f designers to

however complex distributed design information structures.

Given the identified characteristics o f the distributed engineering design (both as process

and organization), the author contended that distributed engineering design is an inherently

complex organization where the study o f its separate parts (besides being a burdensome

task) w ill not provide an understanding o f the whole. Therefore, the author explicitly

proposed a more holistic approach to studying the distributed design organization, in a bid

to identify patterns rather than isolate phenomena or key behaviors rather than local

actions. This appropriate approach had been identified in the sciences o f General System

Theory and Cybernetics Systems, sciences of whose results and methods have been used

along the development o f this research.

6.2 Research Results

This thesis aimed to discover and to provide knowledge for the design and the

development o f a machine enabled semantic framework that would improve the qualitative

and quantitative management o f design information structures within the distributed

engineering design organization. In order to achieve this overall aim, the research was

carried out along six main objectives (see section 1.3). In the following the author w ill

present the research results for each objective (as discussed in chapter one).

Objective 1. To investigate and characterize the engineering design process performed in a

distributed environment and its problematic aspects;

• A literature-based characterization o f the concept o f engineering design (the

process, the designing actor, the objectives and the life-cycle information aspects)
and its understanding in a distributed environment context (distribution,

teamwork, cooperation, the role o f the computer) has been synthesized.

• A summarization model o f the above has been introduced to describe the

distributed design organization as the result o f complex cooperation enabled

inter/intra-actions among engineering designers, design methods, methodologies

and tools, and IC T support.

• I t has been found that there are significant inadequacies in the management o f
design information structures at both quantitative and qualitative levels. This

Chapter 6

136

situation may result in an unsatisfactory cooperation within the distributed design

organization and, consequently the intensification and recurrence of the same

undesired situations.

Objective 2. To research and study alternative theories for thinking and modelling the

distributed engineering design process;

• Based on the results to date and on a set o f subjective and objective criteria General

Systems Theory and Cybernetics have been proposed to provide the scientific tools

for further investigating the research domain.

• I t has been argued and demonstrated that the distributed engineering design is an

open cybernetic system, i.e. the Distributed Engineering Design System (or DEDS),
made of three main subsystems (i.e. Human, Infrastructure and Engineering Design

Model systems).

• A model o f the DEDS (figure 2.4) that summarizes and focuses the research. In

short, the DEDS is modelled as an organized collection of humans, machines and

design methodologies working together to transform information-based inputted

requirements and constraints into appropriate product specifications information.

• A minimal set o f requirements for a solution system that w ill improve the

information-related problematic aspects o f the DEDS has been proposed. These

requirements comprise o f (i) reusable, shared and formal design information

structures, (ii) integrative mechanisms capable o f translations and mappings

between different contexts and (iii) control mechanisms able to regulate the

functionality o f the system.

Objective 3. To investigate current research in information and knowledge management for

identifying supporting technologies for a possible solution to the identified problematic

aspects (from objective 1);

• The research associated with this thesis has identified ontologies as the solution for

organizing the system’s information resources. Ontologies describe concepts and

relations assumed to be always true independent from a particular domain by a

community o f actors (humans or machines) that commit to that view o f the world.
Therefore, by specifying content specific agreements, ontologies are facilitating

information sharing and reuse among systems that submit to the same

ontology/ontologies by the means of ontological commitments. However, the form,

Chapter 6

137

the content and the power o f ontologies are critically determined by process of

negotiating commitments among the concerned actors.

• The agent-based systems can provide the autonomous, proactive and cooperative

hard working helper that can both integrate disparate components and regulate

DEDS behaviors (or functionalities). Considered an important new direction in

software, agents and M AS provide techniques to manage the inherent complexity

o f the software systems and are appropriate for domains in which data, control,

expertise and resources are inherently distributed.

• It has been found that ontologies and Agent-based Systems can enable the
development o f software tools to support the inherent complexity and inherent

distribution o f the DEDS.

Objective 4. To analyze the requirement needs for a solution according to the findings

from previous objectives, i.e. the driving problems (from point 1), the research and

therefore the thinking approach (from objective 2), and available supporting technologies

(from objective 3);

• Given that the DEDS has been explicitly described in the terms o f General Systems

Theory and Cybernetics, it was allowed and made possible to use probably one o f

the most powerful tools in system’s research, i.e. Systems Thinking. This cognitive

and applied mode of thinking further helped in reaching the subsequent results.

• The need for semantic support is critical for improving the performance of the

engineering design process.

• The main pattern of a DEDS consists o f a hierarchy o f fractal-like cooperation

processes that stretch and reach any DEDS component at any level o f granularity.
In this light, the DEDS cooperation processes have a critical role in enabling

semantics within DEDS.

• The use o f ontologies and software agents can provide the needed technological

support for enabling semantics within DEDS.

Objective 5. To synthesize the architectural framework along the identified supporting

technologies (from objective 3);

• A t this point, the research results converged into the specification o f an

architectural framework (figure 4.5). This architectural framework defines and

characterizes the computational context in which the solution software system acts

Chapter 6

138

in order to improve the manner in which the engineering design process is carried

out within a distributed organization. The proposed framework has been described

along its four structural layers (i.e. Object, Integration, Schema and Instance layers)
and its two functional planes (i.e. Ontological and Agent System planes).

Objective 6. To instantiate a software system along the underlying computational context

as described by the architectural framework (from point 5).

• The ontology-based software agent system (or OSA) for supporting an

quantitatively and qualitatively improved designers’ access to complex design

information structures.

• Validation o f the architectural framework through OSA system.

• The prototype o f the OSA system.

6.3 Further Development and Recommendations for Future Work

The author suggests that further development to be categorized on three levels, as follows:

1. the research level
2. the proposed architectural framework level

3. the OSA system level

A t the research level, based on the results o f this research, the author recommends the use

of General System Theory and Cybernetics for ‘in-house’ study o f the distributed

engineering design. W hile this research constructs and provides a generic view o f the

DEDS, more detailed views are also necessary for fully understanding the structures and

the interactions within the DEDS, such as:

• Designers’ negotiations strategies;

• Adequate understanding o f each of the phases o f the engineering design (i.e. the

Engineering Design Model system);

• Designer - Computer interactions and Designer - Computer - Designer

interactions;

• Further research in software agent paradigm for identifying the appropriate agent

architectures and languages to be used for implementing DEDS behaviours;

• Further investigation in ontologies necessary for the design and development o f an

Ontology Library aligned to recognized standards.

Chapter 6

139

A t the architectural framework level, the author recommends the followings:

• The use o f the results o f the above suggestions for a more specific description o f

the kinds and behaviours o f agents and subsequent ontologies needed for

controlling and implementing DEDS functionalities or services, e.g. support for all

the stages o f design for all the design models used within the enterprise;

• To characterize the conditions for enabling the interoperability among existent

design applications and tools (e.g. CAD, PD M), i f possible without human

mediation;

• The design and description o f an additional layer (or functionality) for integrating

the DEDS in the wider system o f product development and even into the global

business system.
Based on the recommendations from the research and architectural framework levels, the

author identified that, at the OSA system level, the following implementations are

necessary:

• Dedicated agents or agent systems and ontologies for each o f the design model
used;

• Object agents capable o f collaborating and o f performing negotiations;

• Intelligent, or at least, adaptable human interfaces;

• Ontologies that adhere to established standards, so interactions between multiple

extended enterprises can be enabled;

• Discovery o f more DEDS services;

• The production/creation o f more ontological instances (so a critical mass of

information structures is obtained and the full benefits o f this approach is more

easily measured);

A special suggestion, materialized from the author experience gained during this research,

is the recommendation o f ‘plugging-in‘ the DEDS architecture to the future Semantic Web.

The Semantic Web (SW) is an emerging concept that launches the idea o f having data on

the web defined and linked in a way that it can be used by people and processed by

machines (Bemers-Lee 1998; Decker, Harmelen et al. 2000; Fensel 2000; Ramsdell 2000;

Bemers-Lee, Hendler et al. 2001; Dumbill 2001; Hendler, Bemers-Lee et al. 2002) in a

“wide variety o f new and exciting applications” (Swartz and Hendler 2001). It develops

“languages for expressing information in a machine processable form” (Bemers-Lee

1998), so as to enable the machine to participate and help inside the information space

Chapter 6

140

(Benjamins, Contreras et al. 2002): "The Semantic Web w ill bring structure to the

meaningful content o f Web pages, creating an environment where software agents roaming

from page to page can readily carry out sophisticated tasks for users” (Bemers-Lee 1998).

The author belives that the DEDS w ill benefit from the large amount o f machine enabled

information structures that w ill make the next generation Web. Moreover, while the

proposed architectural framework has been developed for Intranet (where policies for

representation o f information can be enforced), the SW can open the vastness and variety

of Internet to the DEDS objects.

6.4 Final Remarks

This object o f the investigation o f this thesis is the distributed engineering design domain.

A key characteristic o f this domain is its highly inherent heterogeneity. Under the banner
of distributed engineering design are classified organic (e.g. humans) and inorganic (e.g.

computers) physical entities, conceptual entities (e.g. engineering design models, design

information), physical phenomena (e.g. cooperation between designers, negotiations) and

all sorts o f relations (e.g. human-to-computer interaction, human-to-human computer

mediated interaction, application-to application interaction). The author identifies this

plane as the reality level because it encompasses all the domain components as they are in

the real world. A representation o f this first level has been necessary in order to handle

this complex diversity, so the research could go further. Therefore, in chapter two, the

second plane called first-order representation, used informal and semi-formal forms o f

human language (in particular o f the English language) and diagrams to catch the key

characteristics o f the domain and to model it. As a result, models o f the distributed

engineering design organization were proposed (see figure 2.2 and figure 2.4), models that
enabled and supported the systems analysis and systems thinking carried out in agreement

with the focus o f the research. The resulting conclusions, followed by a requirement
analysis made necessary a third plane, i.e. a representation o f the representation o f reality

(called for this reason the second-order representation level). The second-order
representation level further formalizes the first-order representation level towards a fully

formal, self-explanatory and semantically enabled code or codes o f signs (see figure).

Chapter 6

141

Chapter 6

Formal lar
and e

represer

Figure 6.1 Research progression from implicit and heterogeneous knowledge towards

explicit and homogeneous knowledge.

The upper part o f the triangle, which stands for the real world o f distributed engineering

design domain, signifies that the unmediated by signs knowledge that the DEDS (o f
course, the author refers especially to the human components o f the DEDS) has about itself

is fragmented and depends on the personal visual and tactile perceptions. Moreover this

knowledge is too often implicit. Therefore, design knowledge is stored on often ‘unreliable

memories’ (i.e. human memory), it is difficult to be communicated among designers and, it

is even more difficult to be shared with the (advanced) design tools.

Once systems of signs (such English language and diagrams) are used to stand for the real
objects and their relations the knowledge can be shared, exchanged and improved by

involving (besides human perceptions) intellectual capabilities. A t this level the

quantitative and qualitative access to knowledge is improved, depending not solely the

perceptual capabilities, but also on the storage capacities, personal expertise and

competence to interpret codes o f signs. The information available is still implicit,

depending in this way on the personal experience.

