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Summary 

1. The open-access scientific philosophy has been widely adopted and proven to 

promote considerable progress in the fields of ecology and evolution. Open-

access global databases now exist on animal migration, the distribution of 

species, and conservation status, to mention a few. However, a gap exists for 

databases on population dynamics spanning the rich diversity of the animal 

kingdom. This information is fundamental to our understanding of the 

conditions that have shaped variation in animal life histories and their 

relationships with the environment. Furthermore, an animal population’s 

schedules of reproduction and mortality determine its invasive potential, and 

its risk of local extinction, which are at the core of conservation biology. 

2. Matrix population models (MPMs) are among the most widely used 

demographic tools by animal ecologists. MPMs project population dynamics in 

terms of reproduction, mortality, and development over the entire life cycle. 

The results of MPMs have direct biological interpretations, facilitating 

comparisons among animal species as different as Caenorhabditis elegans, 

Loxodonta africana and Homo sapiens. 

3. Thousand of animal demographic records exist in the form of MPMs, but they 

are dispersed throughout the literature, rendering comparative analyses 

difficult. Here, we introduce the COMADRE Animal Matrix Database version 

1.0.0, an open-source online repository containing data on 402 species 

worldwide, from 272 studies, with a total of 1,575 population projection 

matrices. COMADRE also contains ancillary information (e.g. ecoregion, 

taxonomy, biogeography, etc.) that facilitates interpretation of the numerous 

demographic metrics that can be derived from its MPMs. 
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4. Synthesis: We introduce the COMADRE Animal Matrix Database, a resource 

for animal demography. The open access nature of this database, together 

with its ancillary information will facilitate comparative analysis, as will the 

growing availability of databases focusing on other traits, and tools to query 

and combine them. Through future frequent updates of COMADRE, and its 

integration with other online resources, we encourage animal ecologists to 

tackle global ecological and evolutionary questions with unprecedented 

statistical power. 

 

Keywords: big data; comparative approach; matrix population model; animal 

population ecology; population growth rate; open access. 
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Introduction 

An understanding of the drivers and consequences of variation in 

reproduction and mortality throughout the life cycle is at the heart of population 

biology, evolution, ecology, and allied fields (Metcalf & Pavard 2006; Salguero-

Gómez & de Kroon 2010; Salguero-Gómez et al. 2015). Although demography is 

essential to understand and predict population dynamics, no single repository 

integrates these data. This is mainly because most biological data sources are 

scattered and biological data types are heterogeneous (Hoffmann et al. 2014). 

Moreover, demographic data pose challenges for standardization due to the different 

formats and terminology (Lebreton 2012; Conde et al. unpublished). This makes it 

challenging to create a single demographic data repository across multiple species. 

However, there are important efforts towards compiling these data such as the 

Global Population Dynamics Database (GPDD, Inchausti & Halley 2001) and the 

Living Planet Index (LPI, Collen et al. 2009) holding population time-series data, 

BIDDABA (Lebreton et al. 2012), and the Primate Life History Database (PLHD, 

Strier et al. 2010) containing demographic information for birds and primates 

respectively. Although these examples have advanced the field of population 

biology, they are limited in either demographic detail (GPDD, LPI) or taxonomic 

scope (BIDDABA, PLHD, WBI).  

A mechanistic understanding of how and why populations invade, grow, 

decline, or go locally extinct, requires data and methods that provide insights into 

age/size/ontogeny-based structure, such as Matrix Population Models (MPMs 

hereafter; Caswell 2001). MPMs have become the staple method describing the 

structured demography of animal populations. The widespread use of MPMs stems 

from their well-understood mathematical foundations and tractability (Caswell 2001), 
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coupled with the clear biological interpretations of the analytical outputs (de Kroon et 

al. 1986; Silvertown, Franco & Menges 1996; de Kroon, van Groenendael & Ehrén 

2000). Briefly, an MPM divides the life cycle into discrete stages and projects the 

population through time in terms of probabilities of survival and of transitions among 

stages, and of the contributions to sexual or clonal reproduction at each stage. The 

stages of the life cycle can be chosen based on a compromise between the biology 

of the species and the availability of data, and the projection interval can vary from 

days (e.g. Buston & García 2007) to years (e.g. Edmunds et al. 2015), depending on 

the species and question. 

As is the case with plants (Salguero-Gómez et al. 2015), a large number of 

MPMs have been published on species in the animal kingdom since the models 

were introduced in the 1940s (Bernadelli 1941; Leslie 1945) (Figure 1). Underlining 

the general utility of MPMs, these models have been used to address diverse topics 

including conservation biology (e.g., Crouse, Crowder & Caswell 1987; Jenouvrier et 

al. 2012), evolutionary biology (e.g., Kawecki 1995), ecotoxicology (e.g., Charles et 

al. 2009), invasion biology (e.g., Neubert & Parker 2004), and resource management 

(e.g., Salomon et al. 2013). MPMs have been employed to study species as 

taxonomically distinct as Caenorhabditis elegans, Loxodonta africana and Homo 

sapiens, and in geographically diverse regions with studies in every major biome 

(Figure 2.A & 2.B). 

Despite the growing availability of published MPMs and the fact that such 

models are inherently comparable, there have been few attempts to use MPMs in 

comparative analyses. Notable exceptions are the work by Sæther and Backer 

(2000) on birds, and Heppell, Caswell and Crowder (2000) on mammals, Vélez-

Espino, Fox and McLaughlin (2006) on fish, and van de Kerk et al. (2013) on order 
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Carnivora. These works illustrate the power of comparative approaches for robust 

generalizations by relating demographic estimates made from MPMs to interactions 

with the environment that form the basis for the evolution of life histories. One reason 

for the lack of comparative studies has historically been the paucity of readily 

available demographic data, compared to genetic data (e.g. Benson et al. 2013). 

