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Cell-Based Drug Development, Screening, and Toxicology

Epigenetic Library Screen Identifies Abexinostat as
Novel Regulator of Adipocytic and Osteoblastic
Differentiation of Human Skeletal (Mesenchymal)
Stem Cells

DALIA ALI,a RIMI HAMAM,a MUSAED ALFAYEZ,a MOUSTAPHA KASSEM,a,b ABDULLAH ALDAHMASH,a,c

NEHAD M. ALAJEZa
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ABSTRACT

The epigenetic mechanisms promoting lineage-specific commitment of human skeletal (mesenchy-
mal or stromal) stemcells (hMSCs) intoadipocytesorosteoblasts are still not fully understood.Herein,
we performed an epigenetic library functional screen and identified several novel compounds, in-
cluding abexinostat, which promoted adipocytic and osteoblastic differentiation of hMSCs. Using
gene expression microarrays, chromatin immunoprecipitation for H3K9Ac combined with high-
throughput DNA sequencing (ChIP-seq), and bioinformatics, we identified several key genes involved
in regulating stem cell proliferation and differentiation that were targeted by abexinostat. Concor-
dantly, ChIP-quantitative polymerase chain reaction revealed marked increase in H3K9Ac epigenetic
mark on the promoter region of AdipoQ, FABP4, PPARg, KLF15, CEBPA, SP7, and ALPL in abexinostat-
treatedhMSCs. Pharmacological inhibition of focal adhesion kinase (PF-573228) or insulin-like growth
factor-1R/insulin receptor (NVP-AEW51) signaling exhibited significant inhibition of abexinostat-
mediated adipocytic differentiation, whereas inhibition of WNT (XAV939) or transforming growth
factor-b (SB505124) signaling abrogated abexinostat-mediated osteogenic differentiation of hMSCs.
Our findings provide insight into the understanding of the relationship between the epigenetic effect
of histone deacetylase inhibitors, transcription factors, and differentiation pathways governing adi-
pocyte and osteoblast differentiation. Manipulating such pathways allows a novel use for epigenetic
compounds in hMSC-based therapies and tissue engineering. STEMCELLSTRANSLATIONALMEDICINE

2016;5:1036–1047

SIGNIFICANCE

This unbiased epigenetic library functional screen identified several novel compounds, including
abexinostat, that promoted adipocytic andosteoblastic differentiation of human skeletal (mesenchy-
mal or stromal) stem cells (hMSCs). These data provide new insight into the understanding of the
relationship between the epigenetic effect of histone deacetylase inhibitors, transcription factors,
and differentiation pathways controlling adipocyte and osteoblast differentiation of hMSCs. Manip-
ulating such pathways allows a novel use for epigenetic compounds in hMSC-based therapies for tis-
sue engineering, bone disease, obesity, and metabolic-disorders.

INTRODUCTION

Human skeletal stem cells (also known as stromal
or mesenchymal stem cells) (hMSCs) are adult
multipotent stem cells that have the potential
to differentiate into distinct mesodermal lineage
cells, such as adipocytes, osteoblasts, chondro-
cytes, and myocytes [1].

Lineage-specific differentiation of MSCs is
determined by integrating microenvironmental
cues with intracellular signaling pathways, tran-
scriptional regulatory networks, and chromatin

remodeling [2]. Nevertheless, it has been report-
ed in several studies that epigenetic modulations
could affect key transcriptional factors shaping
gene expression and differentiation potentials
of embryonic stem cells [3]. The modulation of
chromatin structure through histone modifica-
tions includes acetylation, methylation and phos-
phorylation, and this modulation is referred to
collectively as epigenetic regulation [4].

Epigenetic modulation refers to modulation
of heritable changes in gene expression via
mechanisms other than alteration of the DNA
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sequence [5]. Histone acetylation is regulated by a balance of
the enzymatic activity of histone acetyltransferase and histone
deacetylase (HDAC) [6]. The two opposing enzymatic activities
of histone acetylation and deacetylation are important for the
activation of transcription [7] and regulation of gene expression
in eukaryotes [8]. HDACs regulate cell differentiation and mod-
ulate tissue-specific gene expressions, as has been demon-
strated in the development of neuron precursors in animal
studies [9] and in clinical trials as antiproliferative and proapop-
totic therapy against cancer [10, 11].

Several studies investigated the importance of chemical com-
pound inhibitors of HDACs for their possible therapeutic effects.
Inhibitors of HDACs (HDACi) induce hyperacetylation of histones,
followed by the activation of specific genes through relaxation of
the DNA conformation. Some HDACi have been tested for their
anticancer effects in different humanmalignancies [12, 13]. In ad-
dition, several studies investigated the effect of HDACi on stem
cell differentiation. HDACi enhanced osteoblast differentiation
of human dental pulp stem cells [14] and bone marrow MSCs
[10]. Dudakovic et al. [15] reported that HDACi promoted late
stagesofosteoblast differentiationvia increasinghistoneH4acet-
ylationand regulating insulin signalingpathway inmurineMC3T3.
Moreover, the observed promoting effects of HDACi on osteo-
blast differentiation have been attributed to their regulatory ef-
fects on runt-related-transcription factor 2, a key transcription
factor in osteoblast commitment [16–18]. Few studies examined
the changes inHDACduring adipocyte differentiation of extrame-
dullary fat [19–21]. Little is known about the effects of HDAC and
HDACi on bone marrow adipocyte differentiation and functions.

