
When Teams Go Crazy: An Environment to Experience
Group Dynamics in Software Project Management Courses

Marco Kuhrmann
University of Southern Denmark

Mærsk Mc-Kinney Møller Institute
Odense, Denmark

kuhrmann@acm.org

Jürgen Münch
University of Helsinki

and Reutlingen University
Helsinki, Finland

juergen.muench@cs.helsinki.fi

ABSTRACT
Software development consists to a large extend of human-
based processes with continuously increasing demands re-
garding interdisciplinary team work. Understanding the dy-
namics of software teams can be seen as highly important to
successful project execution. Hence, for future project man-
agers, knowledge about non-technical processes in teams is
significant. In this paper, we present a course unit that pro-
vides an environment in which students can learn and expe-
rience the impact of group dynamics on project performance
and quality. The course unit uses the Tuckman model as
theoretical framework, and borrows from controlled experi-
ments to organize and implement its practical parts in which
students then experience the effects of, e.g., time pressure,
resource bottlenecks, staff turnover, loss of key personnel,
and other stress factors. We provide a detailed design of the
course unit to allow for implementation in further software
project management courses. Furthermore, we provide ex-
periences obtained from two instances of this unit conducted
in Munich and Karlskrona with 36 graduate students. We
observed students building awareness of stress factors and
developing counter measures to reduce impact of those fac-
tors. Moreover, students experienced what problems occur
when teams work under stress and how to form a performing
team despite exceptional situations.

Categories and Subject Descriptors
D.2.9 [Software Engineering Management]: Life cycle,
Productivity, Software quality assurance

Keywords
Software Project Management, Experimentation, Group Dy-
namics, Tuckman Model, Agile

1. INTRODUCTION
Software Engineering is an interdisciplinary field and thus

requires educating students in a way that enables them to

efficiently and effectively work in interdisciplinary teams.
Especially in agile software development, the team has be-
come that unit ensuring a project’s success by applying
self-organization, fast communication, and close collabora-
tion [18]. Therefore, it is essential to not only teach stu-
dents the Software Engineering basics, such as software de-
sign, implementation, integration, or test, but also to build
awareness of how software is developed in teams, and what
fosters and what compromises software projects beyond the
technical aspects. A number of studies analyze for instance
the impact of team structure [31], team members’ personal-
ity [5,14], or soft factors in general [27] on the team perfor-
mance. Team performance, among other things, influences
cost and quality of the product under development [12], and
project managers must also consider the relation of teams
and project risks [15,29]. That makes understanding of how
teams are formed and how they work (including all the“bad”
things that can happen) an important topic in Software En-
gineering education.

However, project management is hard to teach: The basic
knowledge is taught in class and then students practice se-
lected project management techniques in exercises, labs, or
smaller projects. Yet, even though considered of high prac-
tical value, those projects also have the goal to deliver some
software to (external) clients, i.e., there is a certain pressure
to deliver code, which builds the common ground for the
teams, but also shifts the focus to coding and away from
other activities, such as collaboration, documentation, or
learning from failures. Hence, students have little opportu-
nities to experience the real stress factors that make project
managers suffer; or even make projects fail. This makes
software project management as a subject fairly abstract,
even though teachers quite often have extensive knowledge
to share.

Problem Statement & Objective. Project management
as part of Software Engineering education is often taught
on a fairly abstract level delivering fundamental knowledge
about, e.g., organization and planning activities, estimation,
and controlling. The team as the vital element is introduced
and different theories, models, and strategies of how to set
up and work in teams are taught. Yet, students usually
have few options to experience how those theories and mod-
els manifest in practice.

Our objective is to provide an environment in which the
software development activities move to the background and
students can focus on experiencing different situations in
self-organizing teams from a project management perspec-
tive. Therefore, we want the students to experience differ-

© ACM. PREPRINT. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in the conference/workshop proceedings.

DOI: http://dx.doi.org/10.1145/2889160.2889194

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Southern Denmark Research Output

https://core.ac.uk/display/50716981?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ent stress factors, settings in which people explicitly attack
a team and how to handle such situations under stress, and
we want to provide the students with the opportunity to ex-
perience (close-to-)failure situations.

Contribution. The present paper provides a detailed de-
scription of a course unit to be included in software project
management courses. The course unit uses the Tuckman
model [28] as theoretical framework and comprises a prac-
tical part that is organized according to the structure of
controlled experiments [30]. The overall goal of the course
unit is to provide students with an environment in which
they can experience stressful situations. The presented unit
was conducted twice at two different universities, and was
considered a valuable exercise. Different quantitative as well
as qualitative analyses (e.g., video analysis) show this unit
a valuable learning experience for the students.

Outline. The remainder of the paper is structured as fol-
lows: In Sect. 2, we discuss related work. Section 3 provides
context information about the overall course structure and
the course unit design in particular. Section 4 presents the
analysis, discussion, and a summary of lessons learned. We
conclude the paper in Sect. 5.

2. RELATED WORK
Basili et al. [3] were among the first to present a framework

and a process for experimentation for Software Engineering.
Experimentation was mainly used for research purposes in
Software Engineering (with all challenges and risks as dis-
cussed by Runeson [26]), but got only little appreciation as
a teaching tool. Nonetheless, experimentation as a means
to improve teaching has proved successful over the years in
many disciplines. For instance, Parker [24] mentions experi-
ments became widespread teaching tools in economics in the
1990s. Nowadays, many economists use experiments as ed-
ucational tools and mention several benefits, e.g., they are
distinctive and more participative, and students are likely
to remember lessons associated with them. Finally, Parker
mentions experiments are considered fun. Another impor-
tant source for classroom experiments is the SERC Portal for
Pedagogy in Action, created by Ball et al. [2]. The repository
includes a comprehensive list of experiments from different
disciplines that can be used for replication in classroom set-
tings. In addition, it contains references to scientific studies
that provide empirical evidence about the expected positive
effects of experiments as teaching tools.

However, an important conclusion Dillon [10] draws from
his overview of advantages and disadvantages of experiments
is that successful observation of a phenomenon as part of
an empirical study should not be an end in itself. Rather,
students should have enough time to get familiar with the
related ideas and concepts associated with the phenomenon.
This leads to a discussion on the suitability of experiments
in teaching. In order to make experiments a useful tool,
Parker [24] recommends considering three criteria: (i) the
experiment must be aligned with the central topic of the
course, (ii) the concept to be taught through the experi-
ment should not be easily understood without the experi-
ment or already obvious, and (iii) students need to be able
to quickly learn the necessary prerequisites for participat-
ing in the experiment. Finally, as we mentioned previously
in [19], teachers must not be ignored, as conducting experi-
ments in classroom settings generates (extra) effort.

