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We have reconstituted functional Na +/K +-ATPase (NKA) into giant unilamellar vesicles (GUVs) of well-defined
binary and ternary lipid composition including cholesterol. The activity of the membrane system can be turned
on and off by ATP. The hydrolytic activity of NKA is found to depend on membrane phase, and the water relaxa-
tion in themembrane on the presence of NKA. By collapsing and fixating the GUVs onto a solid support and using
high-resolution atomic-forcemicroscopy (AFM) imagingwe determine the protein orientation and spatial distri-
bution at the single-molecule level and find that NKA is preferentially located at l o/l d interfaces in two-phase
GUVs and homogeneously distributed in single-phase GUVs. When turned active, the membrane is found to un-
bind from the support suggesting that the protein function leads to softening of the membrane.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

For more than three decades it has been hypothesized that the
meso-scale lateral organization of biologicalmembranes is an important
factor for membrane-protein interactions [1]. The lipid rafts hypothesis
proposes that specialized lipid nanodomains, termed rafts, that are rich
in saturated lipid chains and cholesterol form platforms for protein
sorting and function [2,3,4,5,6,7]. Interestingly, from a purely mem-
brane biophysics perspective, lipid membranes with and without pro-
teins do show lipid-mediated lateral heterogeneity [8,9,10,11,12]. We
have earlier imaged small domains of size≈100 nmdeep inside the liq-
uid ordered (l o)–liquid disordered (l d) coexistence region [13], which
are spontaneously generated due to low line tension ≈1 pN [12]. The
domains are considered to be pseudo-critical fluctuations and are de-
tected in the one-component saturated and mono-saturated lipid
monolayers and bilayers near the main phase transition and in the ter-
nary lipid mixture over a wide range of compositions [8,9,10,11,12,13].
These domains are suggested to provide amechanism for lipid aggrega-
tion and stabilization of lipid–protein complexes, away from phase

coexistence [14], and have major influence on bilayer mechanics and
permeability [15,16]. In the present work we analyze the lateral struc-
ture of well-defined model membranes at mesoscopic and nanoscopic
length scales using giant unilamellar vesicles (GUVs) composed of two
or three lipid components, i.e., DOPC-chol and DOPC–DPPC-chol, con-
taining Na +/K +-ATPase (NKA), a trans-membrane (TM) protein sug-
gested to be associated with specialized domains rafts [17,18]. NKA
hydrolyzes adenosine triphosphate (ATP) and uses the free energy of
hydrolysis for maintaining the TM Na + and K + ions-gradients across
cell membranes. The kinetics of ions transport is described by Albers–
Post reaction cycle or E1–E2 model, where E1 and E2 are the two confor-
mations of the NKA in the lipid-bilayer with high Na + and high K + af-
finities respectively [19,20]. The two main sub-units of the NKA are an
α-subunit (containing the catalytic residues, ion occlusion, transport
pathways, and inhibitor binding sites) with 10 TM segments and a sin-
gle TMglycosylatedβ-subunit (important for protein folding, trafficking
to the plasma membrane, stabilization, K-occlusion, and cell-adhesion)
as shown in Fig. 1a. The bilayer can adjust in the vicinity of NKA by
stretching/compressing and bending of lipids in order to match the
TM hydrophobic thickness as shown in Fig. 1a. A third small, regulatory
protein called FXYD is also associated. The cross sectional area of NKA
varies from cytoplasmic (cyt) to extracellular (ext) side and with the
conformation and is approx 12.6 nm2 in E1-conformation near the ext
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interphase [21]. From the crystal structures of NKA in the E2-P and
E1~P.ADP conformations the cyt and ext protrusions from themembrane
faces are approximately 4 nmand8nm [22,23]. Fig. 1b shows the possible
orientations of the reconstituted NKA in the proteoliposomes: rightside-
out (r-o) which is the native membrane configuration, inside-out (i-o)
is the opposite of r-o orientation, and a third orientation non-oriented
(n-o) has both sides exposed to the medium (not shown) [19,24,22,23].
NKA accounts for about 25% of standard metabolic rate [25] in animal
cells (level reaches 70% in brain). NKA concentration in tissues varies sig-
nificantly with around a 160,000-fold difference between the lowest
(erythrocytes) and the highest (brain cortex) value. NKA has major con-
tributions in brain, immune system, kidney, heart, skeletal muscles, vas-
cular smooth muscles, erythrocytes etc. as described in [20].

The paper is organized as follows, we reconstitute NKA into GUVs of
precisely controlled single-phase (l o) and two-phase (l o/l d) membrane
fluid phases. The measurements of protein activity and density in GUVs
are discussed, followed by the investigation of the extent of water relaxa-
tion in the membrane in the active and non-active state of NKA. The spa-
tial distribution and orientation of NKA is investigated at the single-
molecule level in free-standing membranes by collapsing GUVs and rap-
idly immobilizing the collapsedmembrane on a solid support. Unbinding
of vesicle patches from the solid support is observed as a consequence of
NKA activity. Finally, we discuss the implications of ourwork and possible
adaptations of the method for other lipid–protein systems.