This changed earlier this year, when Salguero-Gómez and colleagues (2015) 

released a database on plant demography, COMPADRE. Since its foundation in 

1990, COMPADRE has prompted over 35 comparative plant demography studies 

ranging from senescence (Silvertown, Franco & Perez-Ishiwara 2001), to short-term 

population dynamics (Stott, Townley & Hodgson 2011), to the link between functional 

traits and demography (Adler et al. 2014). Here, we announce the release of 

COMPADRE’s sister database, COMADRE, which contains MPMs and associated 

metadata from the animal kingdom. 

The main objectives of the COMADRE team are (i) to find, digitize, and 

systematically error-check published animal MPMs and supplement them with 

additional information (Table 1), (ii) to offer such information on an open access 

basis, and (iii) to develop R scripts to facilitate comparative analyses. The data 

described here are available at www.comadre-db.org. In this paper, we briefly 

describe COMADRE, and highlight the major differences and similarities between 

COMADRE and the sister-database on plants COMPADRE. In addition, we briefly 

report some geographic, taxonomic and modelling biases inherent in the database. 

Finally, we detail our vision for how COMADRE will expand and develop in the 

future, linking to other already existing open-access databases to address timely 

questions in animal ecology and evolution. 
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COMADRE 1.0.0: A historical perspective 

The accumulated number of publications reporting MPMs for animals has 

increased dramatically since MPMs were introduced in the 1940s (Figure 1). 

Important contributions to this history come from the introduction of new types of 

MPMs, and new methods for analysing them.  

Matrix population models were largely ignored for twenty years after the work 

of Leslie (1945). This is partly because Leslie had also helped introduce life table 

calculations of population growth rate into ecology, and those methods were more 

computationally feasible in the days before computers (Caswell 2001)1.  

The rediscovery of MPMs in the 1960s can be credited to three papers 

(Keyfitz 1964; Lefkovitch 1965; Rogers 1966).  All of these papers focused on 

animals (yes, humans are animals). Keyfitz (1964) presented MPMs as tools for 

projecting population growth; his book (Keyfitz 1968) influenced a generation of 

animal ecologists. The first presentations of MPMs had assumed that age was the 

only i-state variable. Lefkovitch (1965), based on studies of laboratory populations of 

stored product insect pests, explicitly proposed stage-classified models based on the 

stages of the insect life cycle. Rogers (1966) introduced spatial, or multiregional, 

models for human populations, classifying individuals by age and spatial location, 

and modelling mortality, fertility, and migration between locations.  

Other types of MPMs were introduced in the following years. The first 

seasonal, periodic MPM appeared in 1964 (Darwin & Williams 1964) in a study of 

seasonal harvesting as a control strategy for rabbits.  The first density-dependent 

models appeared in 1969; Pennycuick et al. (1969) analyzed a population of great 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 A glance at Hutchinson’s (1978) population ecology text, based on a course he taught for many 
years at Yale, will show how influential life table methods were, and how intimately connected the 
approaches of animal demographers were to those of human demographers. 
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tits (Parus major), based on field data. Rabinovich (1969) comparing several density-

dependent models, including a MPM to analyze laboratory populations of a 

parasitoid wasp. The first stochastic model for an animal population was the analysis 

by Cohen, Christensen and Goodyear (1983) of recruitment fluctuations in striped 

bass (Morone saxatilis). Invasion models, using matrix integrodifference equations, 

were first applied to bird populations by Caswell, Lensink and Neubert (2003).  

 Analytical methods have developed in parallel with their applications to 

animal populations. Many of these are listed in Figure 1. Some of these 

developments have provided new ways of constructing models (photo-identification 

methods, mark-recapture methods, vec-permutation matrix methods). Others have 

provided ways to extract additional information from the resulting MPM (sensitivity 

and elasticity analyses; LTRE decomposition analyses; stability and bifurcation 

analyses for nonlinear models; Markov chain methods for analysis of longevity, 

heterogeneity, and individual stochasticity; reactivity and amplification analyses). The 

introduction of new methods is not slowing down; if anything it is accelerating.  

The COMADRE Animal Matrix Database was founded at the Max Planck 

Institute for Demographic Research (MPIDR) by Salguero-Gómez in 2011 (Figure 1), 

soon after joined by Jones, as well as a core committee, a science committee, and a 

team of digitizers (Supporting Information Appendix S1). The motivation for the 

creation of a database containing MPMs for animals was based on the success of its 

sister database, the COMPADRE Plant Matrix Database (Salguero-Gómez et al. 

2015). Four years after its foundation, the COMADRE digitalization team has 

digitized, standardized, error-checked and supplemented information contained in 

over 400 species. As with the commitment for COMPADRE, more data will be 
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released periodically (Figure 1) through the COMADRE online portal (www.comadre-

db.org).  

 

What is in the COMADRE portal? 

The COMADRE portal (www.comadre-db.org) facilitates open access to the R data 

object that contains the database itself, as well as the COMADRE user’s guide. The 

latter contains details on the organization of the data object, the meaning and 

possible values for the variables within, and information on error-checks and quality 

controls. Additionally, Frequently Asked Questions (FAQs) can be found in the online 

portal (http://www.compadre-db.org/Compadre/Help).  