Projects, Success
Factors, Agility

Agile Methods

Cost and Effort
Estimation

Planning

Agile RE

Development and
Testing (incl. GSE)

Experiment on Group Dynamics

Documentation,
Modeling, Integration

Scaling Agile

Experiment on Distributed Development

Teams and Group
Dynamics

Contracting

Le
ct

ur
e

E
xe

rc
is

e
M

od
el

 +

se
lf-

di
re

ct
ed

 le
ar

ni
ng

 (i
nc

l.
pr

es
en

tin
g

an
d

w
ri

tin
g)

Guest Lecture

4 hours per
session

Experiment Review

Experiment Review

Figure 1: Basic organization of the APM course.

Experimentation in Software Engineering education is usu-
ally used at the level of engineering processes, i.e., qual-
ity assurance and test [13,16], Global Software Engineering
(GSE; [17,25]), process modeling [20,22], or Software Engi-
neering in general, e.g., [4, 9, 23]. Finally, newer approaches
integrate (continuous) experimentation and close collabo-
ration between academia and industry with the principles
of Lean software and product development, e.g., [11, 21].
The present paper extends the body of knowledge with an
experiment-based course unit in the field of software project
management. We provide a course unit design and results
from two instances focusing on self-organizing teams that
allows students exploring and experiencing effects of group
dynamics, which occur oftentimes in (increasingly agile or-
ganized) high-performance project teams.

3. GENERAL COURSE UNIT DESIGN
In this section, we provide the design of the course unit

on group dynamics. We, provide an overview of the overall
course context in Sect. 3.1. Learning goals are presented
in Sect. 3.2. The theoretical model and the instrument to
implement the practical parts are presented in Sect. 3.3 and
Sect. 3.4 respectively.

3.1 Course Context
We present the overall design of the course “Agile Project

Management & Software Development” (APM), which fol-
lows the pattern presented in [19, 20]. Figure 1 illustrates
the general course organization and the course’s content.
The course consists of 4-hour sessions and comprises three
phases: In phase 1, the scene is set, topics are introduced,
and students are assigned their “special topics”, which they
have to prepare for phase 2. In the second phase, the course

© ACM. PREPRINT. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in the conference/workshop proceedings.

DOI: http://dx.doi.org/10.1145/2889160.2889194

pattern changes: instead of “classic” lectures and exercises,
the sessions follow a workshop model, whereas the work-
shops are composed of lecture- and exercise parts to which
students actively contribute by presenting their “special top-
ics”, and the workshops also contain creativity tasks and
discussion rounds. Furthermore, in this phase, selected ses-
sions are devoted to more comprehensive exercises, such as
the unit presented in the paper at hand. The third phase
deals with wrapping up the course, provides time for guest
lectures, and allows for preparing the exams.

3.2 Course Unit Learning Goals
As part of an advanced course on project management, the

goal of this course unit is to enable students understanding
the impact of group dynamics on project management, espe-
cially, team performance and result quality (Figure 1 shows
the other course units providing required input and context).
In particular, we define the following learning goals:

Learning Goal 1: How to come to a working team quickly?
This learning goal addresses the students’ ability to quickly
come together, develop and implement work strategies, to
set priorities, and to figure out what does (not) work.

Learning Goal 2: What is the impact of staff turnover?
Students are randomly selected for teams and team setups
are changed over time. Hence, students have to find them-
selves a place in a new team and to bring in their knowledge
and experiences gained in another team, and students are
forced to detect changes and re-organize their work pattern
accordingly and quickly.

Learning Goal 3: What stress factors can impact team per-
formance and quality, and how to handle them? Students
are exposed to different stress factors—caused by the unit
setup itself (e.g., time or lacking resources) or provoked by
the supervisors (e.g., enforced staff turnover). Students shall
experience work under heavy stress and, later, link their
experiences to performance data to see the direct impact.
Students shall learn how (not) to act in such situations.

3.3 Theory: The Tuckman-Model
The theoretical model taught to the students to explain

group dynamics is the Tuckman model [28], which was widely
tested since its presentation in the 1960s. The Tuckman
model describes the basic processes of group dynamics in
teams in five major phases forming, storming, norming, and
performing and, finally, adjourning (Figure 2).

These phases can be found in every project team (more
general in every group). Moreover, these phases do not only
happen during the initial formation of new teams (learning
goal 1), but also when new people join an already established
team (learning goal 2). Project managers should therefore
have some knowledge about such models, as for instance
too high fluctuation in the project team seriously affects
performance—in the worst case it can bring a team to a full
stop, as the team is busy with fighting conflicts (re-forming
and storming phases; learning goal 3).

3.4 Practice: A Controlled Experiment
In order the achieve the aforementioned learning goals, we

organized the practical parts following the structure of con-
trolled experiments [30] to ensure proper organization of the
different treatments. As shown in Figure 1, the experiment
session is carried out in a 4-hour block, which is specifically

Forming

Storming

Norming

Performing

Adjourning

Team is formed; some uncertainty
about the way of working and
individuals position, "gentle check up"

Conflict phase to test the team
members and leaders, a hierarchy is
formed, formation of cliques

Fighting is done, the "real" team is
formed, modus operandi and team
values are found, goals are in the
foreground now

Working phase, conflicts done, hierarchy is
defined, self-organization, creativity,
efficient work, etc. are now possible

when everything
is done...

Dismiss team

Figure 2: Overview of the Tuckman model on pro-
cesses in team formation (based on [28]).

prepared in class. The experiment’s overall organization is
illustrated in Figure 3. In subsequent sections, we provide
details on the setup. Note: The purpose of this experiment is
not to conduct a scientific investigation rather than reusing
a proven structure with regards to (general) organization.
Data collection does not aim at gaining new scientific in-
sight. Its purpose is to support the learning goals by showing
the effects of different treatments to the students.

3.4.1 Experiment Description and Execution
In order to focus on the effects group dynamics have on

performance and quality, we defined a very simple task,
which was introduced to the students as follows:

Task: “The following items1 need to be sorted by color. You
can decide yourselves in which way you work. The only thing
that counts is that your team sorts as many items in 2, 4, or
8 minutes as you can. Document your outcomes as a table
containing: type, color, number, and so on. Your team can
keep and eat all correctly sorted items after the last run.”

Data Collection and Analysis In this task, we collected
quantitative as well as qualitative data. Quantitative data
was collected using task-specific controlling sheets of which
two per run and per team were created (Figure 3). This data
was used as performance and quality measure (Table 1) to
present students with an evaluation of their performance,
and to also visualize the actual impact of group dynamics
that students experienced2.