2. Materials and methods

1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), cholesterol
and 1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) were

purchased from Corden-Pharma. The fluorescence probes, N-
Lissamine rhodamine B 1, 2-dihexadecanoyl-sn-glycero-3-phospho-
ethanolamine, triethylammonium salt (RhPE), and naphthopyrene
(NaP) were purchased fromMolecular Probes and Sigma, respective-
ly. Chloroform was of HPLC grade quality purchased from Rathburn
(Micro-lab, Aarhus, Denmark). 8.65 mM stock solutions in chloro-
form of each lipid are prepared separately. Glucose and sucrose
were from Sigma, NaCl (sodium chloride, purity N99.5%) was from
Fluka, whereas L-histidine (purity N99%) and MgCl 2 (magnesium
dichloride, purity N99%) were from Sigma-Aldrich. Ultra-pure MilliQ
water (18.3 MOhm cm)was used in all steps involving water. The os-
molarity of solutions was checked using an osmometer (Osmomat
030, Gonotec GmbH, Berlin, Germany). Four types of buffers are pre-
pared, buffer-A (200 mM sucrose, 30 mM NaCl, 30 mM histidine,
2 mM MgCl 2 at pH 7) and buffer-B (200 mM glucose, 30 mM NaCl,
30 mM histidine, 2 mM MgCl 2, buffer-C (200 mM sucrose, 30 mM
NaCl, 30 mM histidine at pH 7) and buffer-D (200 mM glucose,
30 mM NaCl, 30 mM histidine) at pH 7. Na2ATP was purchased
from SIGMA and a stock solution of 1 M was prepared. The pH of
the Na2ATP was adjusted to 7.4 by adding 0.5 M TRIS.

2.1. Preparation of functional proteoliposomes

NKA purified from shark rectal glands was reconstituted into small
unilamellar vesicles (SUVs) [24]. Essentially, NKA and the lipids,
(a) DOPC and (b) DOPC-chol (60%–40%), were co-solubilized in
130mMNaCl, 4mMMgCl 2, and30mMhistidine, pH7.0 at a lipid/protein
weight ratio of 10 using the nonionic detergent C 12E 8 (ethylene glycol
dodecyl monoether) at 4 mg/mg protein. After equilibration the

Fig. 1.NKAgraphical illustration, GUVs of two- and three-component lipidmixtures, area fractions of separated phases, orientation of NKA in vesicles, andGPmeasurements. (a) A cartoon
showing themembrane deformation adjacent to the protein and the NKA subunits: α-subunit (green), β-subunit (raspberry) and FXYD-subunit (blue). Cytoplasmic (cyt) to extracellular
(ext) sides are shown (reproduced from [21]). (b) A graphical illustration of the orientations of NKA in a proteoliposome (taken from [19]). Rightside-out (r-o) is the native membrane
configuration and inside-out (i-o) is opposite of the r-o orientation. A third orientation non-oriented (n-o) is not shown. (c) Epi-fluorescence image of GUVs (sample I) and (d) confocal-
fluorescence image of GUVs (sample II) containing NKA settled at the bottom in an observation chamber. In ternary GUVs, the two fluorescence dyes NaP (green) and RhPE (red) are
known to preferentially partition into the l o and l d phases, respectively. (e) A typical 2D-histogram of the fluorescence intensities of NaP and RhPE on an arbitrary vesicle surface. The
green line is the threshold used to distinguish between l o and l d membrane domains. (f) The area-fraction of the l o phase A(l o)/A is plotted for the 16 random GUVs (for sample II)
analyzed. The standard deviation (±10.2%) is indicated by the gap between the two red-dashed lines. (g) Phase-diagram of the ternary lipid mixture displaying liquid–liquid
coexistence region at 25∘C, adapted from [35]. The black dots represent samples I and II. The color map display the A(l o)/A measured in GUVs prepared by dissolving lipids in organic
solvent (taken from [36]). (h) The average GP value measured before and after adding ATP (to a final concentration of 2 mM) in samples V and VI, with error bars displaying standard
error on the mean (SEM). The different measurements are shown by different colors; blue for GUVs, violet for GUVs with ATP added, green for GUVs containing NKA but, no ATP
added and red for GUVs containing NKA with ATP added. In the inset, a selected GUV in the l o membrane phase (sample V) displaying the Laurdan GP image at the equatorial region
is shown. The white box is where the fluorescence counts for the GP are measured.
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detergent was removed by addition of hydrophobic Bio-Beads, and SUVs
containing reconstituted NKA spontaneously formed. These proteolipo-
somes were unilamellar with a diameter of about 220 nm, as determined
from freeze-fracture EM [19] and quasi-elastic laser light scattering [24].
Theproteoliposomes are stored at -80∘C for prolongeduse. The ions trans-
port properties of NKA in SUVs is measured using a probe namely
“Oxonol” [26]whose fluorescence intensity is proportional to the amount
of membrane potential that is created due to pumping of Na and K ions
across themembrane. Briefly, the protein content of the proteoliposomes
(and GUVs) was determined according to Petersons modification [27]
of the Lowry method [28], and the specific hydrolytic activity of
reconstituted NKA by the method of Baginski [29]. The orientation of
reconstituted NKA was determined from functional tests benefitting
from the sidedness of the NKA, as described in [30,24]. In proteolipo-
somes, typically, ~50% of the protein incorporated with an orientation
as in the cell (r-o), ~15% with the opposite orientation (i-o), and the re-
maining ~35%with both sides exposed (n-o). The testmedium for activity
measurements contained 120 mM NaCl, 30 mM KCl, 4 mM MgCl 2,
3 mM ATP, and 30 mM histidine buffer pH 7.4. At these conditions
only non-oriented (n-o) NKA is activated since the ATP substrate
site of r-o oriented enzyme is shielded inside the GUVs, and the ex-
tracellular face of i-o oriented pumps is devoid of K + inside the
GUVs, which contain 130 mM Na + and no K +-ions.

