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Abstract  38 

Diabetic patients have an increased risk of foot ulcers, and glycation of collagen may increase tissue 39 

stiffness. We hypothesized that the level of glycemic control (glycation) may affect Achilles tendon 40 

stiffness, which can influence gait pattern. We therefore investigated the relationship between 41 

collagen glycation, Achilles tendon stiffness parameters and plantar pressure in poorly (n = 22) and 42 

well (n = 22) controlled diabetic patients, including healthy age matched (45-70 yrs) controls (n = 43 

11). There were no differences in any of outcome parameters (collagen cross-linking or tendon 44 

stiffness) between patients with well-controlled and poorly controlled diabetes. The overall effect of 45 

diabetes was explored by collapsing the diabetes groups (DB) compared to the controls. Skin 46 

collagen cross-linking lysylpyridinoline (LP), hydroxylysylpyridinoline (HP),  (136%, 80%, P < 47 

0.01) and pentosidine concentrations (55%, P < 0.05) were markedly greater in DB. Furthermore, 48 

Achilles tendon material stiffness was higher in DB (54%, P < 0.01). Notably, DB also 49 

demonstrated higher forefoot/ rearfoot peak plantar pressure (PPP)-ratio (33%, P < 0.01). Overall, 50 

Achilles tendon material stiffness and skin connective tissue cross-linking were greater in diabetic 51 

patients compared to controls. The higher foot pressure indicates that material stiffness of tendon 52 

and other tissue (e.g skin and joint capsule) may influence on foot gait. The difference in foot 53 

pressure distribution may contribute to the development of foot ulcers in diabetic patients. 54 

 55 

Key words: Diabetes, Enzymatic and non-enzymatic collagen cross-linking, Achilles tendon 56 
mechanics, Foot ulcer 57 

  58 
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Introduction 61 

Pathological conditions of the feet remain an extensive clinical problem in persons with diabetes 62 

(6), and advanced diabetes ulcerations of the forefoot are the main reason for lower extremity 63 

amputations (20). In fact, approximately 25% of all hospital admissions of diabetic patients 64 

encompass pathological conditions of the feet, and about 15% of all diabetes patients will develop a 65 

foot ulcer (20). In addition to this, Achilles tendon problems are more pronounced in patients with 66 

diabetes (1), but it is unknown to what extent this is due to altered tendon tissue properties in 67 

diabetes, or rather is secondary to altered gait pattern or skin ulcers. 68 

Patients with poorly controlled diabetes have elevated plasma glucose concentrations, and 69 

this is associated with the accumulation of AGE (Advanced Glycation Endproducts) derived cross-70 

links in various collagenous tissues such as skin, via the Maillard reaction (37). There is evidence 71 

that compromised tissue function is a consequence of such increases in AGE cross-linking (4, 37-72 

39, 46). In vitro experiments have shown that glycation increases tendon stiffness and strength (3, 73 

26, 27, 45). Increased collagen and tendon stiffness, due to the accumulation of intermolecular AGE 74 

cross-links, has been proposed as a concomitant factor in the development of pathological foot 75 

conditions in diabetes (23, 41), but reports on AGE accumulation in the human diabetic tendon is 76 

sparse (24, 52). 77 

Evidence of mechanical changes in diabetic tendons is currently inconclusive, since the 78 

effect of diabetes on animal tendon has been reported to result in increased (2, 35, 42) or decreased 79 