The qualitative data was used to analyze if students could
detect all stress factors to which they were exposed (Ta-
ble 3). Furthermore, the qualitative data—especially the
video data—was used to support the reflection and discus-
sion of the lessons learned.

Before a run started, teams were provided with the first
controlling sheet that they had to fill during the run. When

1As items to sort, we opted for M&M’s for the following
reasons: There are different types available, all types share
the same color palette, the type “crisp” is easy to differen-
tiate from type “choc”, but hard to differentiate from type
“nuts”, such that students really must pay attention. Any
other items fulfilling these characteristics are feasible for this
experiment.
2The used Tuckman model allows for predicting of how the
performance curves should look like, and students can reflect
on their self-generated data and link those to their experi-
ence rather than just analyzing external data.

© ACM. PREPRINT. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in the conference/workshop proceedings.

DOI: http://dx.doi.org/10.1145/2889160.2889194

S
et

 u
p

+
S

ub
-E

xp
er

im
en

t 1
: W

ar
m

-U
p

S
ub

-E
xp

er
im

en
t 2

: P
er

fo
rm

an
ce

S
ub

-E
xp

er
im

en
t 3

: C
ha

os
 +

 F
ee

db
ac

k

Room 2Room 1

Room 1

Run 1

Run 2

Setup

2 min.

2 min.

Students enter the room
and draw a number

Teachers introduce the
students to the experiment

Randomly assign students to teams
of size: 1, 2, 5, 8

QA: Re-Count

QA: Re-Count

Run 3

Setup

4 min.

Randomly assign students to new teams
of size: 1, 2, 5, 8

QA: Re-Count

Run 4 4 min.

QA: Re-Count

Run 5 4 min.

QA: Re-Count

Run 6

Setup

8 min.

Randomly assign students to 3 new teams
of size: 5; put the remaining students
into a pool for “special tasks“

QA: Re-Count

Run 7 8 min.

QA: Re-Count

Run 8 8 min.

QA: Re-Count

release control
team after QA

Task

Explain the task for this run:
- sort by color
- as much as possible
- count + write the numbers
- 2 min.; then stop
- re-count; no time limits

Task

Explain the task for this run:
- sort by color and type
- as much as possible
- count + write the numbers
- 4 min.; then stop
- re-count; no time limits

Task

Explain the task for this run:
- sort by color and type
- as much as possible
- count + write the numbers
- 8 min.; then stop
- re-count; no time limits

Hidden Agenda

- nothing happens to the
 control team in run 6 and 7
- the other 2 teams are
 disturbed in run 6, 7, and 8
- control team joins one of
 the other teams to double
 the team size in run 8

16 17 18

1 2

3

4

5 6

789

10

11

12

1314

15

16

17

18

Team BTeam A Team C Team D Team E

3 2

5

12

8 13

41417

11

6

7

91

10

15

16

18

Team BTeam A Team C Team D Team E

1

3

7

9

14

Team A

2

5

8

11

12

Team B

4

6

10

13

15

Team C

Room 1

Pool

~10 min.

~10 min.

~10 min.

~10 min.

~10 min.

~10 min.

~10 min.

~10 min.

Questionnaire +
feedback session

carry out
“special tasks“

Figure 3: Overview of the experiment (incl. general organization, task overview, subject and room assign-
ments). Every run generates two controlling sheets per team to measure the team performance; one from
the run and another one from the re-count.

© ACM. PREPRINT. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in the conference/workshop proceedings.

DOI: http://dx.doi.org/10.1145/2889160.2889194

Table 1: Data to be collected regarding team perfor-
mance and quality of work, whereas the error rate
serves as quality indicator.

Var. Description

wi Written items counted per team t in the ith run
under time pressure.

ci Re-counted items per team t in the ith run with-
out time pressure.

errabs Absolute error computed from wi and ci by:
errabs,t,i = |wit,i − cit,i|; for further analysis, ab-
solute errors are further distinguished in:

errbn Bottleneck errors that occur if students ran out
of time thus not documenting all counted items
(missing data).

errcl Clerical errors that occur if students wrote down
“wrong” numbers.

Table 2: Special tasks to affect teams’ performance.
Task Description

ST1 Go outside.
ST2 Go to Team B.
ST3 Go to Team C.
ST4 Eat some counted/sorted items.
ST5 Start a discussion on “How should we sort?”
ST6 Take a cup [sorted items] and put the contained

items back into the bowl [unsorted items].
ST7 Take a cup from another team and put the con-

tained items back into the bowl.
ST8 Join a team and start some conversation without

doing anything else.

the run’s time elapsed, the sheets were collected and teams
were provided with a fresh sheet to re-count the sorted items
without pressure. After the final run, students were pro-
vided with a short questionnaire. This questionnaire had
two parts: the first part asked for things that went well
in the sub-experiments, and part two was asking for things
that did not respectively. Besides, observers wrote minutes
(team, time-stamp, observation) and (partially) video taped
the runs to add more data for qualitative analyses and video
analysis/feedback.

Quantitative data was transcribed into a spreadsheet for
further analyses using Microsoft Excel and R. Qualitative
data was also transcribed into text documents and spread-
sheets that served the qualitative analysis. Video data was
collected and stored for later analysis.

Execution The “experiment” was conducted twice in the
configuration from Figure 3. The first instance was con-
ducted at the Technische Universität München (end of 2012),
the second instance was conducted at the BTH Karlskrona
(end of 2013). Since the same number of students attended
the experiment at both sites, we replicated the experiment
setup at BTH. That is, in both instances, 18 graduate stu-
dents from the respective Computer Science/Software Engi-
neering programs (with required pre-knowledge in Software
Engineering and software project management) participated
in the class session. The whole session, including set up and
feedback session, took approximately four hours3.

3And about 15kg of M&M’s were required per instance. . .

Table 3: Stress factors applied to the teams.

Factor Description

Noise level All students were put into one room. Be-
cause of the communication within the
teams, a continuously increasing noise level
was created. Just in sub-experiment 3,
the control group was led to another room
without any other noise sources.

Boring task Students had to sort, count, and report
M&M’s again and again—for about 2
hours.

Bottleneck
(resources)

Every team was provided with one control-
ling sheet only. This bottleneck effectively
helped limit/influence work distribution.

Time Although the basic task is very simple
(sort, count, and document), significant
stress was put on the teams by restricting
the time to just a few minutes.

Missing
strategy

All teams were told to organize themselves,
i.e., no strategy was suggested by the
teachers and students were given no time
prior the experiments to discuss proper
strategies. The actual strategies had to be
developed on the fly.