2.2. Preparation of small unilamellar vesicles (SUVS)

The lipidmixtures are dissolved in chloroform of (i) 8.65mMDOPC-
chol (60%–40%) containing RhPE at 0.4 mol%, (ii) 8.65 mM DPPC-chol
(53.8%–46.2%) containing RhPE and naphthopyrene (NaP) both at
0.4 mol%, (iii) 8.65 mM DPPC-chol (53.8%–46.2%) containing RhPE at
0.4 mol%, (iv) 8.65 mM DOPC-chol (60%–40%) containing the Laurdan
at 4 mol%, (v) 8.65 mM DPPC-chol (53.8%–46.2%) and (vi) 8.65 mM
DOPC containing RhPE at 0.4 mol%. Around 500 μL of the 8.65 mM
lipid mixture solution is placed in a flask and chloroform is removed
from sample by using a rotatory evaporator at 50∘C for about an hour.
The sample flask is kept in vacuum for about an hour to remove any re-
sidual chloroform at room temperature (23∘C). 500 μL of milli-Q water
is added to theflask to hydrate the lipids and ismixed using the rotatory
evaporator without vacuum-tight conduit at 23∘C (for DOPC-chol
mixture) and 45∘C (for DPPC-chol mixture), for about an hour. The hy-
drated lipid sample is transferred into an eppendorf, and 500 μL of
milli-Q water is re-added to sample flask and mixed, resulting in an
overall 1 ml volume of the 4.325 mM hydrated lipid sample. A tip-
ultrasonicator (Misonixs 3000, Qsonica, Newtown, CT operating at fre-
quency 20 kHz) is used to prepare SUVs of 1 ml each of the lipid solu-
tions in water inside a glass vial kept in an ice-bath (to prevent heat-
induced chemical degradation of lipids) in the following sequence:
one step of sonication for 10 s and break for 5 s at 2 W power, for
total sonication and break time of 20 min and 10 min respectively. In
this way, we have prepared SUVs of concentration 4.325 mM in
water of (a) DOPC-chol (60%–40%) containing RhPE, (b) DPPC-chol
(53.8%–46.2%) containing RhPE and NaP, (c) DPPC-chol (53.8%–
46.2%), (d) DOPC-chol (60%–40%) containing Laurdan, (e) DPPC-chol

(53.8%–46.2%) containing RhPE and (f) DOPC containing RhPE, as listed
in the Table 1. In case the SUVs have been stored at -20∘C, we have
ultrasonicated the SUVs with the same protocol as mentioned above
followed by extrusion in the liquid phase, using a Nuclepore polycar-
bonate membrane filters with pore size of 100 nm.

2.3. Electroformation of GUVs

We have prepared GUVs by mixing SUVs suspensions (A and B, as
listed in the Table 1), as described in [31]. A detailed description of the
protocol explaining the NKA reconstitution in GUVs in minute details
is described in [32] in physiological buffer and temperature conditions.
We have prepared GUVs of eight samples (c.f. Table 1). The total pro-
tein/lipid molar ratio (nP/nL) and the number density (N) of the NKA
in samples is calculated and is given in the Table 1 assuming themolec-
ular weight of NKA as 147 kDa, the area of the pump and the lipid as
1134 Å2 and 64 Å2 respectively.

2.4. Confocal microscopy

For confocalmicroscopy, a Zeiss LSM510Meta confocal laser scanning
fluorescencemicroscope (Carl Zeiss GmbH, Jena, Germany) is used. 100 μl
of the GUVs suspension prepared in the buffer A were transferred to an
eight-well microscopy chamber (Nunc Lab-Tek, Thermo Scientific, Wal-
tham MA, USA) already filled with 1 ml of buffer B (see materials) at
room temperature and imagedwith a 40X, C-Apochromat, water immer-
sion objective with NA=1.2. Two-channel image stacks were acquired
using multi-track mode, using Argon lasers of wavelengths 458 nm and
543 nm, for NaP and RhPE excitation, respectively. The laserswere direct-
ed to sample using twodichroicmirrors (HFT 458/514, HFT 488/543/633)
for exciting NaP and RhPE respectively. Fluorescence emission was col-
lected with photo-multiplier-tube (PMT) detectors. A beam splitter was
used to eliminate remnant scattering from the laser sources (NFT 545)
in a two-channel configuration. Additional filters were incorporated in
front of the PMT detectors in the two different channels to measure the
fluorescent intensity, i.e., a long-pass filter (N560 nm) for RhPE and a
band-pass filter (500±20) nm for NaP.

2.5. Epi-fluorescence and atomic force microscopy (AFM)

100 μl of the GUVs suspension prepared in the buffer C were trans-
ferred to a fluid cell (Biocell, JPK Instruments AG) filled with 1 ml of
buffer D (see materials), with freshly cleaved mica glued on the round
coverslips at room temperature. A Nikon TE2000 inverted microscope
with 4X and 40X long working distance objective (Nikon ELWD, Plan
Fluor, NA=0.6) was used for epi-fluorescence observations combined
with a JPK Nanowizard AFM system (JPK instruments AG). As appropri-
ate for the RhPE probe, fluorescence excitation was done at 540 nm
with a Xenon lamp (PolychromeV, Till Photonics GmbH, Grafeling,
Germany) and a G-2a filter cube (Nikon) was used for imaging. Images
were recorded with a high-sensitivity EMCCD camera (Sensicam em,
1004 × 1002 pixels, PCO-imaging, Kelheim, Germany) and operated
with TILLvision software (Till Photonics GmbH). Epi-fluorescence

Table 1
Samples are prepared by mixing SUVs A and B.