 The basic data item in COMADRE is the population projection matrix. A basic 

(i.e., linear and time-invariant) MPM can be written 

n(t+1) = A n(t)     eqn 1 

where n is a vector giving the abundance of a set of age/size/ontogenetic classes 

and A is a population projection matrix. The structure of the projection matrix A 

depends on the choice of life cycle stages and the projection interval.  

 In COMADRE, the projection matrix is decomposed as 

A = U + F + C             eqn 2 

where U is the matrix describing transitions and survival of extant individuals, and F 

and C are the matrices describing production of new individuals by sexual and clonal 

reproduction, respectively. Some studies do not measure reproduction, reporting 

only the transition matrix U. In these cases, this is reflected in the variable MatrixFec 

(see Table 1 and COMADRE User's Guide for details). The column sums of U give 

the survival probabilities of the stages, and thus should not exceed 1. Some studies 
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report U matrices whose column sums do exceed 1; these are noted in the database 

(variable SurvivalIssue in Table 1) and must be treated with caution.  

 

 The simple model (1) can be extended in several ways. Seasonal MPMs 

divide the year into seasons (not necessarily of the same length) and report a 

projection matrix Ai for season i; the database entries for such seasonal models 

report all of the seasonal matrices. Stochastic, density-dependent, and environment-

dependent MPMs are increasingly common in animal studies. In such cases, the 

MPM can be written 

n(t+1) = A[t, n(t), E(t)] n(t)           eqn 3 

where E(t) is some measure of environmental conditions. Such a model is 

associated not with a single projection matrix, but with a function that, given a time 

and/or environment and/or population vector, returns a projection matrix. Because 

such functions require a different data structure, such MPMs are not included in 

COMADRE 1.0.0, but we will include them in future versions. 

 Associated with the projection matrices is a rich set of descriptive information 

and metadata; thus the R object COMADRE_v.1.0.0.Rdata contains three main 

branches: metadata, matrixClass and mat. The metadata can be accessed in R 

with the command comadre$metadata, and it includes information about 

taxonomy, additional details of the study including its source, geo-location, and some 

details about the specific MPMs (Variables 1 through 54 in Table 1). Information 

about the classes used to construct the specific MPM can be accessed with the R 

command comadre$matrixClass. Lastly, the population projection matrices can 

be retrieved with the command comadre$mat. Data pertaining to particular matrices 

can thus be obtained using R’s data indexing facilities i.e. comadre$metadata[n, 
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] and comadre$matrixClass[[n]] will return the metadata and class 

information pertaining to the nth matrix (comadre$mat[[n]]). 

In some cases, the original data source provided information that allowed us 

to split the full life-cycle matrix (matA) into survival-dependent processes (matU), 

sexual reproduction (matF), and clonal reproduction, (matC) as described in 

equation (2); see variable MatrixSplit in Table 1. These matrices can be obtained 

with ease: comadre$mat[[n]]$matA, comadre$mat[[n]]$matU etc. Splitting 

the matrices in this way allows for faster, semi-automatic calculation of demographic 

output on hundreds of records in a few seconds. The unique matrix-specific indices 

allow the user to relate the information contained in the three branches of 

COMADRE with just a few lines of code (see examples in our GitHub repository, 

linked through Supplementary Online Material S3). 

 

COMADRE and COMPADRE: similarities 

The core data in both COMADRE and COMPADRE are the population projection 

matrices that make up MPMs. A comparison of Table 1 in this manuscript and Table 

1 in the introduction to COMPADRE (Salguero-Gómez et al. 2015) reveals a number 

of similarities. Moreover, the data quality controls are the same for COMADRE and 

for COMPADRE. These were detailed in an earlier publication (Salguero-Gómez et 

al. 2015). Due to its importance, however, we emphasize the variable SurvivalIssue 

(Table 1). The stage-specific survival of any column sums of matU must be a value 

between 0 and 1. Values greater than 1 render most analyses of survival and 

longevity impossible. When probabilities exceeded the error margin for rounding 

error and were considerably greater than 1, authors were contacted for clarification. 

In some cases (<13% of MPMs with this issue), these personal communications 
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have resulted in amendments from the originally published matrices, or in the re-

assignment of proportions of each matrix element in matA to the submatrices matU, 

matF and matC (Table 1). MPMs with this concern are periodically checked and, 

when necessary, additional clarification is requested from the authors and stored in 

the variable “Observation” (Table 1). Currently, only 1.2% of the MPMs (19 out of the 

1,575) in version 1.0.0 have at least one life stage with survival >1. 

 

COMADRE and COMPADRE: differences 

In spite of the similarities, animals pose some important differences that cannot be 

fully accommodated by the database framework of COMPADRE. The following there 

are key differences between the two databases: 

- The variables GrowthType, DicotMonocot and AngioGymno, which are 

specific to plants, naturally do not exist in COMADRE. 

- The variable TPLVersion, which identifies the taxonomic validity of plant 

names from The Plant List (http://www.theplantlist.org), is here substituted 

with CoLCheckOK, its analog for the animal kingdom via The Catalogue of 

Life (CoL) (http://www.catalogueoflife.org). This variable simply indicates 

whether or not (TRUE/FALSE) the taxonomy given in COMADRE has been 

validated at CoL. In just three cases the species were not present in CoL. In 

all other cases the taxonomic placement has been validated as correct. 

- We have added the variable MatrixFec, which indicates whether the 

reproductive component (matrices F and/or C) of the matrix model is missing 

or not. Users are cautioned to carefully examine models in which the 

reproductive components are missing before using them for any demographic 

analyses that require the full life cycle (e.g. population growth rates λ and its 
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elasticities/sensitivities, damping ratio ρ, etc.). However, other metrics are still 

valid in these models (e.g. life expectancy from matU; table 1). MatrixFec will 

also be added to the next version of COMPADRE. 