Furthermore, at the third level, o f knowledge about knowledge, the need for perceptions

and interpretations o f different systems o f signs are by-passed by a single system of signs

capable o f describing itself. The author contends that this is the level where the human

designers, the design tools, the design methodologies and the design information structures

can truly interoperate.

142

For example, at the first level a computer is a physical object made o f wires, circuits,

plastic and so on. At the second level, computer is a word (in English language is word

computer) that implicitly represents the physical entity. Further, at the third level,
computer is the explicit and formal knowledge that can be represented about the physical

entity (i.e. it is an ontological concept).

Finally, the present research work can also be viewed as a systematic reduction of
heterogeneity. Therefore at the third level distributed engineering design domain is

intended to be a corpus o f explicit and formally represented homogenous knowledge.

Chapter 6

143

R e f e r e n c e s

Ackoff, R. L. (1981). Creating the Corporate Future. N e w Y o rk , John W ile y & Sons.
Ahn, S .-H ., S. Roundy, et al. (1999). “Design Consultant” : a Network-Based Concurrent

Design Environm ent. International Mechanical Engineering Congress &
Exposition, Nashville, Tennessee.

Anumba, C. J., O. O. Ugw u, et al. (2002). "Collaborative design o f structures using
intelligent agents." Automation in Construction 11: 89-103.

Arias, E., H. Eden, et al. (2000). "A. Gorman and E. Scharff. "Transcending the
Individual Hum an M in d - Creating Shared Understanding through Collaborative
Design." A C M transactions on Com puter-Hum an Interaction Vol. 7, No. 1: 84 -
113.

Arpirez, J. C., O. Corcho, et al. (2001). W ebO D E : a W orkbench for Ontological
Engineering. First International Conference on Knowledge Capture (K -C A P '01),
Victoria (B .C .), Canada.

Artala, A ., E. Franconi, et al. (1996). "Part-W hole Relations in Object-Centered Systems:
an Overview." Data and Knowledge Engineering 20(3): 347-383.

ASC Am erican Society for Cybernetics. 2003.
Backlund, A . (2000). "The definitoin o f system." Kvbemetes 29(4): 444-451.
Barrow, J. (1992). Theories O f Everything. Random House U K Distribution.
Bartlett, G. (2001). Systemic Thinking, a simple thinking technique for gaining systemic

focus. The International Conference on Thinking "Breakthroughts 2001",
Auckland, N e w Zealand.

Beer, S. (2002). "W hat is cybernetics." Kvbemetes 31(2): 209-219.
Bellifem ine, F., G. Caire, et al. (2003). "JA D E A W hite Paper." M E 3(3).
Bellifem ine, F., G. Caire, et al. (2003). JA D E Administrator's Guide.
Bellifem ine, F., G. Caire, et al. (2003). JA D E Progarmmer's Guide.
Bellifem ine, F., A . Poggi, et al. (1999). JA D E - A FIPA -com pliant agent fram ew ork.

Proceedings o f P A A M '9 9 , London.
Benjamins, V . R ., J. Contreras, et al. (2002). Six Challenges for the Semantic W e b .

International Semantic Web Conference (IS W C 20 02), Sardinia, Italia.
Benjamins, V . R ., D . Fensel, et al. (1998). Knowledge Management through Ontologies.

Second International Conference on Practical Aspects o f Knowledge Management
(P A K M 9 8), Basel, Switzerland, 29-30 Oct. 1998.

Bennett, S., S. M cRobb, et al. (1999). Object-Oriented System Analysis and Design using
U M L . London, M cG raw -H ill.

Bergamaschi, S., S. Castano, et al. (1998). A n Intelligent Approach to Inform ation
Integration. Form al Ontology in Inform ation System. N . Guarino. Amsterdam,
IO S Press.

Bemers-Lee, T . (1998). Semantic W eb Road M ap.
http://www.w3.org/DesignIssues/Semantic.html, W orld W ide W eb Consortium.

Bemers-Lee, T ., J. Hendler, et al. (2001). "The semantic web." Scientific Am erican
284(5): 34-43.

Bertalanffy, L . V . (1976). General System Theory: Foundations. Development.
Applications. George Braziller.

Bertola, P. and J. C. Teixeira (2003). "Design as a knowledge agent

144

http://www.w3.org/DesignIssues/Semantic.html

H ow design as a knowledge process is embedded into organizations to foster innovation."
Design Studies 24(2): 181-194.

Blazquez, M ., M . Fernandez, et al. (1998). Building Ontologies at the Knowledge Level
using the Ontology Design Environment. 11th Knowledge Aquisition Workshop,
K A W 9 8 , Bam ff, Canada.

Boer, S. J. D . (1989). Decision Methods and Techniques in M ethodical Engineering
Design, University o f Twente.

Borst, P., H . Akkermans, et al. (1997). "Engineering Ontologies." International Journal o f
Hum an-Com puter Studies 46(Special Issue on Using E xp lic it Ontologies in K B S
Development): 365-406.

Bradshow, J. M . (1997). A n Introduction to Software Agents. Software Agents. J. M .
Bradshow. Cambridge, M IT Press.

Brazier, F. M . T., B. M . Dunin-Keplicz, et al. (1997). "D E S IR E : M odelling M u lti-A gent
Systems in a Compositional Formal Framework." International Journal o f
Cooperative Inform ation Systems 6(Special Issue on Form al Methods in
Cooperative Inform ation Systems: M ulti-A gent Systems): 67-94.

Brazier, F. M . T ., L. V . Moshkina, et al. (2001). "Knowledge level model o f an individual
designer as an agent in collaborative distributed design." A rtific ia l Intelligence in
Engineering 15 : 137-152.

Brennan, A . (1996). A Graphical User Interface Design Tool to Facilitate M anagerial
Learning. C IM R U . Univeristy College Galway.

Brereton, M . F., D . M . Cannon, et al. (1994). Collaboration in Engineering Design
Teams: M ediating Design Progress through Social Interaction. Proceedings o f the
Design Protocol Analysis Workshop, Faculty o f Industrial Design Engineering,
D e lft University o f Technology, the Netherlands.

Caire, G. (2002). JA D E Tutorial: Application-Defined Content Languages and
Ontologies.

Carver, N ., V . Lesser, et al. (1993). Distributed sensor Interpretation: M odeling Agent
Interpretations in D R E S U N , UM ass Technical Report, U M C S 93-75.

Chaib-draa, B. (1996). "Interaction Between Agents in Routine, Fam ilia r and U nfam iliar
Situations." International Journal o f Intelligent & Cooperative Inform ation
Systems 5(1): 1-25.

Chaib-draa, B. and F. D ignum (2002). "Trends in Agent Com munication Language."
Computational Intelligence 18(2).

Chen, L. and S. Lee (2002). "A Computerized Team Approach for Concurrent Product
and Process Design Optimization." Computer Aided Design 34(1): 57-69.

Chikofsky, E. J. and J. H . C. I I (1990). "Reverse Engineering and design recovery: A
taxonomy." Software M agazine: 13-17.

Chira, C. (2002). Design, Development and Testing o f a C A D Integrated Design for
Environment Software Tool. Science. Galway, Galw ay M ayo Institute for
Technology.

Chira, O., C. Chira, et al. (2003). A n agent-based approach to knowledge management in
distributed design. 10th ISPE International Conference on Concurrent
Engineering: Research and Applications, M adeira Island, Portugal.

Chu, E., K . Srihari, et al. (1996). "Distributed A rtific ia l Intelligence in Process Control."
19th International Conference on Computers and Industrial Engineering.

145

Coming, P. A . (2001). ""Control information" The missing element in Norbert Wiener's
cybernetic paradigm?" Kvbemetes 30(9/10): 1272-1288.

Coyne, R. D ., M . A . Rosenman, et al. (1990). Knowledge based Design Systems.
Addison Wesley.

Crabtree, R. A ., M . S. Fox, et al. (1997). "Towards an Understanding o f Collaborative
Design Activities." Research in Design Engineering 9: 70-84.

Cross, N . (1994). Engineering Design Methods. J. W ile y & Sons.
Cross, N . (2000). Design as a Discipline. Doctoral Education in Design: Foundations for

the Future. D . D urling and K. Friedman. Stoke-on-Trent, Staffordshire University
Press.

Cross, N . and A . C. Cross (1995). "Observations o f team work and social process in
design." Design Studies 16(2): 143-170.

Cutkosky, M . R ., R. S. Englemore, et al. (1997). PA C T: A n Experim ent in Integrating
Concurrent Engineering Systems. Readings in Agents. M . N . Huhns and M . P.
Singh. San Francisco, C A , U S A , M organ Kaufmann: 46-55.

Decker, S., F. v. Harmelen, et al. (2000). "The Semantic W eb - on the respective Roles o f
X M L and R D F." IE E E Internet Com puting.

DeLoach, S. A . (1999). M ultiagent Systems Engineering: A M ethodology A nd Language
for Designing Agent Systems. Agent-Oriented Inform ation Systems (A O IS) '99.

Draper, F. and M . Swanson (1990). "Learner-directed systems education. A successful
example." System Dynamics Review 6(2): 209-213.

Dum bill, E. (2001). Building the Semantic Web.
http://w w w .xm l.eom /pub/a/2001/03/07/build ingsw .htm l., X M L .c o m .

Durfee, E. H . (2001). "Scaling U p Agent Coordination Strategies." IE E E Computer
34(7): 39-46.

Durfee, E. H . and V . R. Lesser (1991). "Partial Global Planning: A Coordination
Fram ework for Distributed Hypothesis Formation." IE E E Transactions on
Systems. M an. and Cybernetics. Special Issue on Distributed Sensor Networks
SMC-21(5): 1167-1183.

Eder, W . E. (1998). "Design M odelling - A Design Science Approach (A nd W h y Does
Industry N ot Use It?)." Journal o f Engineering Design 9(4).

Feilden, G. B . R. (1963). Engineering Design. London, Report o f Royal Commission -
H M S O .

Fensel, D . (2000). Ontologies: A Silver Bullet for Knowledge Management and
Electronic Commerce. Berlin, Springer.

Fernandez, M ., A . Gomez-Perez, et al. (1997). M E T H O N T O L O G Y : From Ontological
A it Towards Ontological Engineering Workshop on Ontological Engineering.
Symposium on ONtological Engineering o f A A A I, Standford, California.

Femandez-Lopez, M . (2001). "O verview O f Methodologies for Build ing Ontologies."
Intelligent Systems 16(1): 26-34.

Femandez-Lopez, M ., A . Gomez-Perez, et al. (1999). "Building a Chemical Ontology
Using M ethontology and the Ontology Design Environment." IE E E Intelligent
Systems and their applications January/February: 37-46.

Fikes, R ., Farquhar, A . (1999). "Distributed Repositories o f H ig h ly Expressive Reusable
Ontologies." IE E E Intelligent Systems 14(2): 73-79.

146

http://www.xml.eom/pub/a/2001/03/07/buildingsw.html

Finger, S. and J. R. D ixon (1989). "A Review o f Research in M echanical Engineering
Design - Part 1- Descriptive, Prescriptive and Computer Based Models o f the
Design Process." Research in Engineering Design. Springer: 51-67.