Overloading The setup invited work overloading, e.g.,
for experts in teams.

Disturbances The special tasks in the“chaos runs”aimed
at confronting the students with different
external effects (cf. Table 2).

General
staff
turnover

In the “chaos runs”, instructors had to fol-
low the playbook in which detailed orders
were issued when to remove how many
team members from a team and (option-
ally) to replace them by new team mem-
bers (either from the pool or from another
team, cf. Table 2).

Loss of key
personnel

As special kind of turnover, we enforced
some loss of key personnel, e.g., the in-
structors’ playbook explicitly contains a
command: “Find this person that is doc-
umenting the counted items and remove it
from the team.” This was done without in-
forming the rest of the team.

3.4.2 “Special” Tasks
As shown in Figure 3, the third sub-experiment explicitly

aims to put pressure on the teams. Therefore, we designed
a playbook that comprised some “special tasks” to disturb
and even “attack” the teams. Table 2 provides a summary
of the special tasks. Students were told to execute a task
immediately without talking or doing anything else.

The tasks from Table 2 were executed according to a play-
book and aimed at affecting the teams’ performance. For
instance, ST1, ST2, or ST3 were preferably given to those
students that documented the numbers, i.e., applying these
tasks to a team aimed at removing a mission-critical person
from the team4 thus forcing the team to re-organize. The
tasks ST4, ST6, and ST7 aimed to provoke quality problems
(errors) in a team, and to force teams to develop counter-
measures (see also Sect. 4.2). ST5 aims to bring in a new
team member that questions the current way of working and
raises a debate on principles. Finally, ST8 brings in team
members to provoke unproductive work time. These tasks

4This aims to simulate the “bus factor” [8] in the project.

© ACM. PREPRINT. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in the conference/workshop proceedings.

DOI: http://dx.doi.org/10.1145/2889160.2889194

1 2 3 4 5

−1
0

0
10

20
30

40

Team A

runs

N
um

be
r o

f M
&M

s

●
●

●

● ●

1 2 3 4 5
−1

0
0

10
20

30
40

Team B

runs

N
um

be
r o

f M
&M

s

●
●

●
●

●

1 2 3 4 5

−1
0

0
10

20
30

40

Team C

runs

N
um

be
r o

f M
&M

s

●

●

●

●
●

1 2 3 4 5

−1
0

0
10

20
30

40

Team D

runs

N
um

be
r o

f M
&M

s

●

●

●

●

●

1 2 3 4 5

−1
0

0
10

20
30

40

Team E

runs

N
um

be
r o

f M
&M

s

●

●

●

● ●

●

Written Number
Counted Number
Bottleneck Errors
Clerical Errors

Single team graphs: written number, counted number, bottleneck error,
 clerical error per person per minute per team per run

1 2 3 4 5

−1
0

0
10

20
30

40

Team A

runs

N
um

be
r o

f M
&M

s

●
●

●

● ●

1 2 3 4 5
−1

0
0

10
20

30
40

Team B

runs

N
um

be
r o

f M
&M

s

●
●

●
●

●

1 2 3 4 5

−1
0

0
10

20
30

40

Team C

runs

N
um

be
r o

f M
&M

s

●

●

●

●
●

1 2 3 4 5

−1
0

0
10

20
30

40

Team D

runs

N
um

be
r o

f M
&M

s

●

●

●

●

●

1 2 3 4 5

−1
0

0
10

20
30

40

Team E

runs

N
um

be
r o

f M
&M

s

●

●

●

● ●

●

Written Number
Counted Number
Bottleneck Errors
Clerical Errors

Single team graphs: written number, counted number, bottleneck error,
 clerical error per person per minute per team per run

Figure 4: Performance/quality measurement results
from sub-experiments 1 and 2 (per person; TUM).

mainly focus on learning goal 3 and contribute to the stress
factors that we exposed the teams to (Table 3).

3.4.3 Reflection
When the experiment was finished, students were first

asked to provide written feedback about the experiment and
their experience. After collecting the feedback sheets, in an
approximately 15-minute wrap-up session, the experiment
was briefly discussed, some details were provided by the
teachers, the “hidden agenda” was revealed (i.e., students
were informed about stress factors and so forth), and stu-
dents were asked to reflect on the experiment. In the next
class5, the reflection was continued by discussing the experi-
ment in detail and presenting the outcomes of the quantita-
tive analysis and selected video tapes to link the theoretical
framework to what actually happened in the experiment.

4. ANALYSIS AND DISCUSSION
The unit was given twice in Munich and Karlskrona and

was fully monitored. We analyze and discuss these instances
using the collected performance and qualitative data, which
is based on the different controlling sheets, video recordings,
observer minutes, and student feedback.

4.1 Performance Analysis
In a nutshell, the Tuckman model says that teams fight

several conflicts before they start performing. That is, team
performance curves should show a certain behavior after the
initial team setup, team reconfiguration, and over time. The
purpose of collecting performance data is to generate graphs
that allow students to reproduce the Tuckman model and to
understand the impact of such group dynamic processes. In
this section, we demonstrate, how we presented the perfor-
mance data to the students and discussed the outcomes.

5Note: For organizational reasons, we couldn’t run the full
classroom reflection at BTH.

1 2 3 4 5 6 7 8

Written number of treats per person per minute
 per team per run (exp. 1 − 3)

Run
W

rit
te

n
N

um
be

r

0
5

10
20

30
45

●

●

●

●

●

●

Team A : 1 pers.
Team B : 2
Team C : 2
Team D : 5
Team E : 8
Team A : 5
Team B : 5
Team C : 5

1 2 3 4 5 6 7 8

Written number of treats per person per minute
 per team per run (exp. 1 − 3)

Run

W
rit

te
n

N
um

be
r

0
5

10
20

30
45

●

●

●

●

●

●

Team A : 1 pers.
Team B : 2
Team C : 2
Team D : 5
Team E : 8
Team A : 5
Team B : 5
Team C : 5

1 2 3 4 5 6 7 8

Written number of treats per person per minute
 per team per run (exp. 1 − 3)

Run

W
rit

te
n

N
um

be
r

0
5

10
20

30
45

●

●

●

●

●

●

Team A : 1 pers.
Team B : 2
Team C : 2
Team D : 5
Team E : 8
Team A : 5
Team B : 5
Team C : 5

1 2 3 4 5 6 7 8

Written number of treats per person per minute
 per team per run (exp. 1 − 3)