Herein we tested the effects of several chemical compounds
with effects on epigenetic state regulators and identified novel
compounds with significant effects on adipocyte and osteoblast
differentiation of hMSCs. One of these, abexinostat, was chosen
for follow-up studies. Using chromatin immunoprecipitation
combined with high-throughput DNA sequencing (ChIP-seq)
technology and ChIP quantitative polymerase chain reaction
(qPCR), we identified several key genes involved in regulating
MSC proliferation and differentiation as putative targets for
abexinostat.

MATERIALS AND METHODS

Epigenetic Library

An epigenetic library, purchased from Selleckchem Inc. (Houston,
TX, http://www.selleckchem.com), consisting of 24 active com-
pounds (Table 1), was tested in the current study. Initial screen
was conducted using 20, 100, and 500 nM.

Cell Culture

We used a telomerized hMSC line (hMSC-TERT) as a model for
bone marrow-derived MSCs. The hMSC-TERT line was created
through overexpression of the human telomerase reverse tran-
scriptase gene (hTERT) [22]. hMSC-TERT expresses all known
markers of primary hMSCs [22] and exhibits "stemness" charac-
teristics by being able to form bone and bone marrow microen-
vironment when implanted subcutaneously in vivo [22]. For the
sake of brevity, we refer to these cells as hMSCs in the rest of this
article.

Cells were cultured in basal culture medium of DMEM (sup-
plemented with 4,500 mg/l D-glucose, 4 mM L-glutamine, and

110 mg/l 10% sodium pyruvate, 10% fetal bovine serum [FBS],
1% penicillin-streptomycin, and 1% nonessential amino acids).
All reagents were purchased from Thermo Fisher Scientific Life
Sciences, Waltham, MA (http://www.thermofisher.com). Cells
were incubated in 5% CO2 incubators at 37°C and 95% humidity.
MSC-TERT cells were cultured to reach 80%–90% confluence be-
fore addition of the compounds. The compounds were added at
concentrations of 20, 100, or 500 nM for 24 hours. Afterward, the
cells were exposed to adipogenic or osteoblastic induction. Con-
trol cells were treated with basal medium containing dimethyl
sulfoxide (DMSO) as vehicle.

Adipogenic Differentiation

The adipogenic induction medium (AIM) consisted of DMEM
supplemented with 10% FBS, 10% horse serum (Sigma-Aldrich,
St. Louis, MO, http://www.sigmaaldrich.com), 1% penicillin-
streptomycin , 100 nM dexamethasone, 0.45 mM isobutyl methyl
xanthine (Sigma-Aldrich), 3 mg/ml insulin (Sigma-Aldrich), and 1
mM rosiglitazone (BRL49653). The AIM was replaced every 3 days.
Cells were assessed for adipogenic differentiation on day 7. In ad-
dition, cell pellets were collected for total RNA isolation and quan-
tificationusingquantitative real-time (RT)PCRofmRNAexpression.

Table 1. Characteristics of the 24 compounds used in the epigenetic
library screen

No. Name of compound Target

1 Quisinostat HDAC1, HDAC2, HDAC4,
HDAC10, HDAC11

2 Givinostat HD2, HD1B and HD1A

3 Panobinostat HDAC, HDAC

4 Trichostatin A HDAC

5 Vorinostat HDAC

6 Obatoclax mesylate Bcl-2

7 Belinostat HDAC

8 Abexinostat HDAC1, HDAC2, HDAC3,
HDAC6, HDAC8, DAC10

9 Dacinostat HDAC

10 Mocetinostat HDAC1, HDAC2, HDAC3

11 CUDC-907 PI3Ka, HDAC1, HDAC2,
HDAC3, HDAC10

12 M344 HDAC

13 Tacedinaline HDAC1

14 SRT1720 SIRT1

15 CUDC-101 HDAC, EGFR, HER2

16 Droxinostat HDAC3, HDAC6, HDAC8

17 MC1568 HDAC1A, HDAC1B

18 Pracinostat HDAC1, HDAC3, HDAC4,
HDAC5, HDAC9, DAC10

19 Selisistat SIRT1

20 AR-42 HDAC

21 Sodium valproate HDAC, Autophagy & GABA
receptor

22 PCI-34051 HDAC1, HDAC2, HDAC3,
HDAC6, HDAC8, HDAC10

23 Romidepsin HDAC1, HDAC2

24 Sirtinol SIRT1, SIRT2
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Oil Red O Staining

Adipogenic differentiation was determined by qualitative Oil Red
O staining for lipid-filled mature adipocytes. Cells were washed
with phosphate-buffered saline (PBS), fixed with 4% paraformal-
dehyde for 10minutes, and then incubatedwith freshlymade and
filtered (0.45 mM) Oil Red O staining solution (0.05 g in 60% iso-
propanol; Sigma-Aldrich) for 1 hour at room temperature. Images
were acquired using an inverted Zeiss microscope (Thornwood,
NY, http://www.zeiss.com).

Nile Red Staining

Nile red fluorescence quantification of adipogenesis was per-
formed using stock solution of Nile red (1 mg/ml) in DMSO that
was stored at 220°C protected from light. Staining was per-
formed on unfixed cells. Cultured differentiated cells were grown
in polystyrene flat-bottom 96-well tissue culture (TC)-treated
black microplates (Corning Inc., Corning, NY, http://www.
corning.com) andwashedoncewith PBS. Thedyewas then added
directly to the cells (5 mg/ml in PBS), and the preparation was in-
cubated for 10minutes at room temperature, then washed twice
with PBS. Fluorescent signal was measured using a SpectraMax/
M5 fluorescence spectrophotometer plate reader (Molecular De-
vices Co., Sunnyvale, CA, https://www.moleculardevices.com)
using the bottom well-scan mode, during which nine readings
were taken per well using excitation (485 nm) and emission
(572 nm) spectra. Furthermore, fluorescence images were taken
using a FLoid cell imaging station (Thermo Fisher Scientific Life
Sciences).