(7, 12, 18) stiffness properties. In addition, it has not been investigated if the quality of glycemic 80 

control in diabetic patients affects AGE cross-linking and tendon stiffness. At the micro-structural 81 

level, the extent to which tendon collagen fibrils are affected by diabetes is also sparsely 82 

investigated (23). A few animal studies (3, 43) and a single human study (23) have demonstrated 83 

significant changes in tendon fibril morphology (increased fibril density and decreased mean fibril 84 
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area). The biomechanical consequences of theses changes in terms of potential alterations in tendon 85 

tissue stiffness currently remain unknown. 86 

The influence of Achilles tendon stiffness on gait patterns in diabetic patients is unknown, 87 

but elevated Achilles tendon stiffness may well decrease dorsiflexion capacity of the ankle joint, 88 

and reduced dorsiflexion has been reported to increase forefoot loading (17). Moreover, excessive 89 

plantar pressure has been shown to result in elevated tissue breakdown and delayed wound healing 90 

in the foot (41) and could be a risk factor for diabetes related pathological foot conditions (51). 91 

Therefore, the purpose of the present study was to investigate the hypothesis that poorly controlled 92 

diabetes is associated with greater accumulation of AGE cross-links, greater tendon stiffness and 93 

altered gait pattern compared to well-controlled diabetes, that may lead to development of foot 94 

ulcers. This hypothesis was tested by examining the concentration of enzymatic and non-enzymatic 95 

collagen cross-links in skin and tendon, Achilles tendon stiffness, and the modulation in plantar 96 

pressure during gait in poorly and well-controlled diabetic patients compared to healthy age-97 

matched controls.   98 

 99 

Methods 100 

The present cross-sectional study was designed to compare the effect of glycemic control (based on 101 

2 year average HbA1c) in two groups of male diabetic patients (type I and type II) with either well 102 

(n = 22, HbA1c < 7.5%; WCD) or poorly- (n = 22, HbA1c > 9%; PCD) controlled diabetes. The 103 

number of type 1 diabetic patients was: 1 in WCD and 3 in PCD. Subject characteristics are shown 104 

in Table 1. A smaller healthy control group was also included to provide baseline healthy 105 

characteristics (n = 11, HbA1c < 6%; CON). Subjects were matched for age (45-70 years) and 106 

physical activity. Exclusion criteria in both WCD, PCD and CON included neuropathy of non-107 

diabetic origin, severe neuropathy, foot ulcers, severe arterial insufficiency, arthritis of the ankle or 108 
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foot, previous foot surgery, previous Achilles tendon rupture, amputations, previous Charcot foot, 109 

body mass > 110 kg and use of anti-thrombotic medication. The presence of clinical neuropathy 110 

was assessed by use of Semmes-Weinstein 5.07 monofilament exam and biothesiometry. The Ethics 111 

Committee of the Capital Region of Denmark approved study (journal number 25543), and all 112 

procedures conformed to the Declaration of Helsinki. Written, informed consent was obtained from 113 

all subjects prior to study onset.  114 

 115 

Physical Activity 116 

Physical activity was assessed using the International Physical Activity Questionnaire - (IPAQ, 117 

Swedish version translated into Danish) quantified as weekly metabolic equivalent of task-(MET) 118 

minutes. 119 

 120 

Blood Sampling 121 

Blood samples of 10 mL were collected before the test day and sent for standard clinical blood tests 122 

for triglycerides, high and low-density lipoprotein cholesterol (HDL and LDL), total cholesterol and 123 

HbA1c as a measure of mean glucose load over the previous 2-3 months (14, 40). For the diabetic 124 

patients (WCD, PCD), the two-year average HbA1c was also determined based on data from their 125 

medical records (3-4 measurements). 126 

 127 

Biopsy Sampling 128 

After biomechanical testing was performed (details given below) biopsy specimens of the Achilles 129 

tendon were obtained in the non-dominant leg at the distal end of the tendon 4 cm proximal to the 130 

calcaneus. Using ultrasound imaging, the biopsy site was marked on the skin and under local 131 

anesthetic (1% lidocaine) the biopsy was obtained with a 16 gauge Bard Monopty triggered biopsy 132 
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instrument (C. R. Bard Inc, Covington GA). Skin biopsies were performed using a 4 mm biopsy 133 

punch (Miltex, York PA) in the gluteal region under local anesthetic (1% lidocain). Both tendon 134 

and skin biopsies were immediately frozen in liquid nitrogen for cross-link analysis, and a small 135 

segment from the tendon was also placed in 0.05 M phosphate buffered 2% glutaraldehyde for 136 

electron microscopy. 137 

 138 

Collagen Cross-links 139 

The concentrations of enzymatic cross-links lysylpyridinoline (LP) and hydroxylysylpyridinoline 140 