Finin, T ., R . Fritzson, et al. (1994). K O M L as an Agent Com m unication Language.
Proceedings o f the Third International Conference on Inform ation and
Kknowledge Management.

Finkelstein, L . and A. C. W . Finkelstein (1983). Review o f Design M ethodology. IE E
Proceedings.

Franklin, S. and A . Graesser (1996). Is it an Agent, or just a Program?: A Taxonom y for
Autonomous Agents. Proceedings o f the Third International Workshop on Agent
Theories, Architectures, and Languages, Springer-Verlag, 1996, Berlin, Germany.

Gaines, B. (1997). "Editorial: Using Explicite Ontologies in Knowledge-based System
Development." International Journal o f Hum an-Com puter Systems 46: 181.

Gammack, J. and S. Poon (1999). Communication M edia for Supporting Distributed
Engineering Design. 32nd H aw aii International Conference on System Sciences,
H aw aii.

Gasser, L . (1998). Social conceptions o f knowledge and action: D A I foundations and
open systems dynamics. Readings in Agents. M . N . Huhns and M . P. Singh,
M organ Kaufm ann Publishers.

Genesereth, M . R. and S. P. Ketchpel (1994). "Software Agents." Communications o f the
A C M . A C M Press.

Genesereth, M . R. and N . J. N ilsson (1987). Logical Foundations o f A rtific ia l
Inteligence. M organ Kaufm ann Publishers.

Gero, J. (2000). "Computational M odels o f Inovative and Creative Design Process."
Technological Forecasting and Social Change 64: 183-196.

Geyer, F. (1994). The Challenge O f Sociocvbemetics. 13th W orld Congress o f
Sociology, Bielefeld.

Gomez-Perez, A . (1998). Knowledge Sharing and Reuse. The Handbook on Expert
Systems. Liebow itz, C R C Press.

Gomez-Perez, A . (1999). "Ontological Engineering: A State O f The Art." Expert Update.
Ontono 2(3): 38-43.

Gomez-Perez, A ., N . Juristo, et al. (1995). Evaluation and assessment o f knowledge
sharing technology. Towards V ery Large Knowledge Bases - Knowledge
Building and Knowledge Sharing. N . J. Mars. Amsterdam, IO S Press: 289-296.

Green, S., L. Hurst, et al. (1997). Software Agents: A review. D ub lin , Intelligent Agents
Group, Trin ity College Dublin , Broadcom Eireann Research Ltd.

Gruber, T . R. (1991). The Role o f Com mon Ontology in Achieving Shareable. Reusable
Knowledge Bases. Principles o f Knowledge Representation and Reasoning:
Proceedings o f the Second International Conference, San M ateo, M organ
Kaufmann, 1991.

Gruber, T . R. (1993). "A Translation Approach to Portable Ontology Specification."
Knowledge Aauisition 5(2): 199-220.

Gruber, T . R. (1995). "Toward Principles for the Design o f Ontologies Used for
Knowledge Sharing." International Journal o f Hum an and Computer Studies
43(5/6): 907-928.

147

Gruber, T. R ., J.M. Tenenbaum, J.C. W eber (1992). Tow ard a Knowledge M edium for
Collaborative Product Developm ent. A rtfic ia l Inteligence in Design, Pittsburg,
U S A , K luw er Academic Publishers.

Gruninger, M . and M . S. Fox (1994). The Role o f Competency Questions in Enterprise
Engineering. IF IP W G 5.7 Workshop on Benchmarking - Theory and Practice,
Trondheim, Norway.

Gruninger, M . and M . S. Fox (1995). Methodology for the Design and Evaluation o f
Ontologies. IJ C A I Workshop on Basic Ontological Issues in Knowledge Sharing,
M ontreal, Quebec, Canada.

Guarino, N . (1995). "Formal Ontology, Conceptual Analysis and Knowledge
Representation." International Journal o f Hum an and Computer Studies 43(5/6):
625-640.

Guarino, N . (1997). Semantic Matching:FoiTnal Ontological Distinctions for Information
Organization, Extraction, and Integration. Summer School on Inform ation
Extraction, Frascati, Ita ly, July 14-19.

Guarino, N . (1997). "Understanding, Build ing and Using Ontologies: A Com mentary to
"Using Explicit Ontologies in K B S Development." International Journal o f
Hum an and Computer Studies 46: 293-310.

Guarino, N . (1998). Formal Ontology and Inform ation Systems. Form al Ontology in
Inform ation Systems. F O IS ’98, 6-8 June 1998., Trento, IO S Press,.

Guarino, N ., S. Borgo, et al. (1997). Logical M odelling o f Product Knowledge: Towards
a W ell-Founded Semantics for STEP. European Conference on Product Data
Technology (P D T Days 97), Sophia Antipolis, France.

Guarino, N ., M . Carrara, et al. (1994). Form alizing Ontological Com mitm ents. National
Conference on A rtific ia l Intelligence, A A A I 94, Seatle, M organ Kaufmann.

Guarino, N . and P. Giaretta (1995). Ontologies and Knowledge Bases: Towards a
Term inological Clarification. Towards V ery Large Knowledge Bases: Knowledge
Building and Knowledge Sharing. N . Mars. Amsterdam, IO S Press: 25-32.

Hales, C. (1987). Analysis o f the Engineering Design Process in an Industrial Context.
Department o f Engineering. Cambridge, University o f Cambridge.

Harvey, C. M . and R. J. Koubek (1998). "Toward a M od el o f Distributed Engineering
Collaboration." Computers & Industrial Engineering 35(1-2): 173-176.

Hawking, S. (2001). The Universe in a Nutshell. Bantam.
Hendler, J., T . Bemers-Lee, et al. (2002). "Integrating Applications on the Semantic

Web." Journal o f the Institute o f Electrical Engineers o f Japan 122(10): 676-680.
Heylighen, F. W eb Dictionary of Cybernetics and Systems. Principia Cvbemetica

W eb. F. Heylighen, C. Joslyn and V . Turchin, Principia Cybemetica, Brussels.
2003.

Heylighen, F. and C. Joslyn (1992). W hat is Systems Theory? Principia Cvbem etica
W eb. F. Heylighen, C. Joslyn and V . Turchin, Principia Cybemetica, Brussels.
2003.

Heylighen, F. and C. Joslyn (2001). Cybernetics and Second-Order Cybernetics.
Encyclopedia o f Physical Science & Technology. R. A . Meyers. N e w York,
Academic Press.

Heylighen, F., C. Joslyn, et al. (1993). Principia Cybemetica W eb. 2003.

148

Heylighen, F., C. Joslyn, et al. (Oct 1, 1993 (created)). W hat are Cybernetics and Systems
Science? Principia Cybemetica W eb . F. Heylighen, C. Joslyn and V . Turchin,
Principia Cybemetica, Brussels.

Hirsch, B. (2000). Extended Products in Dynam ic Enterprises", E-Business: K ey Issues,
Applications and Technologies,: 622-628.

Ho, J. and R. Tang (2001). "Towards an Optical Resolution to Inform ation Overload : A n
Infom ediary Approach." A C M .

http://protege.stanford.edu/doc/users_guide/index.html. 2003.
http://www.fipa.org Foundation for Intelligent Physical Agents.
Hubka, V . and E. Eder (1987). "A Scientific Approach to Engineering Design." Design

Studies 8(3): 123-137.
Hubka, V . and E. Eder (1996). Design Science. Springer-Verlag.
IB M (2003). IB M Lotus Sametime. 2003.
IE E E 96 (1996). IE E E Standard for Developing Software L ife Cycle Processes. N e w

Y o rk (U S A), IE E E Computer Society.
Iglesias, C. A ., M . Garijo, et al. (1999). A Survey o f Agent-Oriented Methodologies.

Proceedings o f the 5th International Workshop on Intelligent Agents V : Agent
Theories, Architectures, and Languages.

Jagdev, H . and J. Browne (1998). "The Extended Enterprise-A context for
Manufacturing." Production Planning and Control 9(3): 326-339.

Jennings, N. R. (2000). "On agend-based software engineering." A rtfic ia l Intelligence.
Jennings, N. R ., K . P. Sycara, et al. (1998). "A Roadmap o f Agent Reasearch and

Development." Journal o f Autonomous Agents and M u lti-A g en t Systems 1(1): 7-
36.

Jennings, N . R. and M . W ooldridge (1998). Applications o f Agent Technology. Agent
Technology: Foundations. Applications, and M arkets. N . R. Jennings and M .
Wooldridge, Springer-Verlag.

Joslyn, C. (1992). The Nature o f Cybernetic Systems. Principia Cybem etica W eb . F.
Heylighen, C. Joslyn and V . Turchin, Principia Cybemetica, Brussels. 2003.

Kemerling, G. (2002). Philosophy Pages. 2003.
Kim ura, F. (1997). Inverse manufacturing: From Products to Services. M anaging

Enterprises - Stakeholders, Engineering, Logistics and Achievem ent First
International Conference Proceedings, M E P Ltd, London,.

K inny, D ., M . Georgeff, et al. (1996). A M ethodology and M odelling Technique for
Systems o f B D I Agents. Agents Breaking A w ay, 7th European Workshop on
M odelling Autonomous Agents in a M u lti-A gent W orld , Springer.

Kolb, D . (1984). Experiential Learning: Experience as the Source o f Learning and
Development, Prentice-Hall.

Labrou, Y ., T. Finin, et al. (1999). "Agent Communication Languages: The Current
Landscape." IE E E Intelligent Systems.

Lang, S. Y . T ., J. Dickinson, et al. (2002). "Cognitive factors in distributed design."
Computers in Industry 48: 89-98.

Lawson, B. (1990). H o w Designers Think 2nd E d .
Lazansky, J., O. Stepankova, et al. (2001). "Application o f the multi-agent approach in

production planning and modelling." Engineering Applications o f A rtific ia l
Intelligence 14(3): 369-376.

149

http://protege.stanford.edu/doc/users_guide/index.html
http://www.fipa.org

Lesser, V . and D . C orkill (1981). "Functionally Accurate, Cooperative Distributed
Systems." TEEE Transactions on Systems. M an . and Cybernetics S M C - l l (l) : 81-
96.

Lesser, V . R. (1999). "Cooperative M ultiagent Systems: A Personal V ie w o f the State o f
the Art." IE E E Transactions on Knowledge and D ata Engineering 11(1).

Love, T. (2002). "Constructing a coherent cross-disciplinary body o f theory about
designing and designs: some philosophical issues." Design Studies 23(3): 345-
361.

Luckman, J. (1984). A n Approach to the Management o f Design. Developments in
Design M ethodolgy. N . Cross. London, John W ile y & Sons Ltd: 83-97.

MacGregor, S. P. (2002). "N ew Perspectives for Distributed Design Support." The
Journal o f Design Research 2(2).

Maes, P. (1995). "A rtific ia l L ife meets Entertainment: L ife like Autonomous Agents."
Communications o f the A C M . A C M Press 38 (11): 108-114.

M artin , F. J., E. Plaza, et al. (1998). Java Interagents for M u lti-A g en t Systems. Software
Tools for Developing Agents.