Osteogenic Differentiation

hMSCs were cultured as noted in the previous section and ex-
posed to osteogenic induction medium (DMEM containing 10%
FBS, 1% penicillin-streptomycin, 50 mg/ml L-ascorbic acid (Wako
ChemicalsGmbH,Neuss, Germany, http://www.wako-chemicals.
de/), 10 mM b-glycerophosphate (Sigma-Aldrich), 10 nM calci-
triol (1a,25-dihydroxyvitamin D3; Sigma-Aldrich), and 10 nM
dexamethasone (Sigma-Aldrich).

Alkaline Phosphatase Activity Quantification

To quantify alkaline phosphatase (ALP) activity in control and
osteoblast-differentiated hMSCs, we used the BioVision ALP ac-
tivity colorimetric assay kit (BioVision, Inc., Milpitas, CA, http://
www.biovision.com/) with some modifications. Cells were cul-
tured in 96-well plates under normal or osteogenic induction con-
ditions.Onday10,wellswere rinsedoncewithPBSandwere fixed
using 3.7% formaldehyde in 90% ethanol for 30 seconds at room
temperature; fixative was removed and 50 ml of p-nitrophenyl
phosphate solution was added to each well and incubated for
20–30 minutes in the dark at room temperature until a clear yel-
low color developed. Reactionwas subsequently stopped by add-
ing 20 ml of stop solution. Optical density was then measured at
405nmusing a SpectraMax/M5 fluorescence spectrophotometer
plate reader.

Inhibition of Focal Adhesion Kinase and Insulin-Like
Growth Factor-1R/Insulin Receptor Signaling During
Adipocytic Differentiation

hMSCs were cultured in Corning polystyrene flat-bottom 96-well
TC-treated black microplates; after exposure to abexinostat or

vehicle control for 24hours, normal culturemediumwas replaced
with adipogenic induction medium supplemented with focal ad-
hesion kinase (FAK) (PF-573228) at 5 mM (Selleckchem Inc.) or
insulin-like growth factor (IGF)-1R/insulin receptor (InsR) signal-
ing inhibitor (NVP-AEW51) at 5 mM (Selleckchem Inc.). Adipo-
genic medium supplemented with inhibitors was replaced every
2 days. Nile red fluorescence quantification of adipogenesis was
performed on day 7 as described earlier in the text.

Inhibition of WNT and Transforming Growth Factor b
Signaling During Osteogenic Differentiation

hMSCswerecultured in96-well plates; after exposure toabexinostat
or vehicle control for 24hours, normal culturemediumwas replaced
with osteogenic induction medium supplemented with WNT
(XAV939) at 1 mM (Sigma-Aldrich) or transforming growth factor
b (TGFb signaling inhibitor (SB505124) at 1 mM (Sigma-Aldrich).
Osteogenic medium supplemented with inhibitors was replaced
every 2 days. On day 10, ALP activity was measured as indicated
above.

RNA Extraction and cDNA Synthesis

Total RNA that was isolated from cell pellets after 7 days of adi-
pogenic differentiation and 9 days after osteogenic differentia-
tion using the Total RNA Purification Kit (Norgen Biotek Corp.,
Thorold, ON, Canada, https://norgenbiotek.com/) according to
the manufacturer’s protocol. The concentrations of total RNA
were measured using NanoDrop 2000 (ThermoFisher Scientific
Life Sciences). cDNA was synthesized using 500 ng of total RNA
and the ThermoFisher Scientific Life Sciences High Capacity cDNA
Transcription Kit according to manufacturer’s protocol.

qRT-PCR

Expression levels of adipogenic-related genes (FABP4 and AdipoQ)
andvalidationof selectedupregulatedgenes in themicroarraydata
were quantified using the Fast SYBR Green Master Mix and the
ViiA 7 Real-Time PCR device (ThermoFisher Scientific Life Sci-
ences). Primers used for gene expression analysis and validation
are listed in supplemental online Table 4. For osteoblast-related
gene expression, custom Taqman Low Density Array Cards were
used (ThermoFisher Scientific Life Sciences). The assay ID for
primer sets used for the osteoblast gene panel is provided in
supplemental online Table 5. The 2DCT value method was used
to calculate relative expression, and analysis was performed as
previously described [23].

HDAC Enzymatic Activity Assay

HDAC enzymatic activity in control or treated hMSC-TERT cells
was measured using HDAC-Glo I/II assay and screening system
(Promega Inc.,Madison,WI, http://www.promega.com/) accord-
ing tomanufacturer’s protocol. Briefly, 10,000 cells, volume of 50
ml, were seeded per well in a white-walled 96-well plate and in-
cubated with the inhibitor mixture at 37°C for 30 minutes. Tri-
chostatin A was used as a positive control (supplied with the
kit). HDAC-Glo I/II reagent (containing the substrate and the de-
veloper reagent) was added, and the solution was incubated at
room temperature for 45 minutes. Luminescence was measured
using a SpectraMax/M5 fluorescence spectrophotometer plate
reader.
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Gene Expression Profiling by Microarray

Total RNA of the samples was extracted using a Total RNA Purifi-
cation Kit (Norgen Biotek Corp.) according to the manufacturer’s
instructions. One hundred fifty nanograms of total RNA was
labeledusing a low inputQuick AmpLabeling Kit (Agilent Technol-
ogies, Santa Clara, CA, http://www.agilent.com) and then hybrid-
ized to the Agilent Human SurePrint G3 Human GE 8 3 60k
microarray chip. All microarray experiments were performed at
theMicroarray Core Facility (Stem Cell Unit, Department of Anat-
omy, King SaudUniversity College ofMedicine, Riyadh, Saudi Ara-
bia). The extracted data were normalized and analyzed using
GeneSpring 13.0 software (Agilent Technologies). Pathway anal-
yses were performed using the single experiment pathway anal-
ysis feature in GeneSpring 13.0 as described earlier. Two-fold
cutoff and p , .05 (Benjamini-Hochberg multiple testing cor-
rected) were used to determine significantly changed transcripts.