Label Lipid composition (nP/nL) % N SUVs (A) Proteoliposomes (B)

I DOPC-chol (60%–40%), RhPE 0.019 302 DOPC-chol (60%–40%), RhPE NKA, DOPC-chol (60%–40%)
II DOPC-chol-DPPC (35%–30%–35%), RhPE, NaP 0.012 190 DPPC-chol (53.8%–46.2%), RhPE, NaP NKA, DOPC
III DOPC-chol (60%–40%) 0.038 603 NKA, DOPC-chol (60%–40%)
IV DOPC-chol-DPPC (35%–30%–35%) 0.012 190 DPPC-chol (53.8%–46.2%) NKA, DOPC
V DOPC-chol (60%–40%), Laurdan 0.019 302 DOPC-chol (60%–40%), Laurdan NKA, DOPC-chol (60%–40%)
VI DOPC-chol (60%–40%), Laurdan 0 0 DOPC-chol (60%–40%), Laurdan
VII DOPC-chol-DPPC (35%–30%–35%), RhPE 0.012 190 DPPC-chol (53.8%–46.2%), RhPE NKA, DOPC
VIII DOPC-chol-DPPC (28%–39%–33%), RhPE 0.016 254 DPPC-chol (53.8%–46.2%), DOPC, RhPE NKA, DOPC-chol (60%–40%)

(nP/nL) % is the ratio of the molar fraction of protein to lipids in samples and N is the number density of NKA/μm2.
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images were analyzed with ImageJ (National Institute of Health, USA).
AFM is operated in the intermittent contact mode. Silicon cantilevers
for soft-tapping are used (Nanosensors PPP-NCST-50), having a spring
constant of 1.2–29 mN/m, with the AFM tip of thickness around 10–
15 nm and a resonance frequency of 76–263 kHz. AFM images were
processed and analyzed using the scanning probe image processor
(SPIP, Image metrology, Hø rsholm, Denmark) and Mathematica (Wol-
fram Research).

2.6. Immunofluorescence labeling

For immunofluorescence labeling of pumps we have used Primary
(PAb.) and secondary (SAb.) antibodies. Primary antibodies (PAbs) is a
rabbit 55 kDa, C-terminal specific antibody that binds to anti-rabbit Sec-
ondary antibodies and is prepared by Prof. Cornelius. Secondary anti-
bodies (SAbs) are tagged with Alexa Flour 488 purchased from
Invitrogen (A11008). 100 μl of the GUVs suspension prepared in the
buffer C of sample I were transferred to a fluid cell (Biocell, JPK Instru-
ments AG) filled with 1 ml of buffer D (see materials), with freshly
cleaved mica glued on the round coverslips at room temperature.
Vesicle-patches of the GUVs were formed following the protocol de-
scribed in [13] as described in the next paragraph. The patches are
first incubated with PAbs at 23∘C, overnight in the dark. Excess PAbs
are washed with the buffer C and sample is incubated with SAbs for
2–3 h in the dark at 4∘C. Excess SAbs are washed with the buffer C.
The mica sheet is inverted in the observation chamber before fluores-
cence imaging. The fluorescence images are obtained using Leica TSC
SP8 STED setup (Berlin, Germany) and excitation was done at 488 and
543 nm using a white light laser. The emission was recorded at 500–
520 nm for SAbs and at 560–580 nm for RhPE using the gated hybrid de-
tector (0.3 ns). Control experimentswith GUVs of sample VI (containing
no proteins) show no specific labeling of Abs with the membrane (the
data is not shown).

2.7. Membrane-patch unbinding experiments

We transfer about 50 μl of the GUVs prepared in the buffer C of sam-
ples I and VIII in an fluid chamber containing osmotically matched buff-
er D. After most of the GUVs settle down on the mica substrate (~30–
60 min), we add 1 μl of the concentrated MgCl 2-stock solution (final
concentration 2mM) to form themembrane-patches fromGUVs, as de-
scribed in [13]. 1 μl of the concentrated ATP solution was added in the
observation chamber such that the final concentration of Mg +2-ions
is 2 mM.

2.8. Laurdan generalized polarization (GP) measurements

We transfer about 200 μL of the GUVs of samples V and VI prepared
in the buffer A in an observation chamber containing 1 ml of an osmot-
ically matched buffer B. Laurdan is an amphiphilic fluorescence probe
whose fluorescence emission is sensitive to the dynamics of water mol-
ecules in the vicinity of its fluorescencemoiety located at the lipid bilay-
er interface. If the extent of water relaxation around the probe increases
(e.g., as in a gel-to-fluid phase transition), the maximum fluorescence
emission intensity of Laurdan shifts from 440 nm to 490 nm [33].
LAURDANGPmeasurements were performed on a custom-buildmicro-
scope setup on a specially constructed Olympus IX70 microscope. The
objective used was a 60X water objective with an NA of 1.2. The excita-
tion light source was a femtosecond Ti:Sa laser (HPMai Tai, tunable ex-
citation range 690–960 nm, Spectra Physics, Mountain View, CA) and
the excitation wavelength was 780 nm. The fluorescence signals were
collected in two separate detectors (Ib and Ig); equipped with band-
pass filters: 446±23 nm and 492±23 nm [34]. Likewise, LAURDAN
GPs were calculated using the following equation: GPex=(Ib-GIg)/
(Ib+GIg). The correction factor Gwas calculated by acquiringGP images
of a known LAURDAN reference solution (LAURDAN 2 μM in DMSO) in

the microscope at the same instrumental conditions used in the GUVs
experiments (for further details see [34]).