M cGee, J. and L. Prusak (1993). Managing Inform ation Strategically: Increase Y o u r
Company's Competitiveness and Efficiency bv Using Inform ation as a Strategic
Tool.

M ena, E., Kashyap, V ., Illarram endi, A ., Sheth, A . (1998). D om ain Specific Ontologies
for Semantic Inform ation Brokering on the G lobal Inform ation Infrastructure.
Formal Ontology in Inform ation Systems. N . Guarino. Amsterdam, IO S Press.

Merriam -W ebster (2003). Merriam -W ebster's Collegiate D ictionary. 11th edition.
M erriam -W ebster, Inc.

M ille r, G. A ., C. Fellbaum, et al. W ordNet 1.7.1, Cognitive Science Laboratory -
Princeton University. 2003.

M u le j, M „ M . Vezjak, et al. (1999). A P P L IE D S Y S T E M S T H IN K IN G A N D T H E L A W
OF R E Q U IS IT E H O L IS M . 7th Interdisciplinary Inform ation Managem ent Talks,
Zadov, Czech Republic.

Nakakoji, K ., Y . Yam am oto, et al. (1998). "From Critiquing to Representational
Talkback: Computer Support for Revealing Features in Design." Knowledge-
Based Systems Journal 11(7-8): 457-468.

Neches, R ., R . Fikes, et al. (1991). Enabling Technology For Knowledge Sharing. A l
M agazine. 12: 36-56.

Noy, N . F. and C. D . H afiier (1997). "The State o f the A rt in Ontology Design - A Survey
and Comparative Review ." A A A I: 53-74.

N oy, N . F. and D . L . McGuinness (2001). Ontology Developm ent 101: A Guide to
Creating Y o ur First Ontology. Stanford, C A , 94305, Stanford University.

Nwana, H ., L . Lee, et al. (1996). "Coordination in Software Agent Systems." B T
Technology Journal 14(4): 79-88.

Nwana, H . and M . W ooldridge (1996). "Software Agent Technologies." B T Technology
Journal 14(4): 68-78.

Nwana, H . S. (1996). "Software Agents: A n Overview." Knowledge Engineering Review
11(3): 1-40.

Nwana, H . S. and D . T . Ndum u (1999). A Perspective on Software Agents Research.
Ipswich, British Telecommunications Laboratories.

150

Odell, J. (2000). Agent Technology - Green Paper, O M G - Agent Platform Special
Interest Group.

Oliveira, E ., K . Fischer, et al. (1999). "M ulti-agent systems: w hich research for which
applications." Robotics and Autonomous Systems 27: 91-106.

Olsen, G. R., M . Cutkosky, et al. (1994). Collaborative Engineering based on Knowledge
Sharing Agreements. 1994 A S M E Database Symposium, M inneapolis, M N .

Ossimitz, G. (1997). The Developm ent O f Systems Thinking Skills
Using System Dynamics M odeling Tools. 2003.
Pahl, G. and W . Beitz (1996). Engineering a Systematic Approach. Springer.
Pahng, F., N . Senin, et al. (1997). M odeling and Evaluation o f Product Design Problems

in a Distributed Design Environment. D E T C ’97: 1997 A S M E Design
Engineering Technical Conferences, Sacramento, California.

Patel, U ., M . J. D 'Cruz, et al. (1997). "Collaborative Design for V irtu a l Team
Collaboration : A Case Study o f Jostling on the W eb." A C M .

Pena-Mora, F ., K . Hussein, et al. (2000). "C A IR O : a Concurrent Engineering M eeting
Environment for V irtual Design Teams." A rtific ia l Intelligence in Engineering 14:
202-219.

Pollard, E. and H . Liebeck (2000). The Oxford Paperback D ictionary. N ew York , Oxford
University Press Inc.

Poslad, S., P. Buckle, et al. (2000). The F IP A -O S Agent Platform : Open Source for Open
Standards. Proceedings o f the 5th International Conference and Exhibition on the
Practical Application o f Intelligent Agents and M ulti-A gents, U K .

Pugh, S. (1991). Total Design: Integrated Methods for Successful Product Engineering.
Addison-W esley Publishing U K .

Ramsdell, J. D . (2000). A Foundation for a Semantic W eb.
Rao, A . S. and M . P. G eorgeff (1995). B D I Agents: From Theory to Practice.

Proceedings o f the First International Conference on M u lti-A g en t Systems
(IC M A S -9 5), San Francisco, U S A .

Richmond, B. (1994). System Dynamics/Systems Thinking: Let's Just Get On W ith I t .
International Systems Dynamics Conference, Sterling, Scotland.

Roche, T . (1999). Developm ent o f a Design for the Environment Workbench. C IM R U ,
Industrial Engineering Dept. Galway, U C G .

Rosnay, J. d. (1979). The Macroscope: A N ew W orld Scientific System. N e w Y o rk ,
Harper & Row.

Rosnay, J. d. (1997). Analytic vs. Systemic Approaches. Principia Cvbem etica W eb . F.
Heylighen, C. Joslyn and V . Turchin, Principia Cybemetica, Brussels. 2003.

Russell, S. and P. N orvig (2003). A rtific ia l Intelligence: A M o d em Approach. 2/E .
Prentice Hall.

Sclater, N ., H . Grierson, et al. (2001). "Online Collaborative Design Projects:
Overcoming Barriers to Communication." International Journal o f Engineering
Education 17(2): 189-196.

Shannon, C. E. and W . W eaver (1963). The Mathem atical Theory o f Com munication.
Chicago, University o f Illinois Press.

Shintani, T ., T . Ito, et al. (2000). M u ltip le negotiations among agents for a distributed
meeting scheduler. Proceedings o f the Fourth International Conference on
M ultiA gent Systems.

151

Shoham, Y . (1998). Agent-oriented programming. Readings in Agents. Elsevier Science.
Artificial Intelligence 60 (1993).

Siemieniuch, C. E. and M . Sinclair (1999). "Real-tim e collaboration in design
engineering: an expensive fantasy or affordable reality?" Behaviour &
Inform ation Technology 18(5): 361-371.

Simon, H . A . (1996). The Sciences o f the A rtific ia l. Cambridge Mass., M IT Press.
Skyttner, L. (1996). "General systems theory: origin and hallmarks." Kvbemetes 25(6):

16-22.
Smith, R. P. and J. A . M orrow (1999). "Product development process modeling." Design

Studies(20): 237-261.
Snow, C. P. (1993). The Tw o Cultures. Cambridge, Cambridge U niversity Press.
Sowa, J. F. (2000). Knowledge Representation: Logical. Philosophical, and

Computational Foundations. Pacific Grove, C A , Brooks Cole Publishing Co.
Spyns, P., R. Meersman, et al. (2002). Data M odelling versus Ontology Engineering,

A C M S IG M O D Record. 31.
Sterman, J. D . (1991). A Skeptic's Guide to Computer Models. M anaging a Nation: The

M icrocom puter Software Catalog. G. O. Barney, W . B. Kreutzer and M . J.
Garrett. San Francisco, W estview Press: 209-229.

Studer, R ., V . R. Benjamins, et al. (1998). "Knowledge Engineering: Principles and
Methods." Data and Knowledge Engineering 25(1-2): 161-197.

Swartz, A. and J. Hendler (2001). The Semantic W eb: A N etw ork o f Content for the
D ig ita l C ity . Proceedings Second Annual D ig ita l Cities W orkshop, Kyoto, Japan.

Thoben, K .-D . (2002). Extended Products: Evolving Traditional Product Concepts. 7th
International Conference on Concurrent Enterprising.

Thoben, K .-D ., F. W eber, et al. (2002). "Barriers in Knowledge Managem ent and
Pragmatic Approaches." Studies in Informatics and Control 11(1).

Tom iyama, T . (1994). The Technical Concept o f Intelligent Manufacturing Systems
(IM S). Tokyo, University o f Tokyo.

Tsvetovatyy, M ., M . G ini, et al. (1997). " M A G M A : A n agent-based virtual market for
electronic commerce." Journal o f Applied A rtific ia l Intelligence.

Uschold, M . (1996). Building Ontologies: Towards a U n ified M ethodology. Expert
Systems '96, the 16th Annual Conference o f the British Computer Society
Specialists Group on Expert Systems, Cambrige, U K , 16-18 Decem ber 1996.

Uschold, M . (1998). "Knowledge level m odelling : concepts and terminology." The
Knowledge Engineering R eview 13(1): 5-29.

Uschold, M . and M . Gruninger (1996). "OntologiesPrinciples, Methods and
Applications." The Knowledge Engineering Review 11(2): 93-136.

Uschold, M . and M . K in g (1995). Towards a Methodology for Build ing Ontologies.
Workshop on Basic Ontological Issues in Knowledge Sharing" IJC A I-95 .

Van de Riet, R ., Burg, H ., Dehne, F. (1998). Linguistic Issues in Inform ation System
Design. Formal Ontology in Inform ation System. G. N icola. Amsterdam, IO S
Press.

VanCuilenburg, J. J., O. Scholten, et al. (1991). Stiinta Com unicarii.
Viano, G. (2000). Adaptive User Interface for Process Control based on M u lti-A gent

approach. A V I 2000, Palermo, Ita ly.

152

W eber, R. (1997). Ontological Foundations o f Inform ation Systems. M elbourne, Coopers
and Lybrand.

Weiss, G. (1999). M ultiagent Systems: A M o d em Approach to Distributed A rtific ia l
Intelligence. London, M IT Press.

W erkman, K . J. (1990). M ultiagent Cooperative Problem -Solving through Negotiation
and Sharing o f Perspectives. D A I-L is t, http://w w w -
2.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/pubs/lists/dai-
list/dailist/006.10may90.

Wooldridge, M . (1998). "Agent-based computing." Interoperable Com munication
Networks 1(1): 71-97.

W ooldridge, M . (1999). Intelligent Agents. The M IT Press.
Wooldridge, M . and P. Ciancarini (2001). Agent-Oriented Software Engineering: The

State o f the Art. Agent-Oriented Software Engineering. P. Ciancarini and M .
W ooldridge, Springer-Verlag. A I V o lu m e 1957.

Wooldridge, M ., N . R . Jennings, et al. (2000). "The gaia M ethodology for Agent-
Oriented Analysis and Design." Autonomous Agents and M u lti-A g en t Systems
K lu w e r A cadem ic Publishers(3): 285-312.

Zlotkin, G. and J. S. Rosenschein (1989). Negotiation and Task Sharing Am ong
Autonomous Agents in Cooperative Dom ains. The Eleventh International Joint
Conference on A rtific ia l Intelligence, Detroit, M ichigan.

Zlotkin, G. and J. S. Rosenschein (1996). "Mechanism Design for Automated
Negotiation, and its Application to Task Oriented Dom ains." Journal o f A rtific ia l
Intelligence 86(2): 195-244.