Immunoblotting

Total cellular protein was extracted with radioimmunoprecipita-
tion assay lysis solution (Norgen Biotek Corp.). Tenmicrograms of
the protein were resolved by Mini-PROTRANTGX Stain Free pre-
cast gels and transferred to a polyvinylidene fluoride (PVDF)
membrane by Trans-Blot Turbo Mini PVDF Transfer Pack (Bio-
Rad Laboratories, Hercules, CA, http://www.bio-rad.com/). Blots
were incubated with primary antibodies overnight at 4°C in Tris-
buffered saline-Tween (0.05%) with 5% nonfat milk at the desig-
nated dilution against acetyl-histone H3 (Lys9) (C5B11) rabbit
monoclonal antibody (mAb) (1:1,000; catalog no. 9649, Cell Sig-
naling Technology, Danvers, MA, http://www.cellsignal.com),
acetyl-histone H4 (Lys8) antibody (1:1,000; catalog no. 2594, Cell
Signaling Technology), and di-methyl-histone H3 (Lys4) (C64G9)
rabbitmAb (1:1,000; catalog no. 9725, Cell Signaling Technology).
The membrane was subsequently incubated with anti-rabbit IgG-
horseradishperoxidase (HRP)-linkedantibody (1:3,000; catalogno.
7074p2, Cell Signaling Technology).Membraneswere probedwith
HRP-conjugated anti-glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) antibody (1:10,000, ab9482; Abcam, Cambridge, MA,
http://www.abcam.com/) as loading control. Imaging was con-
ducted using the ChemiDoc MP imager (Bio-Rad Laboratories).
Band intensity was quantified using the band quantification
tool in Image Laboratory 5.0 software (Bio-Rad Laboratories).
Datawere presented as fold increase of normalized (to GAPDH)
signal intensity of abexinostat-treated compared with DMSO-
treated cells.

ChIP-Seq and ChIP-qPCR Validation

hMSC-TERT cells (vehicle or treated for 24 hours with abexinostat)
pooled from three biological replicas were fixed with 1%
formaldehyde for 15minutes andquenchedwith0.125Mglycine.
Chromatin was isolated by the addition of lysis buffer and disrup-
tion with a Dounce homogenizer. Lysates were sonicated and the
DNA sheared to an average length of 300–500 base pairs (bp). Ge-
nomic DNA (input) was prepared by treating aliquots of chroma-
tin with RNase, proteinase K, and heat for de-crosslinking,
followed by ethanol precipitation. Pellets were resuspended,
and the resultingDNAwas quantified on aNanoDrop spectropho-
tometer. Extrapolation to the original chromatin volume allowed
quantitation of the total chromatin yield. An aliquot of chro-
matin (30 mg) was precleared with protein A agarose beads
(Thermo Fisher Scientific Life Sciences). Genomic DNA regions

of interest were isolated using antibodies against H3K9Ac. Com-
plexes were washed, eluted from the beads with SDS buffer, and
subjected to RNase and proteinase K treatment. Crosslinks were
reversed by incubation overnight at 65°C, and ChIP DNA was pu-
rified by phenol-chloroform extraction and ethanol precipitation.

For quality assurance, qPCR reactionswere carried out in trip-
licate on specific genomic regions using SYBR Green Supermix
(Bio-Rad). The resulting signals were normalized for primer effi-
ciency by carrying out qPCR for each primer pair using input DNA.

Illumina sequencing libraries were prepared from the ChIP
and input DNAs by the standard consecutive enzymatic steps of
end-polishing, dA-addition, and adaptor ligation. After a final
PCR amplification step, the resulting DNA libraries were quanti-
fied and sequenced on NextSEquation 500 (75-nt reads, single
end) (Illumina, San Diego, CA, http://www.illumina.com). An av-
erage of 34 million SE75 reads per sample were acquired. Reads
were aligned to the human genome (hg19) using the Burrows-
Wheeler alignment algorithm (default settings). Duplicate reads
were removed, andonly uniquelymapped reads (mappingquality
$ 25) were used for further analysis. Alignments were extended
in silico at their 39 ends to a length of 200 bp, which is the average
genomic fragment length in the size-selected library, and
assigned to 32-nt bins along the genome. The resulting histo-
grams (genomic “signal maps”) were stored in bigWig files. Peak
locations were determined by using the model-based analysis of
ChIP-Seq algorithm (version 1.4.2) with a cutoff p value of 1e-7
(H3K9Ac). Signalmaps and peak locationswere used as input data
to the Active Motif proprietary analysis program (Active Motif,
Carlsbad, CA, http://www.activemotif.com), which creates Excel
tables containing detailed information on sample comparisons,
peak metrics, peak locations, and gene annotations. Average sig-
nal peak for each treatment condition (post-normalization) and
the location of signal obtained (upstream, in gene, downstream)
are listed in supplemental online Table 2. The fold changewas cal-
culated by dividing the peak signal from abexinostat-treated
hMSCs to that obtained from DMSO control-treated hMSCs.

qPCR validation was subsequently conducted on an indepen-
dent set of samples. An aliquot of chromatin (30mg)was precleared
withproteinAagarosebeads (ThermoFisherScientific LifeSciences).
Genomic DNA regions of interest were isolated using 4 mg of anti-
body against H3K9Ac (catalog no. 39917; Active Motif). Complexes
werewashed, eluted from the beadswith SDS buffer, and subjected
to RNase and proteinase K treatment. Crosslinks were reversed by
incubation overnight at 65°C, and ChIP DNA was purified by
phenol-chloroform extraction and ethanol precipitation.