2.9. Voronoi analysis

Wehave analyzed theAFM topography images of the vesicle patches
containing NKAs using the Voronoi analysis program in Mathematica
(Wolfram Research). A Voronoi diagram shows partitioning of a plane
with n points into convex polygons such that each polygon contains ex-
actly one generating point which in our case is a protein (or a protein-
cluster) and every point in a given polygon is closer to its generating
point than to any other. A cumulative histogram of the specific-area of
the Voronoi cells t ¼ ða=aÞ in a vesicle patch is used for finding the spa-
tial distribution of the proteins in the membrane where a and a repre-
sent the area and the average area of the Voronoi cells respectively.
An inverse of the area of the Voronoi cells in a vesicle patch gives the
number of proteins per unit patch area or the number density of the
proteins (N). The Delaunay triangulation is dual to the Voronoi diagram
and gives information about the distance or the bond length
(s) between any two proteins (or clusters). A histogram of s gives the
nearest neighbor distance distribution.

3. Results

3.1. Reconstitution of NKA in two- and three-lipid-component GUVs

Confocal images of giant vesicles containing NKA, of sample I
(Fig. 1c) and sample II (Fig. 1d) is shown. Vesicles are 5–50 μm in diam-
eter and are prepared by mixing two populations of SUVs [32] in the
buffer A and transferred in the buffer B for observations. We choose
quasi-spherical GUVs for confocal scanning. We have also monitored
the osmotic pressure of the system and do not find any changes in the
osmotic pressure of the GUVs-suspension before and after the experi-
ments. Fig. 1e shows a two-dimensional fluorescence intensity histo-
gram for the surface of a typical GUV, which is used for precise
segmentation of membrane phases [36] and quantifying the area-
fraction of the l o/l d domains. The variation in the measured l o area-
fraction for a batch of vesicles (Fig. 1f) has a mean value of A(l o)/A
being 0.57±0.03 (mean ± SEM, N=16). GUVs of the same composi-
tion that were produced fromhydration of dried lipidsmixed in organic
solvent show similar value of A(l o)/A (c.f. color diagram in Fig. 1g). This
suggests that the lipids in the membranes containing NKA are well
mixed and that the vesicle sample is uniform.

3.2. Hydrolytic activity and density of the reconstituted NKA in GUVs

GUVs of samples III and IV are prepared for protein activity and den-
sitymeasurements in the buffer A, as described in [32]. The protein con-
tent in sample III and IV is measured and found to be almost 40% (241
pumps/μm2) and 30% (50 pumps/μm2) respectively, with respect to
the initial proteoliposomes. The specific hydrolytic activity of
reconstituted NKA in GUVs is estimated from the measured hydrolytic
activity of NKA with a n-o orientation assuming that the fraction of en-
zyme with this orientation is preserved from the proteoliposomes,
where it is measured to be 33%. The specific activity of sample III and
IV is found to be 147±2 μmol/mg h (mean ± SEM, n = 6) and below
10±2 μmol/mg h (mean, n = 6), respectively, at 23∘C. The activity for
GUVs of sample III is about the same as in the proteoliposomes [30],
whereas for ternary GUVs it was barely measurable. Thus, we found
that the hydrolytic activity of NKA is membrane phase dependent and
is not directly proportional to the protein density, which is consistent
with the previous experimental observations [37] discussed in this
paper.
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3.3. Changes in the lipid bilayer hydration upon NKA reconstitution

We have calculated the Laurdan GP values in GUVs of samples V
and VI before and after addition of the ATP and Fig. 1h shows the
results. A GP value of 0.37±0.005 (mean ± SEM, n =35) is found
in the absence of NKA, which corresponds to the extent of solvent re-
laxation observed for the l o phase, as reported earlier [33]. Reconsti-
tution of NKA results in a higher value of 0.43±0.003 (mean ± SEM,
n =30). When NKA is turned active, we obtain a value 0.425±0.002
(mean ± SEM, n =73) similar to the non-active case. We have
checked that the presence of ATP alone does not affect the GP value
significantly.

3.4. Orientation and spatial distribution of the reconstituted NKA in vesicle
patches

We have transferred individual GUVs of samples I and VII onto a mica
support forming planar bilayer patches. Time-lapse data showing the sin-
gle and two phase GUVs before and after the transfer is shown in Fig. 2.
Single phase GUVs are settled at the bottom of the observation chamber
(Fig. 2a), which upon adding Mg +2 ions form bilayer patches (Fig. 2b).
Fig. 2c displays the membrane area (green) in the patches. Fig. 2d, e
show the two-phase GUVs and the corresponding patches respectively
forwhich the l o and the l dmembrane phases are displayed schematically
in Fig. 2f.