153

http://www-

Annex 1

The Sem antic W eb

1. Introduction

2. Background
3. The structure of the Semantic W eb

4. F inal Remarks

1. Introduction
One of the most successful stories of the information age is the story of the World Wide

Web (WWW). The WWW was developed in 1989 by Tim Bemers-Lee to enable the

sharing of information among geographically dispersed teams of researchers within the

European Laboratory for Particle Physics (CERN). The simplicity of publishing on WWW

and the envisioned benefits attracted an increasing number of users from beyond the

boundaries of the research community. The WWW grew rapidly to support not only

information sharing between scientists (as it was intended), but to support information

sharing among different kind of people communities, from simple homepages to large

business applications. The Web became an “universal medium for exchanging data and

knowledge: for the first time in history we have a widely exploited many-to-many medium

for data interchange” [Decker, Harmelen et al. 2000]. The WWW is estimated to consist

from around one billion documents and more than 300 millions users access them, and

these numbers are growing fast [Fensel 2001; Benjamins, Contreras et al. 2002]. Soon, as a

’’medium for human communication, the Web has reached critical mass [...] but as a

mechanism to exploit the power of computing in our every-day life, the Web is in its

infancy” [Connolly 1998; Cherry 2002], On one hand it became clear that while the Web

enables human communication and human access to information it lacks of tools or

technologies to ease the management of Web’s resources [Fensel 2000; Fensel 2001;

Palmer 2001], On the other hand it is impossible to build semantical tools that will spot

and know the difference between for example a book by and a book about. But also from

the human user point of view, the WWW has become an immense haystack of data [Ewalt

2002]. The time has come “to make the Web a whole lot smarter” [Connolly 1998], so

dynamic generated data (e.g. data from pages generated from databases) can join the Web

[Benjamins, Contreras et al. 2002; Hendler, Berners-Lee et al. 2002]. In other words it is

time to upgrade the Web from “giving value to human eyeballs” to a Web where “the

interesting eyeballs will belong to computers” (Prabhakar Raghavan, chief technology

officer at Variety Inc as cited by [Ewalt 2002]).

2. Background
The Semantic Web (SW) is an emerging concept that launches the idea of having data on

the web defined and linked in a way that it can be used by people and processed by

machines [Bemers-Lee 1998; Decker, Harmelen et al. 2000; Fensel 2000; Ramsdell 2000;

Berners-Lee, Hendler et al. 2001; Dumbill 2001; Swartz and Hendler 2001; Hendler,

Berners-Lee et al. 2002] in a “wide variety of new and exciting applications” [Swartz and

155

Hendler 2001], It develops “languages for expressing information in a machine processable

form” [Berners-Lee 1998], so to enable the machine to be able to participate and help

inside the information space [Benjamins, Contreras et al. 2002]:

"The Semantic Web will bring structure to the meaningful content o f

Web pages, creating an environment where software agents roaming

from page to page can readily carry out sophisticated tasks for

users." [Berners-Lee 1998]

The SW will not be a separate Web, but the extension of the current one [Berners-Lee,

Hendler et al. 2001; Swartz and Hendler 2001; Ewalt 2002; Hendler, Berners-Lee et al.

2002]. The WWW is primary a medium of documents for people rather then a medium of

data and information than can be processed automatically. The SW will upgrade it to a new

medium adequate for both people and machines [Berners-Lee, Hendler et al. 2001;

Benjamins, Contreras et al. 2002; Westoby 2003]. The new environment will be more

effective for its users by automating or enabling the processes that are currently difficult to

perform: “locating content, collating and cross-relating content, drawing conclusions from

information found in two or more separate sources” [Dumbill 2001]. These objectives are

made possible/reachable by giving structure to the rich information contained in

documents all over the Web [Berners-Lee, Hendler et al. 2001],

The goals of the SW related research are summarized by Koivunen as follows [Koivunen

2001]:
1. “Design the technologies that support machine facilitated global knowledge

exchange.”

2. “Making cost-effective for people to record their knowledge.”

3. “Focus on machine consumption.”

After the WWW any new web-based medium (no matter if it will upgrade or replace

WWW) has to fulfil a new set requirements used for exchanging data on the web [Decker,

Harmelen et al. 2000]:

1. Universal expressive power, meta-data languages should be enabled to express any

kind of data.

2. Support for Syntactic Interoperability, the structures that represent data should be

easily readable so applications (such as parsers) can exploit them.

3. Support for Semantic Interoperability, unknown data should come with semantics,

or it should be possible to be mapped to known data.

Once the goals and the requirements have been identified, a set of principles - emerged

from the advantages, the mistakes and the shortcomings of the WWW - to guide the SW

156

research and development have been proposed by the World Wide Web Consortium

(W3C) as follows [Koivunen 2001; Westoby 2003]:

Principle 1: Everything can be identified by Uniform Resource Identifiers (URI).

This principle gives a measure of the things that can be a part of SW, that is anything

conceivable. From physical objects to human beings and from simple words to complex

conceptual structures, everything can be on the SW as long as an URI have been associated

to it. There is no restriction concerning the permissible part of the Web URI namespace to

be used by public.

Principle 2 : Resources and links can have types.

The first impression a user may have about the WWW is its vastness and derived from here

its complexity. In fact the WWW structure is quite simple, consisting in a collection of

resources (e.g. web documents) and links that bind different resources to each other (see

Figure la).

almost everyone can create, publish and link resources. On the other hand (because of its

poor granularity) its difficult if not impossible to know beforehand what a resource refer at

locate, use or share a specific resource. The SW structure, in turn, gives the possibility of

typing the resources and links (see Figure lb), so more information about resources and

link to be available beforehand. In this way it enables the development of tools that would

href locate din

a) Current Web b) Semantic Web

Figure 1. WWW structure vs. SW structure [Koivunen 2001]

On one hand this kind of structure (because of its simplicity) is easy to be implemented, so

and what is a meaning of a link. This result in a lack of automated tools to help humans

automate some if not all of the web-related process (i.e. finding information, sharing and

reuse).

Principle 3: Partial information is tolerated.

One of the most important characteristics of the web is scalability, which is closely related

to the ability of dynamic evolving of the WWW. Because of it the WWW grew beyond

any expectation, becoming one of the most important communication/business

environment of today’s world. The price paid for this is the link integrity [Koivunen 2001],

This means that resources from the WWW may appear, evolve (e.g. change its content

while keeping the same URI) and disappear dynamically without any possibility for the

links that point to such resources to be “announced”. That is why there are links that point

to inexistent locations (also called 404 links) and links that point to wrong resources. But

this is a price worth paying. For these reasons, SW will also have to deal with the

resource’s life cycle (e.g. creation, changing, decaying) and the tools built for SW should

tolerate it and function in this kind of dynamic resources.

Principle 4: There is no need for absolute truth.

As in today’s WWW, there is nothing to apriory guarantee the truth or the value of truth of

some information within SW. No matter if the particular resource is data or information or

knowledge, nobody and nothing should enforce some kind of rules to guarantee that

resource is true in some particular system. The value of truth should remain at application

level. This means that the particular application - based on some kind of label-kind of

information about the resource and about the place it came from - should decide how

trustworthiness an input is. In this way the principles 3 and 4 implement in SW one of the

most cherished principle of WWW: the freedom of information.

Principle 5: Evolution is supported.

Generally speaking information evolves as human understanding evolves. This means that

it (i.e. information) sustains a progressive change and development. SW has to be able to

deal with this phenomenon by enabling processes such as some kind of version control (i.e.

adding information without having to change or delete the old one), translation among

different communities (i.e. translation from one language to another, synonymy - “postal

code” is equivalent to “ZIP code”, and so on), combination of information that may arise

from different/distributed resources, and so on [Koivunen 2001].

Principle 6: Minimalist design.

“The Semantic Web makes the simple things simple, and the complex things possible”

[Koivunen 2001] by standardizing no more than is necessary with the desiderate that

“result should offer much more possibilities than the sum of the parts” [Koivunen 2001],

158

3. The structure of the Semantic Web

The general structure/schema of the SW, also known as the layer cake, developed by Tim

Berners-Lee, the inventor of WWW, presents the most important elements of the system.

The foundation consists of new web languages such as metadata languages (e.g. XML and

RDF) and furthermore, to languages which allow ontologies, rules, proofs and logics to be

realised at a web-wide scale [Swartz and Flendler 2001](Figure 2):

D a t a

R u le s

D a t a

T r u s t

P r o o f

L o g ic

O n to lo g y v o c a b u la r y

R D F + r d f s c h e m a

£
3roaon
Ln
~cri
’cun
O

X M L + NS + x m ls c h e m a

U n i c o d e
Figure 2. The Layer Cake after Tim Berners-Lee [Koivunen 2001; Swartz and Hendler
2001]

This layered structure of the SW is not the definitive model of the SW, but is intended to

be a prototype, an idealized diagram. It is designed in such way that “each layer gives

progressively more value” [Dumbill 2001]. The architecture of the SW starts with the

foundation of URIs and Unicode that provide the following layers with an alphabet (i.e.

Unicode) and a technology for identifying resources on web (i.e. URI). The XML layer

adds the syntactic interoperability and introduces the RDF + rdfschema layer as the data

interoperability layer [Dumbill 2001]. The ontology layer deals with the description of

objects and the relations among them and is the key layer of the attempt to achieve a

shared meaning of a domain of interest. The logic layer provides languages for enabling

reasoning on data as they are structured in the lower levels, while the proof layer offers

techniques for describing the steps taken for reaching a conclusion from the facts. On the

top of the architecture lies the trust layer that provides the means of weighing the value of

information, of deductions made and so on. The Digital Signature layer accompanies all

the layers that are dealing with data/information/knowledge and represents a way of

assuring the provenance of a certain resource. Each of these layers will be detailed in the

followings.

159

The Unicode establishes the alphabet of any information system. It has exactly the same

role as, for example, the alphabet of the English language, i.e. it sets a set of adequate

characters to be used for constructing words and sentences. Because the computers are

working with numbers, the Unicode provides a unique number for every character,

independent of platform, application or language. Hence, Unicode is a “character coding

system designed to support the worldwide interchange, processing, and display of the

written texts of the diverse languages of the modern world” [Consortium],

U niform Resource Identifier (U R I)
“A Uniform Resource Identifier (URI) is a compact string of characters for identifying an

abstract or physical resource” [Berners-Lee, Fielding et al. 1998]. In other words an URI is

simply a web identifier [Palmer 2001; Swartz 2002],

To paraphrase the World Wide Web Consortium (W3C), the Internet space is inhabited by

many points of content. An URI is the way you identify any of these points of content,

whether it is a page of text, a video or sound clip, an image, or a program. An URI

typically describes [Berners-Lee, Fielding et al. 1998]:

• The mechanism used to access the resource

• The specific computer where the resource is

• The specific name of the resource on the computer

The URI is the foundation of the Web [Swartz and Hendler 2001]. Anything that has an

URI is on the Web and anything can have a URL One of the most familiar form of URI is

the Uniform Resource Locator (URL), that is the address of a web page, like:

http://pan.nuigalwav.ie/PublicDocuments/. which lets any computer with a browser and

access to Internet to locate a specific resource (in this case the public documents from the

computer named pan from National University of Ireland Galway network). The syntax of

URI’s is governed by IETF, who published RFC 2396 [Berners-Lee, Fielding et al. 1998]

as the general URI specification. The W3C maintains a list of URI schemes at

http://www.w3.org/Addressing/schemes.