The qPCR reactions were carried out in triplicate on specific
genomic regions using SYBR Green Supermix (Bio-Rad). Primer
sequences used for the ChIP-qPCR experiment are listed in
supplemental online Table 6. The resulting signals were normal-
ized for primer efficiency by carrying out qPCR for each primer
pair using input DNA. Data are presented as mean binding events
detected per 1,000 cells. All ChIP-Seq and ChIP-qPCR experiments
and data analyses were conducted by Active Motif.

RESULTS

Epigenetic Library Screen Identified Novel Chemical
Compounds That Promoted Adipocytic Differentiation
of hMSCs

An epigenetic library of 24 chemical compounds was used for the
initial screen. The initial screen was conducted using three
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different doses: 20 nM, 100 nM, and 500 nM. Data presented in
Figure 1 represent the 500-nM dose. Each compound was incu-
bated with hMSCs for 24 hours at a concentration of 500 nM;
cells were subsequently induced to mature adipocytes (ADs).
On the basis of their ability to promote adipocyte differentiation
(Fig. 1), eight compounds (abexinostat, dacinostat, CUDC-907,
MC-1568, pracinostat, AR-42, PCI-34051, sirtinol) were chosen
for further investigation. Gene expression analysis revealed ele-
vated expression of AdipoQ in hMSCs treated with abexinostat,
CUDC-907, pracinostat, and AR-42, whereas significant upregula-
tion of FABP4was observed in hMSCs treated with all eight com-
pounds compared with DMSO control (Fig. 2A).

Abexinostat Promoted Adipocytic Differentiation of
hMSCs Through Induction of Several
Proadipocytic Genes

We chose abexinostat for further investigation because it yielded
the most consistent effects and its role in adipocyte differentia-
tion of hMSCs has not previously been studied. We confirmed
the effects of abexinostat in independent experiments. The cells
were incubated for 24 hours with abexinostat (500 nM), followed
by incubation in AIM for 7 days. As shown in Figure 2B, hMSCs dif-
ferentiated readily into mature lipid-filled ADs, as demonstrated
by positive staining for Nile Red (Fig. 2B). In addition, quantifica-
tion of Nile red staining of adipocytes showed a significant in-
crease after treatment with abexinostat (p, .001) (Fig. 2C).

To understand the molecular process by which abexinostat
promoted adipocytic differentiation, we performed global gene
expression profiling comparing abexinostat-treated and vehicle-
treated control cells following adipocytic differentiation. Figure 3

illustrates hierarchical clustering based on upregulated tran-
scripts and revealed clear separation of the abexinostat-
treated and vehicle-treated control cells. We identified 1394
genes that were significantly upregulated (fold change $ 2.0;
p (Corr), .05) (supplemental online Table 1). Pathway analysis
of theupregulated genes revealed strong enrichment for several
cellular processes involved in adipocyte differentiation (e.g.,
adipogenesis, insulin-signaling, and focal adhesion). The top
10 significantly enriched pathways are illustrated in Figure 3B.
The expression of selected adipocyte-related gene panel from
the microarray data (CEBPA, LPL, ACACB, NOG, LIPE, PCK1,
APOC3, CNTFR, IL1RL1, and CXCL13) was subsequently validated
using qRT-PCR. This testing collectively corroborated the micro-
array data and demonstrated significant upregulation of those
genes in abexinostat-treated cells, except for ACACB, LIPE,
and CXCL13, which exhibited slight upregulation that was not,
although statistically significant (Fig. 3C). Among the identified
pathways, FAK and insulin signaling weremore prominent given
their known role in regulating adipocytic differentiation of hMSCs.
Pharmacological inhibition of FAK (PF-573228) or IGF-1R/InsR
(NVP-AEW51) signaling abrogated abexinostat-mediated adipo-
cytic differentiation of hMSCs, thus implicating those pathways
in this process (Fig. 3D).

Abexinostat PromotedAdipogenesis Through Inhibition
of HDAC Activity

To identify the molecular mechanism by which abexinostat
promotes adipocytic differentiation, hMSCs were treated with
abexinostat or vehicle for 24 hours. Different histonemarks were
assessed using Western blotting. Data presented in Figure 4A

Figure 1. Epigenetic chemical compound library screen for the effect of 24 compounds on adipocytic differentiation of human skeletal (mes-
enchymal) stem cells (hMSCs). Representative Oil Red O staining of lipid-filled mature adipocytes on day 7 after treatment with the indicated
compounds (500 nM). Images were taken at320 magnification using a Zeiss inverted microscope. Abbreviation: DMSO, dimethyl sulfoxide.
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showed increased levels of H3K9Ac, H3K4me2, and H4K8ac, all
known to be associated with actively transcribed genomic re-
gions. As expected, we observed a significant decrease in HDAC
activity in abexinostat-treated cells compared with vehicle con-
trol cells (p , .001) (Fig. 4B). Trichostatin A-treated cells were
used as positive control.