Run

W
rit

te
n

N
um

be
r

0
5

10
20

30
45

●

●

●

●

●

●

Team A : 1 pers.
Team B : 2
Team C : 2
Team D : 5
Team E : 8
Team A : 5
Team B : 5
Team C : 5

Run

W
rit

te
n

N
um

be
r

1 2 3 4 5 6 7 8

Counted number of treats per person per minute
 per team per run (exp. 1 − 3)

Run

C
ou

nt
ed

 N
um

be
r

0
5

10
15

20
25

30
45

●

●

●

●

●

●

Team A : 1 pers.
Team B : 2
Team C : 2
Team D : 5
Team E : 8
Team A : 5
Team B : 5
Team C : 5

1 2 3 4 5 6 7 8

Counted number of treats per person per minute
 per team per run (exp. 1 − 3)

Run

C
ou

nt
ed

 N
um

be
r

0
5

10
15

20
25

30
45

●

●

●

●

●

●

Team A : 1 pers.
Team B : 2
Team C : 2
Team D : 5
Team E : 8
Team A : 5
Team B : 5
Team C : 5

1 2 3 4 5 6 7 8

Counted number of treats per person per minute
 per team per run (exp. 1 − 3)

Run

C
ou

nt
ed

 N
um

be
r

0
5

10
15

20
25

30
45

●

●

●

●

●

●

Team A : 1 pers.
Team B : 2
Team C : 2
Team D : 5
Team E : 8
Team A : 5
Team B : 5
Team C : 5

1 2 3 4 5 6 7 8

Counted number of treats per person per minute
 per team per run (exp. 1 − 3)

Run

C
ou

nt
ed

 N
um

be
r

0
5

10
15

20
25

30
45

●

●

●

●

●

●

Team A : 1 pers.
Team B : 2
Team C : 2
Team D : 5
Team E : 8
Team A : 5
Team B : 5
Team C : 5

Run

C
ou

nt
ed

 N
um

be
r

1 2 3 4 5 6 7 8

Error per person per minute
 per team per run (exp. 1 − 3)

Run

Er
ro

rs

0
5

10
15

20
25

30
45

●

●

●

●

●

●

Team A : 1 pers.
Team B : 2
Team C : 2
Team D : 5
Team E : 8
Team A : 5
Team B : 5
Team C : 5

1 2 3 4 5 6 7 8

Error per person per minute
 per team per run (exp. 1 − 3)

Run

Er
ro

rs

0
5

10
15

20
25

30
45

●

●

●

●

●

●

Team A : 1 pers.
Team B : 2
Team C : 2
Team D : 5
Team E : 8
Team A : 5
Team B : 5
Team C : 5

E
rr

or

Run

1 2 3 4 5 6 7 8

Error per person per minute
 per team per run (exp. 1 − 3)

Run

Er
ro

rs

0
5

10
15

20
25

30
45

●

●

●

●

●

●

Team A : 1 pers.
Team B : 2
Team C : 2
Team D : 5
Team E : 8
Team A : 5
Team B : 5
Team C : 5

1 2 3 4 5 6 7 8

Error per person per minute
 per team per run (exp. 1 − 3)

Run

Er
ro

rs

0
5

10
15

20
25

30
45

●

●

●

●

●

●

Team A : 1 pers.
Team B : 2
Team C : 2
Team D : 5
Team E : 8
Team A : 5
Team B : 5
Team C : 5

1 2 3 4 5 6 7 8

Error per person per minute
 per team per run (exp. 1 − 3)

Run

Er
ro

rs

0
5

10
15

20
25

30
45

●

●

●

●

●

●

Team A : 1 pers.
Team B : 2
Team C : 2
Team D : 5
Team E : 8
Team A : 5
Team B : 5
Team C : 5

Team A (5 pers.)
Team B
Team C

Figure 5: Performance/quality measurement results
from sub-experiment 3 (per person; BTH).

4.1.1 Training and Performance Runs
The sub-experiments 1 and 2 (Figure 3) serve as training

and performance phases in which students learn the task and
carry out the task under “normal” conditions, i.e., without
enforced extra stress factors. Figure 4 shows the collected
performance data for the TUM teams (runs 1-5). To make
the performance of the teams more comparable, this presen-
tation is boiled down to the individual person’s performance
within a specific team setup. That is, the variables wi, ci,
errbn, and errcl are presented on a per-person basis.

Figure 4 illustrates one prediction of the Tuckman-Model,
which was a key aspect to be learned: changing the team,
performance will drop. The data shows this for each team
(from run 2 to 3). Figure 4 also shows the students being
able to find and apply strategies to perform and minimize
the error (in average, the error per person is, regardless of
the actual team setup, below three items per run and per
person). Furthermore, the figure also shows the teams per-
forming at a comparable level (written/counted items). An-
other observation is the performance in relation to team size:
the bigger the team the more effort is spent on coordination.
In particular, the two 2-person teams get close to the 1-
person team (no communication/coordination effort at all),
while the bigger teams stay behind (individual performance
is below the 1- and 2-person teams).

In the Feedback Session: The classroom discussion was
initiated by a reflection on the Tuckman model. We then
asked to students about their expectations regarding the
performance. Then we presented the actual performance
curves from Figure 4 and “quantified” the subjective percep-
tion. This first part of the performance analysis aimed at
improving the understanding of the“normal” team behavior,
i.e., what happens when a new team is formed and a new
project with a somewhat familiar task is started. Further-
more, students should experience that, e.g., team size and
communication effort impact performance and quality (cf.
Figure 3; teams size). In particular, students recognized the
decreasing per-person performance in growing teams. In the
discussion, students found the increased effort caused in the
need to find proper strategies to coordinate larger teams.

© ACM. PREPRINT. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in the conference/workshop proceedings.

DOI: http://dx.doi.org/10.1145/2889160.2889194

New guy joins the team
and immediately starts
disturbing the team…

After 0:30: “Ok,
nobody talks to
this guy…”

After 1:40: “interims” team leader
separates new guy from the team
and tries to keep him busy – team
leader stops working…

After 2:20: new guy manipulates
a team member’s work; conflict:
“Ey, common! …” (it gets loud)

In the feedback session:
Q: Why did you do this?
A: I had to protect my team…

Team size was doubled;
confusion immediately
increases…

Meanwhile, the counting
person gestures to get
some attention from the
team to get the numbers…

A new team member asks for his own
items to count and moves to another table…

In the feedback session:
Q: Why did you do this?
A: There was no space…

(team was separated)

Figure 6: Selected examples from the video analysis (run 8, teams TUM B and TUM C).

4.1.2 The “Chaos Runs”
In sub-experiment 3, the team setup was changed. Team A

was separated from the other teams and was taken to an-
other room (control group; just doing the task without any
disturbance). Teams B and C remained in the room and
faced several “attacks” to influence their performance.