- Unlike in COMPADRE, where we reconstructed a phylogeny for plant species, 

a phylogeny for most animal species in COMADRE has been recently 

published (Hedges et al. 2015). Furthermore, species-level resolved trees 

also exist for some taxonomic groups such as mammals (Bininda-Emonds et 

al. 2007), birds (Jetz et al. 2012), or reptiles (Pyron, Burbrink & Wiens 2013). 

 

Scope and coverage of COMADRE 

The current version in the COMADRE portal contains an unprecedented sample size 

for information on animal population dynamics: 1,575 MPMs from 272 studies 

corresponding to 402 species according to the authors, or 349 accepted 

taxonomically according to the Catalogue of Life. This represents a substantial 

improvement in sample size and ancillary information (Table 1) considered to date, 

including important comparative works examining various aspects of life history traits 

and population dynamics of mammals (50 species in Heppel, Caswell and Crowder 

2000), birds (49 species in Sæther & Backer 2000), fish (88 species in Vélez-Espino, 

Fox & McLaughlin 2006), order Carnivora (285 species in van de Kerk et al. 2013) 

and various animal taxa (17 species in Jones et al. 2014). It must also be noted that 

the information analysed in those studies was not made publically available, 

although M. van de Kerk kindly provided COMADRE with her MPMs. 

COMADRE offers a broad geographic coverage of animal population 

dynamics  (Figure 2.A). Information in COMADRE 1.0.0 includes MPMs from all 

continents except Antarctica – although MPMs for Antarctic species do exist and will 
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be released in future version of COMADRE (e.g., Emperor penguin, Jenouvrier et al. 

2012; Antarctic petrel, Descamps et al. 2015). Importantly, geographic gaps do exist 

in our knowledge of animal demography in certain regions, including Oceania (8.13% 

of MPMs), and Asia (2.3%; Figure 2.B). Together, the USA (31.7%), Canada (8.8%), 

Australia (5.2%), and Kenya (4.8%) comprise over half the MPMs in COMADRE 

1.0.0, and a clear bias exists towards terrestrial studies at low elevations (Figure 

2.C). Unfortunately, few studies report MPMs from biodiversity hotspots such as 

Honduras, Guatemala, the Democratic Republic of Congo, Paraguay, India, and 

Indonesia. Furthermore, even some developed countries, such as Saudi Arabia, 

Italy, Greece, Ireland, Brazil and France, are under-represented. 

Individual and seasonal population projection matrices (Table 1 #42) together 

total over 50% (783) of the projection matrices in COMADRE 1.0.0, representing 

unique combinations of studies × species × populations × treatments × periods 

(Figure 3.A). The remaining 755 projection matrices are element-by-element 

arithmetic means of other matrices, or constructed based on data from multiple 

sources (“pooled”). Given the intra-annual (Figure 4.A), inter-annual (Figure 4.C) and 

spatial replication (Figure 4.B) in many studies, the high proportion of mean and 

pooled matrices suggests a tendency in animal demographic studies to publish only 

summary MPMs. We encourage authors to do so as part of the supplementary 

materials for their papers.  Authors willing to share additional matrices to be archived 

in COMADRE can do so by submitting the materials at comadre-

contact@demogr.mpg.de.  

Most studies in COMADRE are of natural populations in the wild (87%, Figure 

3.B), and under unmanipulated conditions (80%; Figure 3.C). Most of the 

demographic studies in COMADRE are based on females only (68%; Figure 3.D); 

.CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/027821doi: bioRxiv preprint first posted online Sep. 29, 2015; 

http://dx.doi.org/10.1101/027821
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
  

	
   15	
  

this is common practice in animal demographic studies (particularly in mammals), 

since quantifying reproduction is usually easier in females than in males. We have 

noted, in the variable “Observations” (Table 1 #52), when the primary sex ratio was 

stated by the author as differing from 1:1 (female:male). For the vast majority of 

matrices (97%; Figure 3.E), we have successfully split the full matrix A into its sub-

components of survival (U), sexual reproduction (F) and clonal reproduction (C), and 

only 4% of the MPMs do not incorporate reproductive information (Figure 3.F). 

The data in COMADRE 1.0.0 represent a wide range of animal groups (Figure 

3.G). However, there are some strong taxonomic biases. Mammals represent 44.4% 

of the MPMs in the current version of COMADRE, followed by birds (17.9%), bony 

fish (10.3%), and reptiles (6.7%). We include very few MPMs for amphibians, despite 

global concerns for their conservation status (Beebee & Griffiths 2005; Wake & 

Vredenburg 2008) or for insects (2.71%), despite their high species richness, 

estimated to comprise the majority of the animal kingdom (Hedges et al. 2015). The 

latter is particularly surprising since the early developments of MPMs focused on 

insects thanks to their clearly structured population dynamics (Lefkovitch 1965; 

Rabinovich 1969). Aside from bony fish (Actinopterygii), we also lack significant 

amounts of demographic information on marine organisms in COMADRE, including 

corals (5.5%), bivalves (1.33%), sponges (0.8%), sea urchins (0.12%), and 

cartilaginous fish (0.2%). No information in COMADRE 1.0.0 exists for the 

infraclasses Marsupialia (kangaroos, wallabies, koala, possums, opossums, 

wombats, etc.) or order Struthioniformes (kiwis, emu, ostriches, etc.), neither in the 

additional 800 species records that are currently being digitized and error-checked 

for future version releases. 

.CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/027821doi: bioRxiv preprint first posted online Sep. 29, 2015; 

http://dx.doi.org/10.1101/027821
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
  

	
   16	
  

The replication of studies through time and space is highly variable in 

COMADRE. Yet, the average duration of studies in COMADRE 1.0.0 (15.69 years ± 

13.80 S.D.; Figure 4.C) is greater than in plant MPM studies (Salguero-Gómez et al. 

2015). Long duration is essential for many demographic studies in the animal 

kingdom, as some animals, such as the clam Arctica islandica, giant tortoises 

(Geochelone nigra, G. gigantea), rockfish (Sebastes sp.), and the bowhead whale 

(Balaena mysticetus), can reach over 150 years of age (de Magalhaes & Costa 

2009). Notable demographic studies using MPMs parameterized with long time-

series include Vipera aspis (17 years, Altwegg et al. 2005), Ursus americanus (22 

years, Mitchell et al. 2009), Delphinus delphis (35 years, Mannocci et al. 2012), 

Recurvirostra avosetta (40 years, Hill 1988), Elatobium abietinum (41 years, Estay et 

al. 2012), Marmota flaviventris (44 years, Ozgul et al. 2009), Haliaeetus albicilla (62 

years, Krüger, Grünkorn & Struwe-Juhl 2010), Diomedea exulans (51 years, 

Barbraud et al. 2013), and Aythya affinis (72 years, Koons et al. 2006). 

In contrast to the duration, the average number of populations considered in 

each study is low, averaging 3.31 ± 5.26 (S.D.). The low spatial replication currently 

limits much-needed understanding of the geographic variability of demographic rates 

within species. Recently initiated efforts to increase spatial replication for certain 

species in the plant kingdom (e.g. on Plantago lanceolata, PlantPopNet, 

www.plantago.plantpopnet.com) are a useful model that could be replicated in future 

work on animals. It is perhaps not surprising that the animal studies with highest 

spatial replication in COMADRE 1.0.0 focus on humans, with the foundational 

archive of human MPMs compiled by Keyfitz and Flieger (1968), which covers 

populations from 156 countries. We note that analyses of spatial and other kinds of 

variability in animal population studies are becoming more sophisticated due to the 
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use of model selection methods to explicitly include environmental variables (e.g., 

Thomson, Cooch & Conroy 2009), and the concept of “spatial replication” used in 

plant studies may acquire a different meaning to that used in most animal studies. 

  

Unlocking global analyses 

“I’m not interested in your data; I’m interested in merging your data with other data. 

Your data will never be as exciting as what I can merge it with”  

Tim Berners-Lee 

 

The scientific promise of the COMADRE Animal Matrix Database does not reside 

exclusively in its hundreds of MPMs, but also in the many outputs that can be 

derived from them, and the possibility to put them in a broader spatial, ecological and 

evolutionary context using other open access databases and user collected or 

compiled data. Users of COMADRE can find several R scripts available to 

manipulate and interact with matrices, and derive basic demographic outputs 

(Supporting Information Appendix S3, and our growing GitHub repository). Users are 

welcome to explore these or other more developed open-source libraries (Stubben & 

Milligan 2007; Stott, Hodgson & Townley 2012; Metcalf et al. 2013), and to carry out 

their own calculations based on methods for the analyses of MPMs (e.g., Caswell 

2001; Morris & Doak 2002).  

The schedules of growth, survival, and reproduction and the associated 

population performance metrics available through COMADRE will enable further 

comparative analyses of life history variation and population performance relative to 

the environment. For example, information in COMADRE can be integrated with 

existing repositories for other data such as genetic sequences (GenBank; Benson et 

al. 2013), distribution and occurrences (GBIF; Flemons et al. 2007), and 
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conservation status and threats (BirdLife, http://www.birdlife.org/datazone/; IUCN 

Red List, http://www.iucnredlist.org). Data on species-level life history traits are also 

available for specific taxonomic groups including vertebrates (AnAge; de Magalhaes 

& Costa 2009), mammals (Ernest 2003; PanTHERIA, Jones et al. 2009), amphibians 

(Trochet et al. 2014), fish (FishBase), and reptiles (SCALETOOL, www.scale-

project.net). Lastly, an upcoming resource, DATLife (Scheuerlein et al. unpublished), 

containing age-specific mortality and ancillary data on animal species will be of 

particularly interest to supplement COMADRE, as methods already exist to convert 

life tables into MPMs and vice versa (Caswell 2001). In addition to this rich and 

rapidly growing body of data, a diverse set of tools are emerging that will facilitate 

these large-scale comparative analyses including the R packages taxize 

(Chamberlain & Szöcs 2013), letsR (Vilela & Villalobos, 2015) which facilitate 

taxonomic matching and macroecological analyses respectively. 

The compilation of demographic data in COMADRE will also enable the 

identification of gaps in our knowledge of animal population dynamics and, as is now 

happening for plants, will catalyze new studies at broad spatial scales. The open-

access publication of both COMPADRE and COMADRE databases will facilitate 

further comparative demographic analyses across plant and animal kingdoms (see 

Jones et al. 2014) enabling tests of life history and population dynamics theory 

across a wide range of species with contrasting life histories. We suggest that 

researchers revisit the canonical tenets of animal life history to confront established 

theories with data compilations that are vastly richer than was available 30 years 

ago. 