ChIP-Seq and ChIP-qPCR Data Revealed Significant
Enrichment in Multiple Pathways Related to Stem
Cell Differentiation

We subsequently sought to determine the genomic regions tar-
geted by abexinostat in hMSCs. Therefore, hMSCs were treated
with abexinostat for 24 hours, and subsequently we performed
immunoprecipitation using an antibody against H3K9Ac, a his-
tone mark that was markedly increased in abexinostat-treated
hMSCs (Fig. 4A). The precipitated genomic DNA was then sub-
jected to next-generation sequencing and bioinformatics analy-
sis. Data presented in Figure 4C and 4D revealed the pull-down
of a large number of genes in the abexinostat- and vehicle-
treated cells. Although there were 12,105 common genes in
the abexinostat- and the control-treated cells, abexinostat-
treated cells revealed 306 unique genes (Fig. 4D and 4E).
Supplemental online Table 2 lists all genes from the ChIP-Seq
data that were enriched (1,484 genes $ 1.5-fold) when the
abexinostat-treated cells were compared to the vehicle-treated
controls. Pathway analysis performed on the genes that were sig-
nificantly enriched in the abexinostat group revealed enrichment
in different cellular processes related to cell differentiation,

osteoblast differentiation, lipid metabolism, and Wnt pathway
(Fig. 4F; supplemental online Table 3). Enrichment of H3K9Ac epi-
genetic mark on the promoter region of selected panel from the
ChIP-Seq data or genes involved in adipogenic and osteoblastic
differentiation of hMSCs (AdipoQ, FABP4, PPARg, KLF15, SP7,
CEBPA, and ALPL) was subsequently validated using ChIP-qPCR
on an independent set of samples (Fig. 4G), which demonstrated
a significant increase in H3K9ac signal in the promoter regions of
those genes in abexinostat-treated hMSCs.

Effects of Abexinostat on Osteoblastic Differentiation
of hMSCs

Interestingly, ChIP-Seq and ChIP-qPCR data revealed significant
enrichment in pathways related to osteogenesis (osteoblast dif-
ferentiation andWnt receptor signaling). Therefore, we assessed
the effect of abexinostat in combination with osteogenic induc-
tion medium on the osteoblastic differentiation of hMSCs. As
anticipated, higher ALP staining was observed in abexinostat-
treated cells compared with vehicle-treated controls (Fig. 5A).
Similarly, ALP quantification performed on day 10 revealed signif-
icantly higher ALP activity in the abexinostat-treated cells com-
pared with the control (p , .001) (Fig. 5B). In addition,
the expression of several osteoblast-related genes (COL1A1,
SPARC, VCAM1, TGFB2, ALPL, and NOG) was upregulated in
abexinostat-treated cells (Fig. 5C). Concordantly, inhibition of
WNT and TGFb signaling using XAV939 or SB505124 significantly
abrogated abexinostat-mediated osteogenic differentiation of
hMSCs, respectively (Fig. 5D).

Figure 2. Effects of epigenetic chemical compounds on adipocytic differentiation of human skeletal (mesenchymal) stem cells (hMSCs). (A):
Quantitative real-time polymerase chain reaction analysis for adipocyticmarker genes (FABP4 andAdipoQ) of hMSCs treatedwith the indicated
nine chemical compounds and vehicle-treated control. Gene expression was normalized to glyceraldehyde-3-phosphate dehydrogenase. Data
are presented asmean fold change6 SEM (n = 6) from two independent experiments. p, p, .05; pp, p, .005. (B):Nile red staining on day 7 of
postadipocytic inductionofhMSCsandafter exposure toabexinostat (500nM). Imageswere takenat320magnificationusing FLoid cell imaging
station. (C): The level of Nile red staining from part (B) was quantified using a fluorescent microplate reader. Data are representative of three
independent experiments and are presented as mean 6 SEM. n = 16. ppp, p , .0005. Abbreviations: DMSO, dimethyl sulfoxide; n.s., not
significant.
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DISCUSSION

Stem cell-based therapeutics requires development of ap-
proaches that enhance stem cell self-renewal, with the aim of
obtaining a large number of cells needed for therapy and/or

directing their differentiation before their clinical transplantation.
Traditionally, these approaches have been achieved using hor-
mones or growth factors/cytokines (e.g., colony-stimulating fac-
tors, erythropoietin, vitamin D or dexamethasone have been
reported to enhance stem cell survival and mobilization [24]).

Figure 3. DNA microarray gene expression profiling of adipocyte-differentiated human skeletal (mesenchymal) stem cells (hMSCs) after
abexinostat treatment. (A): Hierarchical clustering of abexinostat-treated versus vehicle-treated control adipocytes, based on differentially
expressedmRNA transcripts. Each column represents one replica and each row represents a transcript. Expression levels of each gene in a single
sample are depicted according to the color scale. (B): Pie chart illustrating the distribution of the top 10 enriched pathway categories in
abexinostat-treated cells comparedwith vehicle-treated controls. (C):Validationofupregulatedgenesduring adipocytedifferentiationbyquan-
titative real-time polymerase chain reaction. Gene expression was normalized to glyceraldehyde-3-phosphate dehydrogenase. Data are pre-
sented as mean fold changes 6 SEM compared with DMSO controls; n = 6 from two independent experiments.p, p , .05; ppp, p , .0005
between abexinostat-treated and DMSO-treated control cells. (D): Nile red quantification on day 7 after adipocytic induction of hMSCs ex-
posed to DMSO control or abexinostat (500 nM) in the presence or absence of focal adhesion kinase (PF-573228, 5 mM) or insulin-like
growth factor-1R/insulin receptor (NVP-AEW51, 5 mM) inhibitors. Data are presented as mean6 SEM; n = 12 from two independent experi-
ments.ppp,p, .0005betweeneach treatment condition comparedwithDMSO-treated control cells. Abbreviations:DMSO,dimethyl sulfoxide;
n.s., not significant.
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Figure 4. H3K9Ac chromatin immunoprecipitation for H3K9Ac combined with high-throughput DNA sequencing (ChIP-Seq) analysis of
abexinostat-treated human skeletal (mesenchymal) stem cells (hMSCs). (A): Western blot analysis of histone acetylation (H3K9Ac and
H4K8ac) or methylation (H3K4me2) of abexinostat-treated cells (24 hours) versus vehicle-treated controls. Data are presented as fold increase
ofnormalized (toGAPDH)signal intensityofabexinostat-comparedwithDMSO-treatedcells. (B):Quantificationoftotal cellularhistonedeacetylase