Figure 5 shows the results from the third sub-experiment
of the BTH teams for the variables wi, ci, errabs. For Team A,
the figures show the expected behavior regarding the vari-
ables wi, ci, errabs, i.e., some performance and quality im-
provement from run 6 to run 7. Yet, the performance and
quality indicators for Team B and Team C show a differ-
ent behavior. The most striking observation is—regardless
of the experiment instance—that performance and quality
changed. For instance, Team B shows an increasing error
rate errabs, i.e., disturbing the teams affects quality. An-
other observation of BTH’s Team C shows that, on the one
hand, a decreasing error rate, but, on the other hand, a re-
duction of the overall performance. That is, disturbing the
teams impacts the teams’ performance.

In the Feedback Session: In the retrospective, we pre-
sented the students these graphs discussing what happened.
Having the knowledge about the Tuckman model, students
could explain the visualized effect. However, students were
surprised about the level of performance reduction. Never-
theless, despite all disturbance, students were still able to
work on their tasks. In the feedback session, we also asked
the students to explain what happened and what were the
stress factors and disturbances in detail. This discussion was
then continued with the video analysis.

4.2 Video Analysis
Both unit instances were video taped in order to enable

students to see their action and to link the theoretical model
to their actual behavior. In total, we collected several hours
of video material. In the following, we provide some insights
by presenting selected examples and link them to the experi-
ment’s playbook, and the different stress factors and actions

taken to disturb the teams. Based on Figure 6, we discuss
two selected examples from the video analysis.

4.2.1 Example 1: Taking Responsibility
The upper part of Figure 6 shows a situation from TUM’s

Team C, which was caused by a new guy that was told to
execute ST6 and ST7 (Table 2). Initially, the new guy was
welcomed with a “Hi!” and it was tried to integrate him in
the team. Yet, some 25 seconds later, the new guy started
to eat the sorted items. This was quickly recognized and led
to the statement that this guy should be ignored from now
on. However, the new guy continued messing up the sorted
items and, eventually, one team member took responsibility
becoming the team leader. At first, the team leader was
only observing the new guy and tried to correct the errors by
searching and putting back the ‘stolen’ items, but, finally, he
stopped working and tried to separate the new guy from the
team. Thinking the situation was resolved, work went on,
but the new guy got back to his task. As the deadline was
approaching, the team’s mood turned and people became
loud and aggressive.

In the Feedback Session: In the feedback session, we
presented this scene to the students asking the protagonist
for his motivation. He stated that he had to protect the
team. We also discussed consequences for the team when
he stopped working. The group discussion considered the
behavior a compromise: reduced work force to achieve high
quality vs. high performance with increased quality risk.

4.2.2 Example 2: Too many People, too few Space
The lower part of Figure 6 shows TUM’s team B in the

moment the team size was doubled to 10 people. In this
situation, 5 new people had to be merged with the already
working team (cf. Tuckman model, Sect. 3.3), which caused
serious confusion and increased the stress level significantly.
For instance, the counting person was not only pointing to
those that should provide their numbers, but she used more
gestures to stop others talking trying to keep some kind of

Table 4: Stress factors and actions as detected by the students, and the number of mentions per experiment
(TUM/BTH – 68/81 feedback notes; the table shows if a factor/action was found and in what sub-experiment).

Factor/Action Found? . . . in? TUM/BTH Students’ comments (selection)

Noise level 7 – 0/0 The general noise level was not detected at all.
Boring task 3 3 1/0 “After a couple times of sorting by type and color it got a

bit boring.”
Bottleneck (resources) 3 1 1/0 “Bottleneck: result sheet”
Time 3 1 7/10 “Short time”, “[. . .] and time was limited”, “No time for

counting and result reporting”, “counting until 30 secs be-
fore time limit, then writing down was the bottleneck”, “we
only counted 2 colors in the end, because we underestimated
the needed time”

Missing strategy 3 1 15/18 “It took same time to work out a strategy”, “No communica-
tion rules [. . .] inefficient counting process.”, “very chaotic
responsibilities after mixing the team members; no clear
instructions for new members because the rest of the team
was counting under pressure”, “not enough time to talk how
it should work; everyone did it in his own way”

Overloading 3 2 4/5 “the one writer was very busy and overloaded [. . .]”, “writer
was overloaded because of too many announced numbers”,
“everyone was shouting and not waiting [. . .]”

Disturbances 3 3 5/2 “new team members in the final run”, “round 3: team too
large and no coordination”, “People got angry after the dis-
turbances [. . .] more errors were made; more chaos”

General team turnover 3 3 6/1 “joining the new team in the middle of experiment scared
the other partners.”, “when someone left the team or change
the table, nobody knew if his glass was already counted or
not”,“change the people to another group because you don’t
remember your add of colors”

Loss of key personnel 3 3 1/1 “M&Ms were forgotten because the responsible person was
removed [. . .]”

reporting structure. At the same time, the new people tried
to find some space around the table to join the work. How-
ever, one person ended up taking some items to sort and
count to another table (outside the team’s work space), as
there was just not enough space.

In the Feedback Session: For this scene, the classroom
discussion ended up with the finding that just adding more
and more people to projects that are short in time does
not help anything (see also F. Brooks’ “The Mythical Man
Month” [6]): the writer was stressed and there was not
enough space for all team members to work collaboratively.

4.3 Feedback Analysis
Students provided feedback by answering a free-form ques-

tionnaire (Sect. 3.4.1) in which they should summarize their
own positive and negative observations from the experiment.
In subsequent sections, we first analyze the questionnaires
for the different stress factors, if students detected them,
and how the stress factors were experienced. In the second
part, we looked for those aspects that were considered posi-
tive and that contributed to the learning goals of this course
unit.

4.3.1 Detected Stress Factors
Table 4 provides a summary of the students’ observa-

tions. The table shows whether and when a stress factor
or some action was detected by the students and identified
cumbersome. Furthermore, the table lists the number of
mentions, i.e., how many times a stress factor or action was
mentioned—multiple mentions were possible and students
often mentioned different factors together.

Based on the feedback sheets, we found 32 (TUM) and 38
(BTH) mentions of stress factors. In total, we found 8 out of
the 9 pre-defined factors (Table 3) detected by the students.
Time pressure, the bottleneck created by only one available
controlling sheet per team, and the missing strategy were de-
tected immediately in the first sub-experiment. Overloading
was mentioned the first time in sub-experiment 2 when the
task’s complexity was increased, and the remaining factors
were realized in the third sub-experiment. In summary, stu-
dents considered time pressure (7 out of 10 mentions) and
missing strategies (15 out of 18 mentions) impacting their
performance the most. Furthermore, beyond the pre-defined
stress factors, the BTH teams also found task complexity
(2 mentions) and communication aspects (2 mentions) af-
fecting efficient work6.