Extensible M a rk u p Language (X M L)
XML [http://www.w3c.org/XML/; Bray, Paoli et al. 2000] was designed to be a simple

way of sending meaningful documents across the Web and it is considerate to be the

standard for data interchange on the Web. It provides a syntax for structuring and

Unicode

160

http://pan.nuigalwav.ie/PublicDocuments/
http://www.w3.org/Addressing/schemes
http://www.w3c.org/XML/

granulating data according to specific needs [Westoby 2003], such as having a book

structure described by its name, author, publisher and ISDN, as follows:

Book {Name;

Author;

Publisher;

ISDN;}

XML allows anyone to create arbitrary document layout/structure in which to write his/her

own document [Decker, Harmelen et al. 2000; Swartz and Hendler 2001; Cherry 2002].

XML “is the evolutionary successor to HTML” [Connolly 1998] and is enhancing HTML

(the standard mark-up language for WWW) by adding structure to the document. In a

HTML document the information is “structured and shared in forms that facilitate its

display for human consumption” [Ramsdell 2000] (e.g. sections, paragraphs, lists, tables),

but this structure does not provide any help to software tools [Heflin 2001]. In turn, a XML

document gives a way of building software tools that understand the information it

contains. Of course, a software program will not truly understand the document, but it is

easy to code software tools to work with XML documents in more specific contexts than

with HTML documents. Also it will be easier for a human to read and understand a XML

document than a HTML one. For example: in "The Analytical Language of John Wilkins"

Borges describes a probably inexistent Chinese encyclopaedia called the Celestial

Emporium o f Benevolent Knowledge, which divides animals into classes, as illustrated in

figure 3.
“On those remote pages it is written that animals are divided into:

1. those that belong to the Emperor
2. embalmed ones
3. those that are trained
4. suckling pigs
5. mermaids
6. fabulous ones
7. stray dogs
8. those included in this classification
9. those that tremble as if they were mad
10. innumerable ones
11. those drawn with a very fine camel's hair brush
12. others
13. those that have just broken a flower vase
14. those that resemble flies from a distance.”

Figure 3. A classification of animals (from [Borges 1984]).

161

require something like the following code:

<p> On those remote pages it is written that animals are divided into:</p>

those that belong to the Emperor
embalmed ones
those that are trained
suckling pigs
mermaids
fabulous ones
stray dogs
those included in this classification
those that tremble as if they were mad
innumerable ones
those drawn with a very fine camel's hair brush
others
those that have just broken a flower vase
those that resemble flies from a distance.

Here is the document marked-up using XML:

<example>
In
<book>

<title>The Analytical Language of John Wilkins</title>
<author>J. L. Borges </author>

</book>
<cite>On those remote pages it is written that animals are divided into: </cite>
<animal>

<classes>
<class
<class
<class
<class
<class
<class
<class
<class
<class
<class
<class
<class
<class
<class

</classes>
</animal>

</example>
The items located between the signs < and > in XML version are called tags. A full set of

tags (including the opening and closing tags) plus their content is called an element and

descriptions as id=6 are called attributes. It is obvious that in the XML document the

Publishing this typology on the Web using the standard web language (i.e. HTML) would

d=l> those that belong to the Emperor</class>
d=2> embalmed ones </class>
d=3> those that are trained </class>
d=4> suckling pigs </class>
d=5> mermaids </class>
d=6> fabulous ones </class>
d=7> stray dogs </class>
d=8> those included in this classification </c!ass>
d=9> those that tremble as if they were mad </class>
d=10> innumerable ones </class>
d=l 1> those drawn with a very fine camel’s hair brush </class>
d=12> others </class>
d=13> those that have just broken a flower vase </class>
d=14> those that resemble flies from a distance </class>

162

information is more flexibly structured (i.e. a basic XML data-model consists of a labelled

tree) not only for humans to understand what a certain document is referring to, but also

for software programs to work with. While in HTML is impossible to say something about

the content of the document (this is possible only if a human knows about the context of

which the document is part of), a lot about it can be extracted solely from the structure of

tags in XML document. Furthermore constraints on tags may be enforced (e.g. constraints

on the range of values or on the types some attributes/tags may have) through the use of

Document Type Definition (DTD) files. Because of some technical limitations of DTD’s,

W3C proposes the use of XML Schema instead. Besides a number of advantages the main

role of XML Schema is the same with the DTD, and this is to define a grammar for XML

documents [Decker, Harmelen et al. 2000],

Through the concept of “XML Namespaces” each element and attribute has an UR1

associated. Anyone can create XML tags and the correspondent URIs and mix them with

tags created by others. In this way a low level sharing and reuse of structured data (i.e.

information) becomes possible. Generally, XML helps humans and software programs to

predict what information might lie "between the tags" (this depends on the design skills of

the human who creates the tags), but XML can only help. However, the XML data-model

presents some disadvantages when used in the context of SW. For an XML processor,

<sentence> and <p> and <animal> are all equally (and totally) meaningless. Moreover,

different developers may choose different words for expressing the structure of same data

(e.g. <author> vs. <authorname>, <classification> vs. <taxonomy>). This has direct

consequences for the average ability of the software tools that can be designed for working

with XML documents. And this is because XML cannot add semantics to data (cannot

convey an arbitrary meaning) [Heflin 2001; Westoby 2003].

Resource Description Fram ew ork (R D F)
Collaboration on the Web, distributed information and knowledge, and in general any

application designed for a distributed environment requires rich data. Data-exchange flow

is currently very limited, consisting of tab-delimited dumps or product-specific tables.

Specific XML formats for each exchange task improves the situation, but is far away from

solving the problem because the XML data model is too low-level

[www.semanticweb.org]. Usually the humans have to browse, filter and process the

received data. After that the result has to be coded into specific structures that would allow

some specific application to use it as an input. After the input data is processed, an output

flow is generated. Usually this flow would be automatically coded in a document of some

163

http://www.semanticweb.org

sort or would require further processing from the humans in order to be used as input data

for another application. This need for human’s intervention is considered as a waste of

resources. For this reason, the need for a new data model paradigm that would allow

applications to exchange data semantics without human intervention has become

stringency. Resource Description Framework (RDF) [Lassila and Swick 1999] implements

such a meta-data model that “gives a way to make statements that are machine-

processable” [Fensel 2000; Swartz and Hendler 2001], and its motivation is to provide a

standard for semantical description of resources on the Web [Decker, Harmelen et al.

2000; Palmer 2001; Cherry 2002], Of course, the computer will not truly understand a

statement, but “it can deal with it in a way that seems like it does” [Swartz and Hendler

2001],
In the SW Activity Statement [http://www.w3.org/2001/sw/Activity], RDF is viewed as

the language designed for the SW in the same way that HTML is the language of WWW.

Moreover “RDF is an infrastructure that enables the encoding, exchange and reuse of

structured metadata” [Fensel 2000],

RDF follows the W3C design principles [http://www.w3.Org/Consortium/#web-design]:

1. Interoperability. Specifications of the Web's languages and protocols must be

compatible with one another and allow (any) hardware and software used to

access the Web to work together.

2. Evolution: The Web must be able to accommodate future technologies. Design

principles such as simplicity, modularity, and extensibility will increase the

chances that the Web will work with emerging technologies such as mobile

Web devices and digital television, as well as others to come.

3. Decentralization: Decentralization is without a doubt the newest principle and

most difficult to apply. To allow the Web to "scale" to worldwide proportions

while resisting errors and breakdowns, the architecture (like the Internet) must

limit or eliminate dependencies on central registries.

A RDF statement is like a simple sentence, except that instead of words it uses URIs. The

basic RDF model contains only two concepts [Berners-Lee 1998]:

1. Assertion - a positive statement or declaration (often without support or

reason);

2. Quotation - an assertion about assertion (it comes from RDF’s property of

being a data about data, i.e. metadata, language)

164

http://www.w3.org/2001/sw/Activity
http://www.w3.Org/Consortium/%23web-design

Each RDF statement is a triplet subject-predicate-object or object(0)-attribute(A)-value(V)

[Decker, Harmelen et al. 2000; Westoby 2003]. This triplet is commonly written as

A(0,V), such as in the following example:

ReallyLikes(Camelia, to paint)

Syntactically speaking, anything that has an URI can be a subject, or a predicate, or an

object, but for the RDF statement to make sense the semantic aspect is also important. In a

RDF the predicate links the object to subject or, in real words it says something about

something. The figure 4 shows an example meaning: Camelia really likes to paint.

Subject Predicate Object

Figure 4. The Subject-Predicate-Object triplet.

Anyone can create information and label it through the use of URIs and write RDF

statements to give sense to the separate pieces of information. Moreover, because of the

data-oriented programming paradigm that dominates the world of IT, there are thousands

of databases containing machine-processable information. Usually, the data contained in

these databases is used only locally not because of the technological limitations, but

because of the wide variety of ways of coding data in databases. The primary purpose of

RDF is to provide a data-model for meta-data that would enable the description of

resources in a standard manner without making any assumptions about a particular

application domain. In this way it is possible to built intelligent programs that can “begin

to fit the data together” [Swartz and Hendler 2001] from the various databases, according

to specific needs. The RDF data model, however, “provides no mechanisms for declaring

these properties, nor does it provide any mechanisms for defining the relationships

between these properties and other resources” [Brickley and Guha 2002], where properties

represent attributes of resources or relationships between resources. This is the place where

RDF Schema comes into action. RDF Schema is for RDF what XML Schema is for XML

[Decker, Harmelen et al. 2000], which means that it “defines not only the properties of the

resource (e.g., title, author, subject, size, colour, etc.) but may also define the kinds of

165

resources being described (books, W eb pages, people, com panies, e tc .)” [B rickley and

Guha 2002] (e.g . with RDF Schem a one can say that "Dalmatian" is a type o f "Dog", and

that "Dog" is a sub class o f animal).

Uiouc Ihul belong to Ihc Emperor __ _ iib<:i»»s'' f

**^s
those that ore trained ----- — _ iNtfe sub* M»m>' I \

I'dls.subCloAsC 1 embalmed ones ---- —------

suckling pigs -— ~-w- rdfis.subClassOf \ \

mermaids \ \ \ \' • - • x \ \
 _ rdfssubOlassOf \ \ | l

- ...--— vj
 — rdt'srsuhOlassi* f Mu

fabulous ones V \ll
ass«*!f \ \nl

\ ' S
stray dogs — _ _ ----_rdfc>. si On ztoxsor Ml

— Animal
rdfs sub'-lass1! r'

those that are included in Uns classification -------
r<lfe:subC]assOt' /

_ /
Uiose tiiul tremble as i f Uicy were mad rdts'suh«. Mass« f / j

 - A
iinnnnerable o n e s txiD id' l‘ / < j 1

/ / /
/ / /

those drawn wiUi a veiy fine cornel's hair biush / I
i*dfs’Ei!b' .,laj»*Of . / j j

I
others I

ivtls KJth»:lasK> f / /

tliose that, have just broken a flower vase ____ _ - ‘ /
rdf: tubClassC t

. + *
Uiosc tlint resemble flies from a distance. __

Figure 5. RDF m odel o f a sim ple vocabulary [K oivunen 2001]

For exam ple (see Figure 3) the RDF m odel o f a sim ple c lassification uses the

’’subC lassO P’ property/predicate to relate every category/subject to the object being

classified (see Figure 5) [K oivunen 2 0 01]. In this w ay, a structured m odel o f the

information about the classification o f anim als is produced. The RDF source code

[http://w w w .w 3.org/2001/09/01-borges/taxon .rdf] that im plem ents the m odel is provided

in the appendix. This kind o f machine-readable information can be accessed directly by

166

http://www.w3.org/2001/09/01-borges/taxon.rdf

applications (without human intervention), can be integrated with other resources

(similarly encoded) and processed. The result will also be encoded in RDF style so it can

be further used/reused.