(Figure legend continues on next page.)
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However, using small molecule chemicals is an attractive alterna-
tivebecauseof their easeofuse, transient effects, and lowcost [25,
26]. Recently, studies using epigenetic modifiers in the form of
chemical compounds have been used because of their ability to al-
ter histone acetylation/methylation or DNA methylation status,
thereby regulating stem cell self-renewal or lineage-specific differ-
entiation [27]. HDACi were successful in enhancing self-renewal of
embryonic and stromal stem cells [28, 29]. We have previously re-
ported that manymicroRNAs can regulate adipocyte or osteoblast
differentiation of hMSCs through epigenetic-mediated mecha-
nisms [30–32]. In thecurrentstudy,wecorroborated these findings
because we demonstrated that the chemical compound HDACi
promoted adipocytic and osteoblastic differentiation of hMSCs.

Among the initially screened compounds, we identified
abexinostat, which is a novel HDACi targeting HDAC 1, 2, 3, 6,
and 10 [33]. We observed that abexinostat is a potent inducer
of adipogenesis, based on its ability to enhance formation of ma-
ture lipid adipocytes and enrichment of the adipocytic molecular
signature of hMSCs following short-term treatment.

We observed that abexinostat induced adipocyte differen-
tiation through upregulation of adipocyte-associated transcrip-
tional factors known to be required for adipocyte differentiation
(e.g., peroxisome proliferator-activated receptor g [PPARg2] and
CCAAT/enhancer binding protein a [CEBPA]) [34–36]. PPARg2 is
widely accepted as an important regulator during adipogenesis,
which is produced abundantly by white and brown adipocytes as

(Figure legend continued from previous page.)
(HDAC) enzymatic activity of abexinostat-treated hMSCs (30minutes) compared with vehicle-treated cells. Trichostatin A (HDAC inhibitor) was
used as a positive control. Data are presented as mean6 SEM (n = 11) from two independent experiments. ppp, p, .0005. (C): Scatter plot
depicting the correlation between ChIP-Seq targets identified in the vehicle-treated versus abexinostat-treated hMSCs. (D): Venn diagram
depicting the overlap between genes identified via ChIP-Seq in the vehicle-treated controls versus abexinostat-treated hMSCs. (E): Promoter
heat map for ChIP-Seq data in vehicle-treated versus abexinostat-treated hMSCs. Input DNA was used as reference. (F): Top 35 pathways for
identified genes from theChIP-Seq data thatwere enriched in abexinostat-treated cells comparedwith vehicle-treated control hMSCs (1.5-fold)
presented as pie chart, wherein size of slice corresponds to fold enrichment. Selected enriched pathways are indicated. (G):H3K9Ac ChIP-qPCR
validation for selected gene promoters regions (AdipoQ, FABP4, PPARG, CEBPA, KLF15, SP7, and ALPL) in abexinostat- vs DMSO-treated hMSCs.
Data are presented as mean binding events detected per 1,000 cells6 SD; n = 3. Abbreviations: DMSO, dimethyl sulfoxide; GAPDH, glyceral-
dehyde-3-phosphate dehydrogenase.

Figure5. Effect of abexinostat treatmentonosteoblastic differentiationofhuman skeletal (mesenchymal) stemcells (hMSCs). (A):ALP staining
for abexinostat-treated and vehicle-treated control cells assessed on day 10 after osteoblast differentiation induction (original magnification,
35). (B):Quantification of ALP activity in abexinostat-treated versus vehicle-treated control cells. Data are presented as mean6 SEM (n = 20).
(C):Quantitative real-time polymerase chain reaction analysis of osteoblast-specific gene markers (COL1A1, SPARC, VCAM1, TGFB2, ALPL, and
NOG). Gene expression was normalized to that of glyceraldehyde-3-phosphate dehydrogenase. Data are presented as mean 6 SEM of fold
change compared with control cells; n = 9. ppp, p, .0005. (D):Quantification of ALP activity in abexinostat-treated versus vehicle-treated con-
trol cells and induced intoosteoblasts (D10) in the absence or presence ofWNT (XAV939) or transforming growth factorb (SB505124) inhibitors.
Data are presented as mean percentage ALP activity6 SEM, n = 20. pp, p, .005; ppp, p, .0005. Abbreviations: ALP, alkaline phosphatase;
DMSO, dimethyl sulfoxide.
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well as bone marrow adipocytes [35], and its expression is consid-
ered as a marker of mature bone marrow adipocytes [37].

We observed that the chromatin structure, particularly at
the level of the H3 histone core of the nucleosome, exhibited
a marked increase in acetylation in abexinostat-treated cells
H3K9Ac. Such modifications are likely to facilitate the active
state of the chromatin and to increase the accessibility of tran-
scription factors to their target genes [35, 38–40]. In agree-
ment with Western blotting results, ChIP-Seq data revealed
dynamic alterations in histone modification after treatment
with abexinostat. Among the genes identified by ChIP-seq anal-
ysis were Kruppel-like factors (KLFs), which are a family of C2H2
zinc finger proteins that regulate adipocyte differentiation [41]
and induceexpressionof insulin-sensitiveGLUT4 inmuscles and
adipose tissue [42]. Mori et al. [41] showed that KLF15 acts syn-
ergistically with CEBPA to induce adipogenesis via increasing

the activity of PPARg2. CEBPA and PPARg2 act reciprocally to
induce many adipogenic genes, such as FABP4 and AdipoQ,
that sustain their expression via a positive feedback loop and
result in mature adipogenic differentiation [43]. Interestingly,
ChIP-qPCR demonstrated a marked increase in H3K9ac in the
promoter region of KLF15, CEBPA, and PPARg in abexinostat-
treated hMSCs.