The general noise level was, however, not detected at all—
even when we enforced this stress factor by playing loud
music in the background (students noticed that there was
some music playing, but did not complain). Moreover, the
increasing noise from shouting the numbers to the writing
person was not considered cumbersome from the noise per-
spective rather than from chaos and overloading, i.e., noise
was somehow noticed, but stress and chaos were considered
more affecting the work.

Therefore, we consider learning goal 3 (Sect. 3.2) achieved,

6Note: Both groups were composed of students from dif-
ferent countries and cultures. That is, that even in this
small co-located settings, GSE-related effects occur, such as
described in [1, 7]. Students stated language barriers be-
coming problematic under pressure, as for instance heavy
accents challenged the communication in the teams.

© ACM. PREPRINT. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in the conference/workshop proceedings.

DOI: http://dx.doi.org/10.1145/2889160.2889194

Table 5: Positive mentions and lessons learned
(TUM: 36/68 mentions, BTH: 43/81 mentions).

Task TUM BTH

Strategy and Team Development 23 24
Start with initial Strategy 4 6
Efficiency of Small Teams 6 3
Benefits of Bigger Teams 1 3
Impact of more Time 0 5

as students were able to detect different stress factors and
to develop proper approaches to deal with exceptional situ-
ations (cf. Figure 6).

4.3.2 Students’ Lessons Learned
The other part of the questionnaire aimed at finding pos-

itively perceived events. As we had no target categories de-
fined in advance, we transcribed and analyzed the question-
naire responses, and we found five aspects frequently men-
tioned: strategy and team development, starting a run with
an initial plan, impact of time, and benefits of smaller/bigger
teams. Table 5 provides an overview of the positively per-
ceived effects of the different sub-experiments/runs.

Comparing Table 5 with Table 4 we see that, on the one
hand, the missing strategy was considered the most critical
point, but on the other hand, students mentioned strategy
and team development as a very positively experienced as-
pect. Starting with sub-experiment 2, students joined teams
having initial ideas and strategies of how to optimize work
toward maximum performance (learning effects from the
training phase). In runs 3 and 6 (first runs in new team
setups), we observed the students spending time (usually
some 30 seconds) to discuss and agree on an approach to
work. In these teams, opportunities for knowledge trans-
fer as part of the team’s improvement were also mentioned
positive in the questionnaires and feedback session.

From the questionnaires, we also see the learning goals 1
and 2 achieved. Students found strategies to quickly team
up, and to define, apply, and improve working strategies.
Furthermore, students were eventually able to deal with staff
turnover and to compensate for lost staff and to integrate
new staff. In the feedback and discussion sessions, we could
successfully link the theoretically predicted performance and
quality drops with the students’ experiences.

5. CONCLUSION
In this paper, we presented a course unit on group dy-

namics in project teams. Such teams are key to todays soft-
ware development in which cross-functional teams develop
software in short cycles. As working in such teams chal-
lenges team members not only from the technical but also
the social perspective, the presented course unit contributes
to project management courses by providing an environment
in which students can directly experience the impact of team
size and composition, stress factors, and exceptional situa-
tions to project performance and result quality.

The course unit uses the well-known Tuckman model as
theoretical framework to explain group dynamics in team
formation and development, and it borrows from controlled
experiments to organize the practical parts. Eventually, stu-
dents are exposed to different stress factors to learn about

the meaning of team formation processes, especially when
teams work under pressure.

We conducted the course unit twice with two groups of 18
graduate students each at two different universities. In both
instances, students could detect almost all stress factors,
and students were able to develop and improve collaboration
strategies quickly, even when the team setup was changed,
and students were able to develop strategies to handle excep-
tional situations, e.g., staff turnover and attempts to attack
the project. The learning goals set could be achieved, and in
the final exams, students showed their ability to understand
a critical project scenario and to develop proposals to solve
conflicts in teams. Finally, in the course feedbacks, students
working in industry stated the course unit valuable due to
the applicability to their work environment.

The presented course unit has been transferred from Mu-
nich to another university during an Erasmus exchange, and
is scheduled for being set up in 2016. We experienced espe-
cially the practical parts fairly easy to set up, as it only re-
quires rooms, tables, supervisors, and items to sort. Within
less than four hours, students gain practical experience of
stress factors and team formation. A replication kit pro-
vides all material required to implement the unit.

Therefore, the presented course unit and the complement-
ing material help establishing and optimizing courses that
demand to practically explain and show theories or conven-
tional wisdom, to experience real world problems, and to
learn how to deal with such problems in a differentiated man-
ner. Furthermore, the course unit contributes a practical ex-
ercise to otherwise more theoretical and abstract subjects.
For instance, given the project management context, the
presented unit allows for focusing on different management-
and team-related aspects without relying on code-centered
work thus avoiding the risk of “skipping” the management
tasks to get the software done.

The course unit was appreciated by the students, and it
was also considered fun. Given the positive learning effects
and feedback we received, we plan to replicate this unit
in upcoming courses. Furthermore, as this is the second
successful implementation of our teaching pattern [19], we
positively experienced the feasibility of our pattern which
motivates us to adopt this pattern for further courses as
for instance courses on software test7, which provide a rich
ground for defining appropriate experiments. In this con-
text, we are also setting up collaboration among different
universities across Europe, e.g., to exchange our course- and
experiment designs, conduct replications (research-driven),
and to arrange guest lectures.

Acknowledgement
We want to thank Henning Femmer and Jonas Eckhardt
for their significant support in setting up the experiment.
We also owe thanks to Katrin Kehrbusch for her support
in data transcription and analysis. Furthermore, we thank
Darja Šmite and her team of Ph.D. and graduate students,
who hosted and supported the experiment instance at BTH.
Finally, the experiment was supported in part by the “Ernst
Otto Fischer”teaching award/grant 2012 by Faculty of Infor-

7The application for the topic software quality and software
test is currently in progress in the courses Design of Software
Systems and Software Quality Management at the Univer-
sity of Southern Denmark.

© ACM. PREPRINT. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in the conference/workshop proceedings.

DOI: http://dx.doi.org/10.1145/2889160.2889194

matics of Technische Universität München and the Erasmus
Teaching Mobility program.