While the COMADRE team strives to make the database as accurate as 

possible, we make no claims, promises, or guarantees about the accuracy, 
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completeness, or adequacy of the database, and expressly disclaim liability for 

errors and omissions in the contents of the database. No warranty of any kind is 

given for any particular use of COMADRE. Users who detect apparent errors are 

encouraged to contact us at comadre-contact@demogr.mpg.de.  

Although this first release contains 402 species, we have already identified 

over 800 additional animal species with MPMs, and our on-going efforts will release 

them as they become fully-digitized, error-checked and supplemented in the coming 

years (Salguero-Gómez et al. unpublished). Finally, researchers using the data 

archived here are encouraged to cite also the original sources in their works 

(Supporting Information Appendix S4). 

 We are extremely grateful to the many ecologists, zoologists, and evolutionary 

biologists who have made the projection matrices from their MPMs available for 

publication in this open access database. Some of the data stored here must rank 

among the most valuable (and most expensive to collect) biological information in 

existence. The providers of data have shared the vision of the COMADRE leaders, 

that important data should be made available to all interested parties for free. In 

return, we simply encourage demographers, conservation biologists, ecologists and 

evolutionary biologists worldwide to mine this database and find out as much as they 

can about global, phylogenetic and ecological patterns in animal life history and 

population dynamics. 
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Supporting Information 

Additional Supporting Information may be found in the online version of this article. 

Appendix S1. Constituents of COMADRE. 

Appendix S2. COMADRE user’s guide. 

Appendix S3. COMADRE R scripts. 

Appendix S4. Extended literature used in COMADRE 1.0.0. 

Appendix S5. Funding and extended acknowledgements. 

Appendix S6. Author contributions. 

Appendix S7. Supporting information references. 

 

As a service to our authors and readers, this journal provides supporting information 

supplied by the authors. Such materials may be re-organized for online delivery, but 

are not copy-edited or typeset. Technical support issues arising from supporting 

information (other than missing files) should be addressed to the authors. 
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Table 1. Variables in the COMADRE Animal Matrix Database, organized by six general aspects: taxonomy, source, details of 1	
  

study, geolocation, and Matrix Population Model (MPM). A more detailed description can be found in the user protocol of 2	
  

COMADRE at www.comadre-db.org. ⌘ implies information that is study-specific; ¤ information that is MPM-specific. Variables 1-54 3	
  

are archived in comadre$metadata, variables 55-57 in comadre$matrixClass, and variables 58-61 in comadre$mat in the 4	
  

COMADRE R data object open access available in the COMADRE online portal. 5	
  

 6	
  

Aspect Variable Description 

Ta
xo

no
m

y 
⌘

 

1. SpeciesAuthor 
Taxonomic species name as used by the author(s) in the publication. When more 
than one study exist for the same species, these are given sequential numeric 
suffixes (e.g. Ursus_americanus, Ursus_americanus_2, etc.) 

2. SpeciesAccepted 
Currently accepted taxonomic name according to the Catalogue of Life 
(www.catalogueoflife.org). See the Supplementary Online Material S3 for an R script 
to check accepted and synonym names from SpeciesAuthor above 

3. CommonName English common name of SpeciesAccepted 
4. CoLCheckOK Whether the taxonomy detailed here has been verified at the Catalogue of Life 
5. CoLCheckDate The date (DDMMYYYY) that the taxonomy was checked at the Catalogue of Life 
6. Infraspecific Taxonomic infraspecific name of SpeciesAccepted, as used by the author 
7. SpeciesEpithetAccepted Taxonomic species epithet of study species, as per Catalogue of Life 
8. GenusAccepted Taxonomic genus of study species, as per Catalogue of Life 
9. GenusAuthor Taxonomic genus of study species, as in SpeciesAuthor 
10. Family Taxonomic family of study species 
11. Order Taxonomic order of study species 
12. Class Taxonomic class of study species 
13. Phylum Taxonomic phylum of study species 
14. Kingdom Taxonomic kingdom of species 
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S
ou

rc
e 

of
 in

fo
rm

at
io

n 
⌘

 15. Authors Last names of full authorship in study 

16. Journal Abbreviated journal of publication (www.abbreviations.com/jas.php), otherwise stated 
as “PhD thesis”, “MSc thesis”, “BSc thesis”, “Book”, “Report” or “Internet” 

17. YearPublication Year of publication of source 

18. DOI/ISBN 

Digital object identifier (for manuscripts) or international standard book number (for 
books), when available; old publications do not have an assigned DOI. An R script is 
also provided to obtain full citation from manuscripts based on DOI (See Online 
Supplementary Materials 3) 

19. AdditionalSource 
If additional information was obtained from a secondary source, the abbreviated 
citation is included here (First author’s first last name, abbreviated journal name and 
publication year; e.g.: “Naujokaitis-Lewis Cons Biol 2009” for Canis latrans 

D
et

ai
ls

 o
f t

he
 s

tu
dy

 ⌘
 

20. StudyDuration Years of observation of the population dynamics of the species, calculated as 
StudyEnd – StudyStart + 1 (e.g., 2005 – 2000 + 1 = 6) 

21. StudyStart Year the study started 
22. StudyEnd Year the study ended 

23. AnnualPeriodicity Frequency with which seasonal or annual MPMs were constructed (e.g. 1: once per 
year; 2: twice per year; 0.2: once every five years) 

24. NumberPopulations 
Number of populations examined in the study – These may not match the number of 
populations with MPMs in COMADRE 1.0.0 if the author has not made available all of 
the MPMs 