Another marker that was upregulated in our ChIP-Seq data is
the zinc finger protein 423, which was identified as a basic tran-
scription factor involved in the commitment phase of adipogenic
differentiation ofMSCs [44]. In addition to transcriptional factors,
several proteoglycans were upregulated, including chondroitin
4-sulfate glycosaminoglycan, chondroitin sulfate, and chondroitin
sulfate proteoglycan. Proteoglycans exert a functional role in cell
growth and cell differentiation of many cell types, including pre-
adipocytes of 3T3-L1 cells, where they have been reported to

Figure 6. A working model of the molecular mechanisms of HDACi (e.g., abexinostat) on human skeletal (mesenchymal) stem cell differen-
tiation into adipocytes and osteoblasts. (A): In early adipogenesis, the synergistic interaction of KLF15 and CEBPA induces the expression of
PPARg. PPARg in turn interacts with CEBPA to produce FABP4 and AdipoQ genes involved in the expression of mature adipocyte phenotype.
(B):HDACi-induced conicalWNT signaling pathway.WNT interacts with LRP/FZD receptor complexes, which leads to stabilization and increases
in the intracellular levels ofb-catenin; the latter, in turn, translocates into nucleus and forms a complexwith TCF/LEF, inducing osteogenic gene
transcription (details are provided in main text). p, genes identified from the chromatin immunoprecipitation for H3K9Ac combined with high-
throughputDNAsequencing data; $, genes identified fromthe geneexpressionmicroarray data.Abbreviations: BMAD, bonemarrowadipocyte;
HDACi, histone deacetylase inhibitors.
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create a loose extracellular space between cells that will be occu-
pied by the enlarged adipocytes during differentiation [6].

Inaddition to its effectsonadipocytedifferentiation, abexinostat
enhanced osteoblast differentiation of hMSCs, and ChIP-Seq
data revealed enrichment in two pathways: osteoblast differen-
tiation andWnt receptor signaling. Wnts are soluble lipoproteins
that form a large family of secreted molecules known to play a
critical role in stem/progenitor self-renewal and differentiation
[45,46]. Wnts interact with receptor complexes that are formed
by LRP5/LRP6 and Frizzled proteins. We observed that theseWnt
receptor proteins were upregulated in our ChIP-Seq data, sug-
gesting enhancement ofWnt signaling. The conical Wnt signaling
involves the stabilization of levels of B-catenin, which in turn
translocate into the nucleus and form a complexwith T-cell factor
(TCF)/lymphoid enhancer-binding factor, inducing target gene
transcription [47]. Wnt signaling has been investigated and
reviewed for its important role inMSCosteoblasticdifferentiation
[45, 48–55]. The effect of HDACi onWnt signaling and the activa-
tion of gene transcription of downstream genes (e.g., fibronectin,
osteonectin, osteopontin, andmitogen-activated protein kinase),
bone morphogenetic proteins, and members of the TGFb super-
familymay lead to enhanced osteoblastic commitment of hMSCs.

DifferentiationofhMSCs intoadipocytic andosteoblastic cells
is usually considered to consist of two phases: the lineage com-
mitment phase and thematuration phase. Abexinostat enhanced
both osteoblast and adipocyte differentiation, and thus it is plau-
sible that it targets the initial phase of commitment of hMSCs to
both adipocytic and osteoblastic lineages. The previously men-
tioned and discussed data from DNA microarrays and ChIP-seq
corroborate this hypothesis because they clearly demonstrate
the induction of multiple gene and genetic pathways associated
with hMSC lineage commitment. This hypothesis and its potential
molecular mechanism are illustrated in our current working
model (Fig. 6). Interestingly, despite marked global increase in
H3K9Ac, we observed overall fewer enriched genes in the
abexinostat-treated cells compared with the control (Fig. 4D).
Therefore, it seems as if abexinostat is targeting specific genomic
regions,whichnormally have lowH3K9Ac, including those related

to hMSCdifferentiation. On the other hand, geneswith high basal
H3K9ac signal are not benefiting much from abexinostat. Thus,
acetylation marks appear to be being diverged from genes with
high basal H3K9Ac signal (such asGAPDH) to thosewith low basal
H3K9Ac signal (such as CEBPA, PPARg, SP7, and ALPL). Nonethe-
less, a plausible role for abexinostat in targeting non-H3K9 resi-
dues for acetylation or the increase in hMSC commitment
could also contribute to the observed phenotype.

CONCLUSION

Our data identified abexinostat as a novel compound promoting
adipocytic and osteoblastic differentiation of hMSCs and pro-
vided new insight into the understanding of the relationship be-
tween the epigenetic effect of HDACi, transcription factors, and
differentiation pathways governing adipocyte and osteoblast dif-
ferentiation. Manipulating such pathways provides a novel use
for epigenetic compounds in hMSC-based therapies.
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Krüppel-like factor 15 (KLF15) in transcriptional
regulation of adipogenesis. J Biol Chem 2005;
280:12867–12875.
42 Gray S, Feinberg MW, Hull S et al. The
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