(HP), and non-enzymatic AGE cross-link pentosidine in the biopsy samples were quantified as 141 

previously described (8, 32). In brief, the tendon biopsy was hydrolysed in 6 M HCl and run on a 142 

reversed-phase high performance liquid chromatography column with detection by 143 

autofluorescence. The cross-link content was normalized to total collagen content based on 144 

hydroxyproline measurement by 4-dimethylaminobenzaldehyde color reaction after oxidation, as 145 

previously described (8, 32). Three tendon and 5 skin biopsies were lost during processing for 146 

cross-link analysis. 147 

 148 

Electron Microscopy 149 

Transmission electron microscopy was performed as previously reported (30, 32). In brief, 150 

glutaraldehyde fixated samples were stained en-bloc with OsO4 and embedded in epon. Ultrathin 151 

(≈100nm) cross-sections were cut and stained with uranyl acetate and lead citrate. Ten 10x10 µm2 152 

images were obtained in a random pattern across each section to avoid selection bias. In each image 153 

36 unbiased counting frames and an unbiased point grid were used to determine collagen fibril 154 

density, volume fraction and size. Five biopsies were lost during processing for electron 155 

microscopy. 156 
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 157 

 158 

Achilles Tendon Morphology 159 

Details of the tendon morphology measurements have previously been published (29). In brief, the 160 

subject was sitting with the hip, knee and ankle at 90º and using a 100 mm long ultrasound probe 161 

the full length of the free tendon from its insertion on the calcaneus to its fusion with the soleus 162 

muscle was imaged in B-mode. Using the ultrasound “shadow” of a long needle, the calcaneus and 163 

soleus insertions were marked on the skin with a permanent marker. Three evenly spaced marks 164 

were placed between the two ends (proximal, mid and distal), and axial ultrasound images were 165 

recorded at each point for determining tendon cross-sectional area (CSA) as previously described 166 

(29). The average tendon CSA was calculated and used for analysis. The paired student's t-test 167 

(systematic error), Pearson correlation coefficient (strength of relationship) and typical error percent 168 

for duplicate measures within day were 0.64, 0.93 and 3% for proximal, 0.70, 0.90 and 4% for mid 169 

tendon, and 0.57, 0.90 and 4% for distal tendon. The Achilles tendon moment arm was determined 170 

as the distance from the foot axis of rotation (mean of medial and lateral malleoli) to the tendon line 171 

of action (mid line between calcaneus and soleus insertion) as previously described (29). 172 

 173 

Achilles Tendon Mechanical Properties  174 

Mechanical properties of the Achilles tendon were assessed using a method that has previously been 175 

described and validated in detail (29). In brief, subjects were seated in a rigid chair with the hip, 176 

knee and ankle at 90º. The foot was resting on a footplate with the foot axis of rotation vertically 177 

above the plate axis of rotation (see Figure 1). The knee was immobilized by a steel cross-bar to 178 

prevent lower limb motion (29). A load cell fixed to the footplate was used to measure the plantar 179 

flexor moment. Electromyography (EMG) electrodes were attached to the tibialis anterior and 180 
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soleus muscles to monitor muscle activation and correct for antagonist co-activation as previously 181 

described (29). Achilles tendon deformation was monitored using B-mode ultrasound imaging 182 