3.4.1. DOPC-chol (60%–40%)-NKA vesicle patches
Figs. 3a, b are the epi-fluorescence and AFM topography images, re-

spectively, of a vesicle patch of sample I. Fig. 3b reveals many small-
scale elevated particles embedded in the membrane. The phase-lag
image (Fig. 3c) of the same patch shows that the particles appear
dark, implying that they have different stiffness compared to the bilayer.
A graphical representation of Fig. 3a showing the overall vesicle patch
area in Fig. 3d. Fig. 3e is a scan of a small region of the patch revealing
the spatial arrangement of the particles. We have investigated the
height- and phase-contrast profile of two arbitrary selected particles

showing vertical height of around z = 3–4 nm and a lateral extent
around 50 nm (convoluted by the AFM-tip size) in Fig. 3f. The
phase is reduced by ~1 -2 degree compared to the flat bilayer.
Fig. 3g is a color-coded three-dimensional height profile of the
same particles (Fig. 3e), where different colors indicate different z-
height levels varying between−3.6 nm to 1.2 nm.We have analyzed
170 particles in different vesicle patches. In Fig. 3h, the two distinct
populations of particle heights around 2 nm and 4 nmwith equal oc-
currence in the vesicle patch are clearly seen. We have plotted the
histogram of the number density (N) of the particles as shown in
Fig. 3i and found N ~100/μm2 resulting in a mean distance between
any two particles to be around 100 nm, assuming a homogeneous
spatial distribution. Fig. 3j is the cumulative histogram of the
Voronoi specific area, t ¼ ða=aÞ , of the particles to which we fit
f(t)=c ∫0t x(λ -1)e-ηxdx, where the fitting parameters are λ=η=3.61
and c=ηλ/Γ(λ) as found [38] for a random distribution.

In the section 3.2, we have measured the protein density in sample
III and found that 40% of the total protein content present initially in
the proteoliposomes gets reconstituted into GUVs. From this we have
estimated the protein density and obtain N ~121/μm2 for sample I.
This implies amean distance between two particles in the bilayer corre-
sponding to ~ 90 nm for a homogeneous distribution. Thus the density
of particles in the vesicle patches is consistent with the density deter-
mined from biochemical assays.

Fig. 4a, b shows an antibody labeled vesicle patch in which the pres-
ence of the reconstituted proteins is confirmed by immunolabeling. Fur-
ther, the epi-fluorescence images of vesicle patches on mica in the
absence (Fig. 4c) and presence (Fig. 4d) of ATP show that the patches
spontaneously unbind from the substrate, as these are no longer visible
in the epi-fluorescencemicroscope. Figs. 4e, f show the epi-fluorescence
images of many patches after adding the ATP on a larger spatial scale for
the vesicle patches of samples I (Fig. 4e) and VIII (Fig. 4f). Experiments
on ternary-mixture vesicle patches containing NKA (Fig. 4f) and binary-
mixture vesicle patches without NKA to which ATP is added do not un-
bind. We have investigated the ternary-mixture vesicle patches con-
taining NKA in detail and will be described in the section 3.4.2.

Fig. 2. Epi-fluorescence images of the collapse of GUVs onmica. (a) Epi-fluorescence image of GUV of sample I (containingNKA) settled on amica support. (b) Vesicle patches formed after
GUVs collapse. A white box denotes a patch that is selected and scanned with AFM (Fig. 3a). (c) A graphical representation of the vesicles patches (in b). Green indicates the membrane
surface in the l o phase. (d) Epi-fluorescence image of GUVs of sample VII. The bright and dark regions are the l d and l o membrane phases, respectively. (e) Vesicle patches formed after
GUVs collapse. 1–3 represent the same GUVs as in (d), after the collapse. (f) A graphical representation of the vesicles patches shown (in e) highlighting l d (red) and l o (green) domains.
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3.4.2. DOPC-DPPC-chol(35%–35%–30%)-NKA vesicle patches
GUVs of sample VII are prepared and vesicle patches are formed as

described above. We select one arbitrary vesicle patch (Fig. 5a), for
which the AFM topography image is shown in Fig. 5b. Fig. 5c is a graph-
ical illustration of Figs. 5a, b highlighting the l o and the l d membrane
phases. Fig. 5d is an AFM topography image of a scanned region in the
patch close to the macroscopic l o/l d domain boundary (shown in
Figs. 5a and 5c). Fig. 5e is drawn to highlight the l o/l d domains by
graphical illustration of Fig. 5d. Fig. 5f shows a height profile taken in
Fig. 5d confirming the presence of l d membrane phase fluctuations in-
side the macroscopic l o domain with a step height difference of
0.9 nm. The image also reveals that the intra-membrane particles are
heterogeneously distributed in a complex interplay with the l o/l d do-
mains. A high resolution AFM topography scan of a selected region in
the vesicle patch as shown in the Fig. 6a reveals that elevated particles
greatly vary in size. Figs. 6b, c are the Voronoi diagramand theDelaunay
triangulation respectively for the particles present in the same patch. A
nearest-neighbor particle distance distribution (s) for this patch reveals
large variation in s. (See Fig. 6d.)

Fig. 7a shows an AFM topography scan of a vesicle patch showing
many interfaces and elevated particles. A region in the Fig. 7a is selected
(shown by a blue ellipse) of which a three-dimensional height profile
(Fig. 7b) and two-dimensional height-projection contours (Fig. 7c) of
one of the selected particles is shown, where height levels are varying
between−1 nm and 5.4 nm (indicated by different colors). To quantify
the membrane phases surrounding a particle, we calculate the area

occupied by the particle and derive an equivalent circular area of radius
r. The area-fraction of the l dmembrane phasewithin the circle of radius
R¼

ffiffiffi

2
p

r is calculated by counting the number of pixels in the AFM to-
pography image leading to a vertical height decrease of 0.9 nm relative
to the l omembrane phase (z=0) as shown in the Figs. 7b, c, i.e., similar
to that of an l o- l d domains interface. Fig. 7d displays the height profiles
taken in Fig. 7a revealing coexisting l o/l d domains. Figs. 7e, f show the
height and the l d membrane phase area-fraction A(l d)/A, respectively,
for the 103 particles. Distinct populations of particles of height around
1–3 nm, 4–6 nm, and 6–8 nm are found to protrude out from the lipid
bilayer (Fig. 7e). Fig. 7f shows the the area-fraction of the l d membrane
phase in the vicinity of 103 particles suggesting that A(l d)/A has a broad
distribution and the particles are indeed located at the l o/l d interface.