25. MatrixCriteriaSize Whether and on which biometric aspects of the species was the MPM constructed 
(e.g. height) 

26. MatrixCriteriaOntogeny Whether some aspect of developmental stage of the species was used to construct 
the MPM (e.g. juvenile, reproductive adult) 

27. MatrixCriteriaAge 
Whether some aspect of developmental stage of the species was used to construct 
the MPM (e.g. 0, 1, 2 years old) 
 

Lo
ca

tio
n 

¤ 

28. MatrixPopulation 
Name(s) of populations from which the MPM was constructed. When no population 
name is provided in the source, the name of closest geographic landmark or letters in 
alphabetical (e.g. “A”, “B”, “C”…) or numerical order (e.g. “1”, “2”, “3”…) are used 

G P
S

 
Lo ca

t
io

n 29. LatDeg Latitudinal degrees of study population 
30. LatMin Latitudinal minutes of study population 
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31. LatSec Latitudinal seconds of study population 
32. LatNS Latitudinal cardinal direction: North or South 
33. LonDeg Longitudinal degrees of study population 
34. LonMin Longitudinal minutes of study population 
35. LonSec Longitudinal seconds of study population 
36. LonWE Longitudinal cardinal direction: West or East 

37. Altitude Altitude of study population (in meters) obtained from Google Earth 

38. Country 
Country or countries where the study population was studied. Only countries currently 
accepted by the United Nations according to the ISO 3 list were used 
(http://unstats.un.org/unsd/tradekb/Knowledgebase/Country-Code) 

39. Continent Continent of the study population 

40. Ecoregion 

Description of the terrestrial or aquatic ecoregion, corresponding to Olson et al.’s 
classification (2001), where the study took place. When the study is undertaken in its 
majority under controlled, indoor conditions (e.g. laboratory, greenhouse), this is 
noted as “LAB” 

D
et

ai
ls

 o
f m

at
rix

 p
op

ul
at

io
n 

M
od

el
 ¤

 41. StudiedSex Sex(es) considered to construct the MPM (Figure 3.B) 

42. MatrixComposite 

MPMs were differentiated between matrices that correspond to a given single 
population, single treatment and single annual period (“Individual”; Figure 3.A), to a 
single population, treatment and intra-annual period (“Seasonal”), to a MPM that is 
the result of element-by-element arithmetic mean (“Mean”), or where the individual-
level data were pooled to construct a MPM over various periods, populations and/or 
treatments (“Pooled”). We must note that by default we calculated the mean MPM 
when all individual MPMs in the study were made available. The pooled and mean 
matrices for all the individual, unmanipulated (see MatrixTreatment) MPMs coincide 
when the sample sizes and stage distributions at time t are the same across all the 
individual MPMs. Mean MPMs were only calculated by us for unmanipulated 
individual matrices below 

43. MatrixTreatment 

Treatment under which the demographic data used to parameterize the specific MPM 
was exerted. We specified “Unmanipulated” as those matrices where no human-led 
experimentation was carried out (Figure 3.F). Users are encouraged to carefully 
examine variable MatrixObservation (below) for additional pertinent information 
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44. Captivity 
Whether the study species was in its wild setting, or under control conditions (e.g. 
greenhouse, botanical garden) for most of the demographic data that was collected 
(Figure 3.E) 

S
ta

rt 
an

d 
en

d 
of

  
st

ud
y 

pe
rio

d 

44. 
MatrixStartYear 

Beginning year t for MPM A describing the population dynamics between time t and 
year t+1 

45. 
MatrixStartSeason 

Beginning season s for seasonal MPM B describing the population dynamics 
between season s and season s+1 

46. 
MatrixStartMonth 

Beginning month m for seasonal MPM B describing the population dynamics between 
month m and month m+1 

47. 
MatrixEndYear 

End year t+1 for MPM A describing the population dynamics between time t and time 
t+1 

48. 
MatrixEndSeason 

End season s+1 for seasonal MPM B describing the population dynamics between 
seasons s and season s+1 

49. 
MatrixEndMonth 

End month m+1 for seasonal MPM B describing the population dynamics between 
month m and month m+1 

50. MatrixSplit 

To facilitate the calculation of various demographic properties (e.g. life expectancy ηe, 
mean age at first reproduction Lα, vital rate sensitivities, etc), the MPM A (matA, 
below) has been split into survival (matU), sexual (matF), and clonal reproduction 
(matC) submatrices when sufficient information was provided in the source. In 2.9% 
of the cases, insufficient information led to us not been able to split A into U, F and C. 
This matrix is referred to as Indivisible (Figure 3.C) 

51. MatrixFec 
In some instances the sexual reproductive component of the life cycle of the 
organism (see matF below) is not modelled either because it is not of interest to the 
researcher or because of logistical complications in doing so 

52. Observation 

Relevant observation that the user should have in mind when analyzing and 
interpreting the MPMs. In the present version, >50% of the matrices made available 
in this version have observations. Observations include, for instance, warnings about 
the description by the author of an “Unmanipulated” population that some researchers 
may wish to treat as a treatment (e.g. natural fires), among others 

53. MatrixDimension Dimension of the MPM 
54. SurvivalIssue Reports maximum stage-specific survival in the submatrix U (below). If this value > 1, 
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users are encouraged to carefully evaluate the matrix 

55. MatrixClassAuthor Classification of the stages in the life cycle of the study species as described by the 
author 

56. MatrixClassOrganized 

Standardization of MatrixClassAuthor into three stages: prop for propagules, dorm for 
dormant individuals, and active for individuals active, established individuals. We 
standardized MatrixClassAuthor in this way to facilitate cross comparisons of various 
general life cycle stages. Note that further general classifications are possible, for 
instance, distinguishing reproductive individuals from non-reproductive individuals by 
evaluating the F and C submatrices 