Generally, RDF is accepted as being the language for representing formal data on the Web

[Decker, 2000 #83; [Palmer 2001]], with the specification that it has to be enriched so it

can represent any kind of complex data structure.

Ontologies
In order to build programs that parse RDF modelled information from databases or

documents, it has to be assumed that data is nearly perfect modelled [Berners-Lee, Hendler

et al. 2001; Swartz and Hendler 2001]. This means that every concept is uniquely defined

and interpreted in the same way by all the members of the web community. This

assumption is not possible and comes in contradiction with the freedom that Web provides

and should provide. Moreover, there is no way for a computer or human to figure out what

a specific term means, or how it should be used. The ontologies (see subchapter 1)

overcome these difficulties by providing a way to describe the meaning and the

relationships of terms [Gruber 1993; Guarino 1997; Fensel 2000; Swartz and Hendler

2001; Ding, Fensel et al. 2003] so that a shared understanding or a consensus to be reached

among people and machines. The most typical Web ontology has a taxonomy and a

minimal set of inference rules [Hendler 1999; Swartz and Hendler 2001; Cherry 2002] and

usually represents a ‘small’ specialised world of a community of interest or a Domain

Model [Decker, Harmelen et al. 2000; Ding, Fensel et al. 2003]. The SW is

predicted/envisioned to be an anarchic web of such small ontologies created by different

communities and referenced by/pointed to each other in the way the documents on the

current web are [Hendler 1999; Fensel 2000],

At the ontology layer the world of discourse is created by defining the classes of objects

and the relationships among them [Berners-Lee 1998; Fensel 2000; Berners-Lee, Hendler

et al. 2001], This description, in a RDF-based language, gives the computers the ability to

identify equivalent concepts (meanings) even if different communities use different

identifiers (situation that will most probably arise) to point to them [Berners-Lee, Hendler

et al. 2001; Swartz and Hendler 2001].

Ontologies establish a joint terminology between members of a community of interest

[www.semanticweb.org]. These members can be human or automated agents. To represent

a conceptualisation a representation language is need. Several representation languages for

representing meaning and structure content [Benjamins, Contreras et al. 2002] have been

defined (usually XML-based and RDF-based - see Figure 6), as follows: SHOE, Ontology

167

http://www.semanticweb.org

Exchange Language (XOL), Ontology Markup Language (OML and CKML), Resource

Description Framework Schema Language (RDFS), and Riboweb. A new proposal

extending RDF and RDF Schema, which will most probably enforce the new standard in

creating ontologies, is DARPA Agent Markup Language with Ontology Inference Layer

(DAML+OIL) jointly developed by a group of scientists from Europe and United States of

America.

OIL DAML+OIL

SHOE XOL RDF(S)

XML
 /

Figure 6. Semantic Web languages pyramid [Benjamins, Contreras et al. 2002].

The ontology is a very powerful concept of the SW because allow and require information

to be structured and organised in classes, subclasses and relations (such as inheritance and

equivalence) [Hendler 1999; Fensel 2000; Berners-Lee, Hendler et al. 2001], Furthermore,

the inference (i.e. deriving new data from data that is already know [Palmer 2001]) rules

added to the logic of the ontologies supply further power.

Using a representation language based on the RDF data-model anyone can create a world

of discourse/RDF schema/ontology. For the entire system (i.e. Semantic Web) to function,

an important requirement is the existence of a minimum set of rules for converting a

document in one RDF schema into another one [Berners-Lee 1998; Westoby 2003], For

example a schema might state that (after [Swartz and Hendler 2001]):

@prefix dc: <http://purl.org/dc/elements/Ll/> .

@prefix rdfs: <http://www.w3.Org/2000/01/rdf-schema#> .

A creator is a type of contributor:

dc:creator rdfs:subClassOf dc:contributor.

If some application wants to gather the authors and the contributors to various papers it

uses this vocabulary to understand the information it finds. If a newcomer will want to

create RDF documents, he/she will probably not know about dc:creator, so he/she will

make up his own term, such as ed:hasAuthor.

168

http://purl.org/dc/elements/Ll/
http://www.w3.Org/2000/01/rdf-schema%23

The existing term:
<http://aaronsw.com/> is dc:creator o f

<http://logicerror.com/semanticWeb-long>

The new term:
<http://logicerror.com/semanticWeb-long>

ed:hasAuthor <http://aaronsw.com/> .

Normally, the original program would simply ignore these new statements, since it can't

understand them. However, it is a possibility to bridge the gap between these two worlds,

by providing information on how to convert between them:

[X dcxreator Y] is the same as [Y ed:hasAuthor X]

dc:creator damhinverse ed:hasAuthor.

Since the program understands D A M L ontologies, now it can take this information and use

it to process all o f the hasAuthor statements it couldn't understand before [Swartz and

Hendler 2001].
Some applications o f this level (layer) o f SW can be summarized as follows [Berners-Lee

1998; Berners-Lee, Hendler et al. 2001]:

- Cross-linking different databases independently created and published on the

Web by semantic links that allow queries on one database to be automated

converted into queries on other database;

Improving the accuracy o f the Web searches (the search program is looking at

the pages that are referring a specific concept and not some ambiguous

keywords);
Relating information found on some Web page to the associated knowledge

structures and inference rules.

Logic
The logical layer brings the power o f logic into SW. It enables (together with the proof
layer) SW applications to make assumptions and prove them. In other words it allows the

computer to make inferences and deductions [Palmer 2001; Swartz and Hendler 2001],

such as:

169

http://aaronsw.com/
http://logicerror.com/semanticWeb-long
http://logicerror.com/semanticWeb-long
http://aaronsw.com/

I f a implies b and b implies c then a implies c.

or

M y dog’s name is Lucky and
Dog is an animal
Then Lucky is an animal.

In general, from a popular point o f view, the term semantic in the SW context is

understood as being “machine processable” or “machine understandable” [W 3C]. Farrugia

stresses that this is too limiting (since to a certain extent this is already achieved) and the

term semantic should be understood also as “ logical (model-theoretic) semantics”

[Farrugia 2001]. A model theory is “a formal semantic theory which relates expressions to

interpretations” [W 3C]. This technique is used for “specifying the semantics o f a formal

language”, that is linking the use o f terms o f the formal language to their definitions, and

its main utility is “to provide a technical way to determine when inference processes are

valid, i.e. when they preserve truth” [W 3C]. Generally, a logic consists o f “a syntax (or

deductive system) and an appropriate semantics (or model theory)” [Farrugia 2001].

The logic that has to be added to SW documents should allow the followings [Berners-Lee

1998]:
- rules o f deduction o f one type o f document from a document o f another type;

checking of a document against a set o f rules o f self-consistency;

resolution o f a query by conversion from terms unknown into known terms.

For all o f these to be possible, Berners-Lee identifies two sub-layers o f the logical layer

(quotation already being in the ontology representation language as presented at the RDF

layer) [Berners-Lee 1998]:
1. Predicate logic layer - introduces logical operators (e.g. not, and, or, xor)

2. Quantification layer - introduces the universal quantifier (e.g. for all x,

y(x))

Moreover, Farrugia points out that is important for SW to support not only one logic, but

different logics (depending on the particular purposes and goals o f a specific application)

to be used for different kinds o f reasoning (see Figure 7)

For example, the main focus concerning the logic layer o f the SW is to implement a logic

(Partial First Order Logic) that would allow the reasoning application to verify that “one

concept or class subsumes another” [Farrugia 2001; Westoby 2003]. But there are other

kinds o f reasoning such as to reason about “what might possibly be the case” [Farrugia

2001]. This could be supported i f specific modal operators (from modal logic) dealing with

possibility and necessity are added to the classical prepositional logic [Farrugia 2001].

170

Different K inds of Reason ing

/

f t

\

\

.

Sem ant ic W eb In te r face

Mudcl Hu' wy

Different Logics, v

, - / M u t i l l T h e i > i y

r \
I.MItgUDCC

A i i i i t n s

ln ie r c n « t U n its .

I.aii“uii"c
Avion»

I n l Y r c i u ’ i - R u l e s

y\

Figure 7. Different logics for different kinds o f reasoning [Farrugia 2001]

Proof
Once systems that follow logic, are built, “ it makes sense to use them to prove things”

[Swartz and Hendler 2001]. Different Web communities can write logic statements. A

program can follow these semantic links to begin to prove facts. For example:

Fact: Lucky is an animal.

Proof: 1. Dog is an animal.

O f course, this is a simple example. In a real application to prove a fact could require to

follow thousands o f links, which is a difficult task, but to check the proof becomes very

easy. This w ill allow “to build a Web o f information processors'’ [Swartz and Hendler

“Some of them could merely provide data for others to use. Others would be

smarter, and could use this data to build rules. The smartest would be heuristic

engines, powering "intelligent agents" which follow all these rules and statements

to draw conclusions, and place their results back on the Web as proofs as well as

data or query answers like those shown in the introduction.” [Swartz and Hendler

2. Lucky is a dog.

2001]:

2001]

171

Trust
One o f the main principles o f the Web and inherited by the SW is the freedom o f the Web

participant. This can be translated in anyone can say anything. The negative aspect, or the

price to be paid is the problem o f trust: whom to trust? The answer to this problem is the

concept o f trust.
A human or an agent w ill trust data coming from verified sources. Anything else can be

considerate suspicious and sent to further analyses. Because it is almost impossible to

directly trust enough data makers for a fairly complex application to work, the concept o f
“Web o f Trust” [Swartz and Hendler 2001] was developed. This concept can be

represented as an oriented graph where the vertices are people or companies on the Web

and the weights o f the edges are the degrees o f trust (see Figure 8). The graph is

constructed starting with a generator vertice that is the person/company, which generated

the trust measuring. The following vertices to be added are the persons (or digital

signatures) in which the generator trusts with the specific degrees o f trust labelling the

edges. After that for each added vertice new vertices w ill be added corresponding to the

trust o f that vertice, and so on, as shown in figure below.

Figure 8. Graph representation o f the Web o f Trust

Explanation: X trusts - A with the trust degree X I ,
- D with the trust degree X2,

A trusts - B with the trust degree A l,
- C with the trust degree A2,
- X with the trust degree A3,

D trusts - C with the trust degree D l,
- E with the trust degree D2,
- F with the trust degree D3,

and so on ...