As described previously (Fig. 4f), we have also studied these vesicle
patches in order to see possible unbinding effects due to activity in the
presence of ATP but found that the patches do not unbind. We suggest
that this is due to the very low NKA activity in the ternary systems, as
measured here and also reported earlier [39], attributed mainly to the
interfacial localization of NKA as will be discussed further.

To summarize this section,we have found that the elevated particles
of height 1–3 nm and 4–6 nm are found to be randomly distributed in a
bilayer in the l o phase, while these are clustered in the l o/l d coexisting
domains and preferentially localized at the l o/l d domain boundaries.
For data analysis we choose the particles or clusters locally and analyze
each one of them individually to gather the detailed statistics, which is a
major undertaking with the current technique. Figs. 3h, i, j show the z-

Fig. 3. Images of nanoscopic distribution of NKA in the l o membrane phase vesicle patches. (a) Epi-fluorescence image of a vesicle (sample I) patch. (b, c) AFM topography and phase-
contrast images of the same vesicle patch. (d) A cartoon of the vesicles patch with green color indicating the membrane surface that is in the l o phase. (e) High-pixel resolution AFM
topography image of the patch region selected in the white box in (b). (f) Height (z, green-color) and phase (ϕ, blue-color) line profiles along the cut line (within the white box in e).
(g) Three-dimensional view of the same two particles (as in f) inside the white box in (e) with a color-code representation of the height deformation. (h) Histogram of the z-height
(nm) and the (i) number-density (N in μm-2) of the 170 arbitrary particles in different patches. (j) Cumulative distribution function of the Voronoi cells specific area t ¼ ða=aÞ, where a
and a is the area and average area of the Voronoi cells respectively. The solid black line shows a fit f(t) to a random distribution of the normalized specific areas (t).
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height, particle density and cumulative spatial distribution data statis-
tics for the 170 different particles respectively in vesicle patches of sin-
gle phase membrane. For vesicle patches of two phase membrane,
Fig. 7a shows many l o/l d interfaces and small clusters. We have made
detailed quantifications of the z-height and membrane phase state sur-
rounding the 103 clusters as shown in Figs. 7e, f respectively . From the
density of particles (Fig. 3i, 100/μm2), which is similar to the measured
density of NKA (121/μm2), and from the height histogram of the parti-
cles in the binary (Fig. 3h) and ternary (Fig. 7e) vesicle patches, we
would therefore suggest that the particles of height 1–3 nm protruding
from the bilayer correspond to i-o orientation of NKA, and those of
height 4–6 nm correspond to the r-o orientation of NKA. If n-o pumps
represent externally adsorbed protein,which is not integral in the bilay-
er, we would expect a height of less than 4 nm from the crystal struc-
tures and they may therefore be included in the particles of heights 1–
3 nm. This would also be in accordance with the distribution of orienta-
tions measured from functional tests where r-o oriented NKA com-
prised about 50% of the protein [30].

4. Discussion and conclusions

We have studied the function and spatial distribution of NKA and
how it is influenced by the lipid composition and the physical state of
model membranes. Our main finding is that the hydrolytic activity of
NKA is measured and found to be membrane phase-dependent and re-
lated to the lipid-domain structure of the membrane. We have also
measured a significant change in the membrane hydration (GP data)
due to the presence of non-active proteins. Our work suggests that
NKA stabilizes the l o/l d domain interfaces by inter-domain localization.
The l o/l d interfacial localization of NKA is also supported by structural
data, which show distinct differences in the hydrophobic thickness at
the membrane-spanning region [21,37].

It is well established that a determining factor for the solubility of in-
tegral proteins in fluid membranes is hydrophobic matching, i.e.; the
length of the hydrophobic core of the TM domain of NKA (containing
non-polar residues) should closely match the hydrophobic thickness
of the lipid bilayer in order not to expose non-polar residues to water

Fig. 4. Immunolabeling of NKA in a vesicle patch and unbinding of patch due to NKA activity. (a) Fluorescence image of an arbitrary selected vesicle patch (sample I) where red color
indicates the membrane surface labelled by the RhPE dye. (b) The same patch (as in a) is shown after incubation with NKA-specific antibodies. The green color derives from Alexa-488
antibodies that specifically attach to the NKA. (c, d) Epi-fluorescence images of a single-phase vesicle patche (without antibodies) before (in c) and after (in d) the addition of ATP. (e,
f) Epi-fluorescence images of many vesicle patches (without antibodies) after the addition of ATP, for samples I (in e) and VIII (in f).
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[40,41,42,43]. Andersen and Koeppe [44] have shown by molecular dy-
namics simulation of Ca +2-ATPase that hydrophobicmismatch induces
local deformations in the lipid bilayer. Mutual adaptation of the protein

to the bilayer by small rearrangements of amino acid side chains and α-
helix tilts has also been suggested in [45]. In SERCA1a, E1–E2 conforma-
tional change of the NKA during turnover is followed by a change in the

Fig. 5. Images of nanoscopic distribution of NKA in the l o/l d phase-coexistence region of vesicle patches (a) epi-fluorescence image of a vesicle patch (sample VII). In the l o/l d coexistence
region, the l d phase (bright region) of themembrane is labelled by the RhPE dye and the l o phase (dark region) contains no dye. (b) AFM topography image of the same vesicle patch. (c) A
cartoon of the vesicles patch (in b)with l d (red) and l o (green) domains. (d)High-pixel resolution AFM topography image of a region in the vesicle patch (shown by thewhite box in a and
c). (e) A cartoon of the patch region (in d)with l d (red) and l o (green) domains. (f) Height line profile ( along the blue-color line shown in d) displaying the l d and l o domains coexisting in
the membrane with a difference in the z-height of around 0.9 nm.