6. REFERENCES
[1] A. Avritzer, S. Beecham, R. Britto, J. Kroll,

D. Sadoc Menasche, J. Noll, and M. Paasivaara.
Extending survivability models for global software
development with media synchronicity theory. In
International Conference on Global Software
Engineering, pages 23–32, 2015.

[2] S. Ball, T. Emerson, J. Lewis, and J. T. Swarthout.
Classroom experiments. Available from http://serc.
carleton.edu/sp/library/experiments/index.html, May
2012.

[3] V. Basili, R. Selby, and D. Hutchens. Experimentation
in software engineering. Transactions on Software
Engineering, 12(7):733–743, 1986.

[4] G. Bavota, A. De Lucia, F. Fasano, R. Oliveto, and
C. Zottoli. Teaching software enginerring and software
project management: An integrated and practical
approach. In International Conference on Software
Engineering, pages 1155–1164, 2012.

[5] J. H. Bradley and F. J. Hebert. The effect of
personality type on team performance. Journal of
Management Development, 16(5):337–353, 1997.

[6] F. P. Brooks. The Mythical Man-Month.
Addison-Wesley Longman, 1995.

[7] V. Casey and I. Richardson. Project management
within virtual software teams. In International
Conference on Global Software Engineering, pages
33–42, 2006.

[8] J. O. Coplien and N. B. Harrison. Organizational
Patterns of Agile Software Development. Prentice
Hall, 2004.

[9] D. Dahiya. Teaching software engineering: A practical
approach. ACM SIGSOFT Software Engineering
Notes, 35(2):1–5, 2010.

[10] J. Dillon. A Review of the Research on Practical Work
in School Science. Technical report, King’s College,
2008.

[11] F. Fagerholm, A. S. Guinea, H. Mäenpää, and
J. Münch. Building blocks for continuous
experimentation. In International Workshop on Rapid
Continuous Software Engineering, pages 26–35, 2014.

[12] F. Fagerholm, M. Ikonen, P. Kettunen, J. Münch,
V. Roto, and P. Abrahamsson. Performance alignment
work: How software developers experience the
continuous adaptation of team performance in lean
and agile environments. Information and Software
Technology, 64:132–147, August 2015.

[13] D. Fucci, B. Turhan, and M. Oivo. On the effects of
programming and testing skills on external quality
and productivity in a test-driven development context.
In International Conference on Evaluation and
Assessment in Software Engineering, pages 25:1–25:6.
ACM, 2015.

[14] N. Gorla and Y. W. Lam. Who should work with
whom?: Building effective software project teams.
Communications of the ACM, 47(6):79–82, June 2004.

[15] J. Jiang and G. Klein. Software development risks to
project effectiveness. Journal of Systems and Software,
52(1):3–10, 2000.

[16] E. Kamsties and C. Lott. An empirical evaluation of
three defect-detection techniques. In Europ. Software
Engineering Conference, pages 362–383, 1995.

[17] E. Keenan, A. Steele, and X. Jia. Simulating global
software development in a course environment. In
International Conference on Global Software
Engineering, pages 201–205, 2010.

[18] Kent Beck et al. Manifesto for agile software
development. Available from
http://www.agilemanifesto.org, 2001.

[19] M. Kuhrmann. A practical approach to align research
with master’s level courses. In International
Conference on Computational Science and
Engineering, pages 202–208, 2012.

[20] M. Kuhrmann, D. M. Fernández, and J. Münch.
Teaching software process modeling. In International
Conference on Software Engineering, pages 1138–1147,
2013.

[21] J. Münch, F. Fagerholm, P. Johnson, J. Pirttilahti,
J. Torkkel, and J. Järvinen. Creating minimum viable
products in industry-academia collaborations. In Lean
Enterprise Software and Systems Conference, pages
137–151, 2013.

[22] Ocampo, A. and Münch, J. Rationale modeling for
software process evolution. Journal on Software
Process: Improvement and Practice, 14(2):85–105,
2009.

[23] W. Pádua. Measuring complexity, effectiveness and
efficiency in software course projects. In International
Conference on Software Engineering, pages 545–554,
2010.

[24] J. Parker. Using laboratory experiments to teach
introductory economics. Working paper, Reed College,
http://academic.reed.edu/economics/parker/
ExpBook95.pdf, accessed 23 October 2014.

[25] I. Richardson, A. E. Milewski, and N. Mullick.
Distributed development: an education perspective on
the global studio project. In International Conference
on Software Engineering, pages 679–684, 2006.

[26] P. Runeson. Using students as experiment subjects–an
analysis on graduate and freshmen student data. In
International Conference on Empirical Assessment in
Software Engineering, pages 95–102, 2003.

[27] G. P. Sudhakar, A. Farooq, and S. Patnaik. Soft
factors affecting the performance of software
development teams. Team Performance Management:
An International Journal, 17(3/4):187–205, 2011.

[28] B. W. Tuckman. Developmental sequence in small
groups. Psychological Bulletin, 63(6):384–399, 1965.

[29] L. Wallace, M. Keil, and A. Rai. How software project
risk affects project performance: An investigation of
the dimensions of risk and an exploratory model*.
Decision Sciences, 35(2):289–321, 2004.

[30] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C.,
Regnell, B., and Wesslén, A. Experimentation in
Software Engineering. Springer, 2012.

[31] H.-L. Yang and J.-H. Tang. Team structure and team
performance in is development: A social network
perspective. Inf. Manage., 41(3):335–349, Jan. 2004.

© ACM. PREPRINT. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in the conference/workshop proceedings.

DOI: http://dx.doi.org/10.1145/2889160.2889194

http://serc.carleton.edu/sp/library/experiments/index.html
http://serc.carleton.edu/sp/library/experiments/index.html
http://www.agilemanifesto.org
http://academic.reed.edu/economics/parker/ExpBook95.pdf
http://academic.reed.edu/economics/parker/ExpBook95.pdf

	1 Introduction
	2 Related Work
	3 General Course Unit Design
	3.1 Course Context
	3.2 Course Unit Learning Goals
	3.3 Theory: The Tuckman-Model
	3.4 Practice: A Controlled Experiment
	3.4.1 Experiment Description and Execution
	3.4.2 ``Special'' Tasks
	3.4.3 Reflection

	4 Analysis and Discussion
	4.1 Performance Analysis
	4.1.1 Training and Performance Runs
	4.1.2 The ``Chaos Runs''

	4.2 Video Analysis
	4.2.1 Example 1: Taking Responsibility
	4.2.2 Example 2: Too many People, too few Space

	4.3 Feedback Analysis
	4.3.1 Detected Stress Factors
	4.3.2 Students' Lessons Learned

	5 Conclusion
	6 References