57. MatrixClassNumber Sequence of numbered classes from 1 to MatrixDimension 

P
op

ul
at

io
n 

M
at

rix
 M

od
el

 ¤
 

58. matA 
MPM including demographic processes that depend on survival (SubMatrixU below), 
sexual reproduction (if pertinent and available; SubMatrixF below), and clonal 
reproduction (if pertinent and available; SubMatrixC below; Figure 3) 

59. matU 

Submatrix population model describing only survival-dependent demographic 
processes (e.g. seedbank, stasis, progression, retrogression, vegetative dormancy, 
etc). Matrix elements corresponding to sexual and clonal reproduction are filled with 
zeros 

60. matF Submatrix population model describing only sexual reproduction. All other matrix 
elements are filled with zeros 

61. matC Submatrix population model describing only clonal reproduction. All other matrix 
elements are filled with zeros 

 7	
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Figure legends 

Figure 1. Time-line of the cumulative number of studies published up until May 31st 

2015 containing matrix population models (MPMs) of animals in peer-reviewed 

journals, books, reports and theses. The light blue background corresponds to 

studies released in COMADRE version 1.0.0; Dark blue corresponds to studies 

currently under inspection, to be incorporated in future versions. Pivotal events in the 

development of the COMADRE Animal Matrix Database: (a, b) first applications of 

matrix models in demography (Bernardelli 1941; Leslie 1945), (c) first application of 

MPMs to human demographic projections (Keyfitz 1964), (d) introduction of theory 

for stage-classified MPMs (Lefkovitch 1965), (e) first spatial MPM (Rogers 1966), (f) 

first nonlinear, density dependent MPMs for animal populations (Pennycuick 1969; 

Rabinovitch 1969), (g) first sensitivity analysis for stage-classified MPMs and 

calculation of selection gradients for animals (Caswell 1978), (h) first bifurcation 

analysis of density-dependent MPMs in animals (Levin & Goodyear 1980), (i) first 

calculation of the stochastic growth rate from an animal MPM (Cohen, Christensen & 

Goodyear 1983), (j) formalization of elasticity analyses for MPMs (de Kroon et al. 

1986), (k) first application of elasticity analysis in conservation biology for Caretta 

caretta (Crouse, Crowder & Caswell 1987) and first Life Table Response Experiment 

analysis (Levin et al. 1987), (l) first edition of the Matrix Population Models: 

Construction, Analysis, and Interpretation (Caswell 1989), (m) publication of 

Population Dynamics in Variable Environments (Tuljapurkar 1990), (n) first 

presentation of multi-state mark-recapture methods for estimating stage-structured 

MPMs in animals (Nichols et al. 1992), (o) development of the first MPM from photo 

identification data (Brault & Caswell 1993), (p) one of the first studies to detail 

uncertainty in MPMs (Caswell et al. 1998), (q) first special feature on MPMs 
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(Heppell, Pfister & de Kroon 2000), (r) 2nd edition of Matrix Population Models 

(Caswell 2001), (s) publication of Quantitative Conservation Biology: Theory and 

Practice of Population Viability Analysis (Morris & Doak 2002) summarizing and 

stimulating applications of MPMs to conservation, (t) first application of matrix 

integro-difference equations to examine invasion speeds in animal populations 

(Caswell, Lensink & Neubert 2003), (u) first investigation of nonequillibrium 

properties, such as reactivity, for MPMs (Caswell & Neubert 2005), (v) first complete 

perturbation analysis for nonlinear animal MPMs (Caswell 2008), (w) introduction of 

individual stochasticity analyses for animal MPMs (Caswell 2009; Tuljapurkar et al. 

2009), (x) foundation of the COMADRE database at the Max Planck Institute for 

Demographic Research, (y) release of the COMPADRE Plant Population Database 

3.0 in www.compadre-db.org (Sept 11th 2014), and (z) online release of the 

COMADRE Animal Matrix Database version 1.0.0 in www.comadre-db.org. 

 

Figure 2. Geographic representation of animal demographic studies in COMADRE. 

A. Worldmap of studies in COMADRE 1.0.0. The points represent studied sites, and 

have been jittered to highlight temporal replication and close spatial overlap of 

certain studies. World map shows major habitats as color-coded background (See 

legend). B. Breakdown of studies by continent. C. Frequency of MPMs by altitude. 

Negative values typically indicate marine and freshwater sites. 

 

Figure 3. Classification of Matrix Population Models (MPMs) in COMADRE. A. By 

type of matrix (See MatrixComposite in Table 1). B. By environmental conditions of 

studied population (Captivity). C. By general type of treatment of matrix model under 

consideration (MatrixTreatment). D. By whether sex was modelled (StudySex). E. By 
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whether the matrix A was split into submatrices U, F and C (MatrixSplit). F. By 

whether reproduction was modelled (MatrixFec). G. By taxonomic class 

representation (Class). 

 

Figure 4. General aspects of tempo-spatial replication and stage construction of 

matrices in COMADRE. A. Frequency of matrix models by demographic census 

periodicity on an annual basis (See Periodicity in Table 1). B. Number of populations 

(NumberPopulations). C. Duration of the study (in years; StudyDuration). D. Matrix 

dimensionality (MatrixDimension). E. Criteria used to construct the matrix model 

(MatrixCriteriaSize, MatrixCriteriaOntogeny & MatrixCriteriaAge). 
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Figure 1 
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Figure 2 
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Figure 3 
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