Fig. 6. Voronoi analysis of vesicle patches containing NKA. (a) AFM topography image of a vesicle patch containing NKA (sample VII). The bright regions are the elevated particles. (b) A
Voronoi diagram indicating that particles have different sizes in the formof clusters. The black dot shows the centroid of the particles andwhite region shows the lateral extent of particles.
(c) TheDelaunay triangulation shows the proximity information or the bond length (s) between the two particles (or clusters). (d) Nearest-neighbor particle distance (s) distribution plot
indicating particles are heterogeneously distributed.
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membrane thickness and residues interacting with phospholipids (PL)
head groups, and the orientation of thewhole protein. This would result
in large changes in cross-sectional area of the TM region and
lateral pressure profile of the lipid bilayer containing the pump. Exper-
imentally, a significant shift in the NKA conformations has been shown
previously by increasing the amount of cholesterol in the bilayer [46,
19]. Thus the mixed solubility of NKA with respect to the l o and l d

phases may favor an interfacial location.
A lower activity of NKA has previously been reported in the

case where NKA is reconstituted into proteoliposomes with poly-
unsaturated lipids (PUFA) [37]. It was suggested in [37] that a lower hy-
drolytic activity would result if the NKA localize at the two-phase do-
main boundaries instead of either of the phases; a hypothesis which
we have examined in this paper. A similar conclusion was reached by
Powalska et al. [47] who measured the GP values in vesicles with one
(DMPC, DOPC) and two (DOPE-DOPC) lipid components in the l d

phase containing 1–3 mol% NKA, and found a higher Laurdan GP
value, ΔGP ~ 0.35, in comparison with vesicles containing no NKA. Ear-
lier, Bouvaris et al. havemeasured an increase in themembrane bending
rigidity by 3.5 kBT upon NKA reconstitution into the GUVs of sample III
and found a decrease by 7 kBT when NKA is activated by adding ATP
[48]. We surmise that the mechanism behind this membrane softening
and the resulting unbinding phenomenon is due to a conformational
change of the protein during the pumping cycle [19].

A striking observation is the highly inhomogeneous distribution of
NKA in the ternarymixtures, where the NKA is found primarily to be lo-
cated in clusters associatedwith l o and l dmicrodomains (Figs. 6 and 7).
Furthermore the clusters are located at the interfacial region between
the macroscopic l o and l d phases (Fig. 7f). A possible explanation of
this is that NKA is emulsifying the l o/l d phase coexistence, where the
observed protein-rich cluster form a microemulsion droplet. This type
of phenomenon is well known in standard oil–water surfactant systems
[49]. Two-dimensional microemulsions stabilized by proteins may be a
natural way to stabilize microdomains of l o and l d phases. Opposite to
the recently suggested mechanism for formation of microdomains by
quenched disorder in the lipid cooperativity, e.g., facilitated by proteins

coupled to the cytoskeleton [6,7], microemulsion formation does not re-
quire external coupling to the membrane components.

Functional and structural observations on membrane bound NKA
have indicated direct and specific interactions of phospholipids (PLs)
and cholesterol to be responsible for both the stability andmolecular ac-
tivity of NKA [19,50,51]. The PL composition in shark enzyme prepara-
tion has the main fatty acids — 16:0, 18:1, 20:4 and 22:6 acyl chains
[39]. In pig kidney enzyme preparations 18:0/18:1 PL is the best to sup-
port activity and 16:0 PC is one of the worst [21]. For this purpose, we
have reconstituted the NKA in GUVs of DOPC (18:1 PL) and cholesterol
containing vesicles in order to have fully active NKA.We expect that our
studieswill lead to further quantitative scrutiny of the presence of lipid-
mediated heterogeneity in biological membranes. Immediate applica-
tions pertain to studies involving NKA and could involve other P-type
ion-motive ATPase, such as Ca +2-ATPase and H +-ATPase, which are
very similar toNKA in topology andmolecular organization and further-
more are targets for cardiac drugs and disease-causing mutations.
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Fig. 7. Images of interfacial localization of NKA at the l o/l d domain boundaries and clustering effect. (a) AFM topography image of a selected region in a vesicle patch (sample VII).
(b) Three-dimensional view of features (inside the blue ellipse in a) with a color-coded z-height scale . (c) Two-dimensional height-projection contours of a selected feature (in

b pointed by an arrow) with the same color scale (as in b). z = 0 corresponds to the l o membrane phase. R and r are radii of the two circles where R ¼
ffiffiffi

2
p

r. (d) Z-height line profile
(in a) displaying the l o and l d domains with a step height difference of around 0.9 nm. (e) Histogram of the z-height for the 103 arbitrary selected particles. (f) Histogram of the area-
fraction of the l d phase A(l d)/A in the vicinity of the 103 particles embedded in the membrane.
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