(Hitatchi EUB-6500) with a 100 mm long 10 MHz probe positioned along the tendon to visualize 183 

the insertion at the calcaneus and soleus. 184 

 Achilles tendon mechanics were assessed during slow (10s) isometric plantar flexion ramps 185 

to maximum voluntary contraction. Force and EMG were recorded synchronously with ultrasound 186 

video (29). To correct the Achilles tendon force for antagonist muscle co-activation, the relationship 187 

between tibialis anterior EMG amplitude and its resulting dorsiflexor moment was determined 188 

during a maximal isometric dorsiflexion lasting 5 seconds (29). 189 

Tendon deformation was obtained from the ultrasound videos by feature tracking of the 190 

calcaneus and soleus insertions (29). The force-deformation data were fitted to a 3rd order 191 

polynomial and this fit was used for further analysis. Stiffness was measured as the slope over the 192 

last 20% of tendon deformation. Material properties - stress, strain and modulus - of the Achilles 193 

tendon were obtained by dividing force with the mean tendon CSA and dividing deformation with 194 

the initial free tendon length. In order to compare tendon properties at identical load, all parameters 195 

were also determined at the largest common tendon force observed across participants. To avoid the 196 

highly nonlinear toe region commonly observed in tendon at low load, 7 participants (all from the 197 

diabetic groups) with particularly low force production were omitted from this comparison. The 198 

decision to omit the data points in these 7 participants were made prior to running any between-199 

group analyses. The selected common tendon force level was 1815 N. Five participants did not 200 

complete all morphology and mechanical tests due to logistical reasons. 201 

 202 

Gait Analysis 203 
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Load distribution on the foot during walking was determined using a pressure plate (4 sensors/cm2, 204 

Emed, Novel, Germany) integrated into a wooden walking path. Subjects were instructed to walk 205 

normally along the path and the pressure plate was hit at the third step after start. The mean pressure 206 

distribution during 5 steps from each foot was calculated and pressure distribution was assessed by 207 

the forefoot/rearfoot peak plantar pressure ratio (PPP-Ratio). Two participants did not complete gait 208 

analyses due to logistical reasons. 209 

 210 

Data Reduction and Statistics 211 

The study was initially powered for the comparison of the WDC and PDC groups, with the healthy 212 

controls (CON) included only as a baseline. Tendon stiffness was considered the primary outcome 213 

and sample size was determined to be 21 for an effect size of 0.2 with 80% power and a 214 

significance level of 5%. Differences between WCD and PCD were determined by an unpaired two-215 

tailed Student's t-test corrected for unequal variances. No differences were observed between the 216 

two diabetic groups for any of the outcome variables related to the hypothesis. For this reason it was 217 

decided to also report findings relative to the healthy group as a more exploratory approach, in spite 218 

of this group being underpowered. Acknowledging that the study is underpowered, we also report 219 

some near-significant trends as a basis for future investigation. Diabetic patients were combined 220 

into a merged diabetes (DB) group and subsequently compared to CON using unpaired two-tailed 221 

Students t-tests corrected for unequal variances. Pearson product-moment correlation analysis was 222 

used to analyze the strength of relationships between variables within the merged diabetes group 223 

(DB). P < 0.05 was considered significant. Results are reported as mean ± standard error (SE) 224 

unless otherwise reported. Student's t-tests were performed using Excel for Mac 2011 (Microsoft 225 

corporation) while all correlation analysis was performed using Prism 6 (Graphpad Software Inc.). 226 

 227 
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Results 228 

Subject characteristics   229 

Diabetes duration was not different between the WCD and PCD groups. HbA1c concentration was 230 

higher in PCD compared to WCD, both at present (8.9 ± 1.7% vs. 7.2 ± 0.9%, P < 0.01) and as 2-231 

year average (9.4 ± 1.4% vs. 6.9 ± 0.5%, P < 0.01). Subject characteristics are shown in Table 1. 232 

Body mass was greater in DB compared to CON (P < 0.01). The difference in IPAQ score was not 233 

significant between the groups. 234 

 235 

Collagen cross-linking  236 

Tendon collagen cross-link data are shown in Table 2. None of the parameters collagen, 237 

pentosidine, HP and LP concentration, differed significantly between DB and CON. Tendon 238 

pentosidine was positively related to age (r = 0.42, P < 0.01). Skin collagen cross-link data are 239 

shown in Table 2. In contrast to tendon, skin pentosidine (P < 0.05), LP  (P < 0.01) and HP (P < 240 