172

In addition to trust, a Web of Distrust can also be built. The reason is to differentiate

between new information and false information. New information, with no trust path

possible to be found, identified by an application may be trusted more than information

known to be false [Swartz and Hendler 2001].
The application may now take all the factors into account when deciding how trustworthy a

piece o f information is, but it can present to the user (a human or another application) a

simple or complex explanation, so the user can decide about the trustworthiness o f the

information. [Swartz and Hendler 2001].

D ig ital Signature
Because on the Web anybody can say anything, it is also possible that anybody can pretend

to be somebody else. This is also true in the case o f information. For different reasons, the

source o f some information can be advertised to be different than the true one. This

uncertainty can lead to a general atmosphere o f distrust inside the web communities with

direct consequences on the development o f the SW because o f its data-oriented design. SW

depends on data and this is why fabricated data may lead to serious malfunctions.

The answer to this problem is the Digital Signature that provides proof that a certain

person wrote or agrees with a document or statement [Berners-Lee, Hendler et al. 2001;
Swartz and Hendler 2001; Westoby 2003], Digitally signing all the RDF statements makes

possible a way o f knowing which data or knowledge to trust and which not.

The Digital Signature (“DSig”) was proposed by the W 3C Digital Signature Working

Group (www.w3.org/DSig/Overview.html) as a “standard format for making digitally-

signed, machine-readable assertions about a particular information resource”. DSig

project provides a mechanism to make the statement such as:

signer believes statement about information resource

The Digital Signature is a must for development o f the SW. That is why it is involved in

the design o f almost all layers o f the SW architecture.

4. F inal Remarks
Generally, when speaking about data semantics within the SW, only the textual forms of

hypermedia are being considered [Westoby 2003]. This is somehow odd in an environment

that would inherit a very rich Web o f images, sounds and videos. SW also has to take into

173

http://www.w3.org/DSig/Overview.html

account the semantic markup o f all multimedia data, being that the audio-video content is

at least equally expressive with the text content. An example o f semantic markup for an

image/picture, as pictured by Les Carr [Westoby 2003], is presented in Figure 9.

Colour
distribution

Shapes

W id th
*

Height

y

Content;
hill*.

a lake and
the sun

Represents:
peace
tranquilityArtist

AmbUnt No.3 1 T itle

Figure 9. A painting example and associated metadata [Westoby 2003]

As seen in the figure a multimedia metadata has to consider defining different classes o f
data (e.g. colour metadata, shape metadata, text metadata, and so on). The markup is

similar for audio and video semantics [Westoby 2003]. Moreover, SW is also interested in

all kinds o f data, which is anything that can be published in the Web. In other words

anything that can be identified by an U R I (i.e. is a resource) w ill be markup-ed in SW

style, e.g. databases, services, applications [Hendler, Berners-Lee et al. 2002], address

books, organization charts, newsgroups [Cherry 2002], In the far future is predicted that

SW w ill be technologically enabled to deal with even more resources such as sensors,

personal devices and household applications [Hendler 1999; Hendler, Berners-Lee et al.

2002; Westoby 2003].

While the SW can represent the solution to the stringent problem o f information

management in an interoperable environment, it is not yet functional. Anyway, The first

three layers (i.e. Unicode layer, U R I layer and X M L + X M L Schema layer) are functional

and important advantages have been made towards the definition and implementation o f

the RDF + RDF Schema layer and ontology layer. Moreover, its implementation and

development does not depend solely on the researchers that are investigating it. In order to

achieve a Semantic Web it is essential to attract a critical mass o f users to exploit it (e.g.

publish meta-data, create applications for SW, and so on). In the case o f W W W this

happened because o f its simplicity. With SW things are more complex and would require

familiarity with knowledge representation languages such as R DF and extensions o f it.

That is why an important research area within the SW is the development o f user-friendly

tools and environments for dealing with meta-data, otherwise “create a technology for page

174

markup that’s difficult to grasp and nobody will use it” [Dumbill 2001; Koivunen 2001],

Benjamin et al have identified six challenges that SW has to complete before becoming

functional, as follows [Benjamins, Contreras et al. 2002]:

1. The availability of content. The WWW revolution relays on the huge amount of

data published. Things are the same with the SW: in order to talk about a SW

revolution high quality and diverse semantic content (e.g. upgraded static

HTML pages, multimedia, web services and so on) has to be available.

2. Ontology availability, development and evolution. Ontologies are the backbone

of the SW architecture; so a big effort has to be invested in their creation,

change management, mapping and evolution.

3. Scalability. As the WWW, the SW has to be able to sustain a huge growth.

4. Multilinguality. The access to the semantic content should be language

independent (here language refers to the native language of the human user).

5. Visualization. It is expected that the amount and quality of information will be

much higher on the SW than on the WWW. Hence a parallel research has to be

carried out in the Human-Computer Interaction area, so that SW browsers will

be able to handle the visualization of the new Web.

6. Stability of Semantic Web Languages. For the research in SW to continue it is

identified as very important the process of standardization of the representation

languages.

So, how the SW will look like? An answer is given in Figure 10, where “the bottom side of

the figure shows the current web with its different types of resources: static pages, dynamic

pages, web services and multimedia, all of them can be in different languages. Dedicated

editors and wrappers aggregate the information in those sources into semantic indexes. A

routing mechanism establishes and maintains the relation and communication between the

various indexes. Software applications (agents) access SW content through the routing

mechanism. Since semantics are represented using ontologies, an ontology lifecycle model

forms a central component of the architecture” [Benjamins, Contreras et al. 2002].

175

/ \ / Auaotav co

/ t \
. f

 _
w m m m i
Web SsrvjcsProvidsr

S__
Certificat*

1__________ Mmhaiguaïty
W o rk b e n c h

Ontoiogy
Repository

r Matawitmce 3 c v « c
M a p p fa g

X M t,

y \ v V
V *DAJvîL OÎL- RC'FÇS;

2Iain

t-ynirrjc Ir fcrnuvon PtOVTic a?-jc informs on Prô dc"

1®*

'¿'¿time *.» Dr-J
W orld W id e W e b

Figure 10. High-level architecture o f the Semantic Web construction technology [Benjamins, Contreras et al. 2002]

176

Benjamins, V . R., J. Contreras, O. Corcho and A. Gomez-Perez (2002). Six Challenges for

the Semantic Web. International Semantic Web Conference (ISW C2002), Sardinia, Italia.

Berners-Lee, T. (1998). Semantic Web Road Map.

http://www.w3.org/DesignIssues/Semantic.html, World Wide Web Consortium.

Berners-Lee, T., R. Fielding, U. C. Irvine and L. Masinter (1998). Request for Comments:
2396 - Uniform Resource Identifiers (U R I). World Wide Web Consortium -

http://www.ietf.org/rfc/rfc2396.txt.

Berners-Lee, T., J. Hendler and O. Lassila (2001). "The semantic web." Scientific

American 284(5): 34-43.

Borges, J. L. (1984). Other Inquisitions 1937-1952. Univ o f Texas Pr; ; Reprint edition

(December 1984).

Bray, T., J. Paoli, C. M . Sperberg-McQueen and E. Maler (2000). Extensible Markup

Language (X M L) 1.0. 2003.

Brickley, D. and R. V . Guha (2002). Resource Description Framework (RDF) Schema

Specification 1.0, W 3C Candidate Recommendation 27 March 2000. 2003.

Cherry, S. M . (2002). "Semantic Web: Weaving a Web of Ideas." IEEE Spectrum 39(9):

65-69.

Connolly, D. (1998). The X M L Revolution, http://www.nature.com/nature/webmatters/.

Consortium, U. "The Unicode Standard."

Decker, S., F. v. Harmelen, J. Broekstra, M . Erdmann, D. Fensel, I. Horrocks, M . Klein

and S. M elnik (2000). "The Semantic Web - on the respective Roles o f X M L and RDF."

IEEE Internet Computing.

177

http://www.w3.org/DesignIssues/Semantic.html
http://www.ietf.org/rfc/rfc2396.txt
http://www.nature.com/nature/webmatters/

Ding, Y., D. Fensel and H.-G . Stork (2003). The Semantic Web: from Concept to Percept.

2003.

Dumbill, E. (2001). Building the Semantic Web.
http://www.xml.eom/pub/a/2001/03/07/buildingsw.html., XM L.com .

Ewalt, D. M . (2002). The Next Web. InformationWeek.

Farrugia, J. (2001). Logics for the Semantic Web. The First Semantic Web Working

Symposium (SW W S '01), Stanford University, California, USA.

Fensel, D. (2000). Ontologies: A Silver Bullet for Knowledge Management and Electronic

Commerce. Berlin, Springer.

Fensel, D. (2001). Ontologies: Dynamic Networks o f Formally Represented Meaning.

International Semantic Web Working Symposium (SWWS),July 30 - August 1, 2001,

Stanford University, California, USA.

Gruber, T. R. (1993). "A Translation Approach to Portable Ontology Specification."

Knowledge Aquisition 5(2): 199-220.

Guarino, N . (1997). "Understanding, Building and Using Ontologies: A Commentary to

"Using Explicit Ontologies in KBS Development." International Journal o f Human and

Computer Studies 46: 293-310.

Heflin, J. D. (2001). Towards the Semantic Web: Knowledge Represenatation in a

Dynamic, Distributed Environment. Faculty o f the Graduate School, University o f

Maryland, College Park.

Hendler, J. (1999). Is There an Intelligent Agent in Your Future?

http://www.nature.com/nature/webmatters/agents/agents.html, Nature Webmatters.

Hendler, J., T. Berners-Lee and E. M iller (2002). "Integrating Applications on the

Semantic Web." Journal o f the Institute o f Electrical Engineers o f Japan 122(10): 676-680.

178

http://www.xml.eom/pub/a/2001/03/07/buildingsw.html
http://www.nature.com/nature/webmatters/agents/agents.html

http://www.w3 .org/2001/09/01-borges/taxon. rdf.

http ://w ww. w 3 . org/2001 / sw/Acti vity.

http://www.w3c.org/XML/.

Koivunen, M .-R . (2001). W 3C Semantic Web Activity.
http://www.w3.org/Talks/2001/1102-semweb-fin/Overview.html, World Wide Web

Consortium.

Lassila, O. and R. R. Swick (1999). Resource Description Framework (RDF) Model and

Syntax Specification, W 3C Recommendation 22 February 1999. 2003.

Palmer, S. B. (2001). The Semantic Web: An Introduction. 2003.

Ramsdell, J. D . (2000). A Foundation for a Semantic Web.

Swartz, A. (2002). The Semantic Web (for Web Developers). 2003.

Swartz, A. and J. Hendler (2001). The Semantic Web: A Network o f Content for the

Digital C ity. Proceedings Second Annual Digital Cities Workshop, Kyoto, Japan.

W 3C "RDF Semantics."

W 3C "Semantic Web Activity Statement."

Westoby, L. (2003). A Pedantic Web: The trouble with hypermedia evolution. 3rd Annual

CM 316 Conference on Multimedia Systems, Southampton University, UK .

www.semanticweb.org. 2002.

179

http://www.w3
http://www.w3c.org/XML/
http://www.w3.org/Talks/2001/1102-semweb-fin/Overview.html
http://www.semanticweb.org