0.01) concentrations were higher in DB than CON. Two year HbA1c correlated with skin HP (r = 241 

0.34, p < 0.05) and pentosidine (r = 0.31, p < 0.05). 242 

 243 

Collagen fibril characteristics 244 

Collagen fibril data are shown in Table 2. Tendon fibril density was greater in DB compared to 245 

CON (P < 0.05).  246 

 247 

Achilles Tendon Morphology 248 

The Achilles tendon moment arm was greater in DB compared to CON (4.26 ± 0.07 vs. 3.94 ± 0.10 249 

cm, P < 0.05). However, no other differences were observed between DB and controls with respect 250 
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to average Achilles tendon CSA (0.73 ± 0.02 vs. 0.79 ± 0.03 cm2, P = 0.23) or free Achilles tendon 251 

length (6.5 ± 0.2 vs. 6.1 ± 0.4 cm, P = 0.47). 252 

 253 

Mechanical Tendon Properties  254 

Mechanical properties of the Achilles tendon at maximum force are shown in Table 3. DB did not 255 

differ from CON although there was a trend toward reduced Achilles tendon strain in DB compared 256 

to controls (effect size 0.9%, P = 0.075). Mechanical properties of the Achilles tendon at largest 257 

common force are shown in Table 3. DB had higher Achilles tendon modulus at common force than 258 

CON (P < 0.001).  259 

  260 

Gait Analysis 261 

Gait data are shown in Table 3. DB demonstrated greater forefoot/rearfoot PPP-Ratio than CON (P 262 

< 0.05).  263 

 264 

Discussion 265 

To the best of our knowledge the present study is the first to investigate if diabetes in humans is 266 

associated with greater Achilles tendon glycation and stiffness, and altered gait. In contrast to our 267 

initial hypothesis, we could not demonstrate any differences in collagen cross-linking or 268 

biomechanical Achilles tendon stiffness between patients with well-controlled and poorly-269 

controlled diabetes. However, in skin collagen cross-linking (HP, LP and pentosidine 270 

concentrations) was markedly greater in diabetic patients compared to healthy age-matched 271 

controls. Furthermore, Achilles tendon modulus, which represents the material stiffness after 272 

accounting for tendon dimensions, was higher in diabetic patients compared to controls. Notably, 273 

diabetic patients also demonstrated higher forefoot/rearfoot peak plantar pressure ratio (PPP-ratio) 274 
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indicating a more forward distributed loading pattern on the foot. This difference in foot pressure 275 

distribution may contribute to the development of foot ulcers in diabetic patients. These findings 276 

lend some support to the hypothesis that diabetes leads to increased stiffness in the Achilles tendon 277 

and an elevated forefoot pressure.  278 

 279 

Collagen cross-linking 280 

In diabetes there is an increased rate of non-enzymatic formation of AGE cross-links, which may 281 

also affect the protein structure and function of connective tissue such as tendon and skin. In 282 

collagen one such cross-link is pentosidine, and in the present study the concentration of 283 

pentosidine was greater in skin of diabetic patients, although somewhat surprisingly not elevated in 284 

the Achilles tendon. In agreement with the present skin data, previous work on experimental animal 285 

and human skin composition also show increased pentosidine concentration (16, 37) and other 286 

glycation products with diabetes (5, 13). In contrast, data on cross-links in the diabetic tendon are 287 

scarce. A greater glycation in the tendon of diabetic human digastric muscle and diaphragm has 288 

been shown, although pentosidine was not measured specifically (24, 52). In diabetic animals, 289 

increased glycation of tendon has also been reported (35, 42). The difference between tendon and 290 

skin data in the present study may relate to differences in tissue turnover. Tendons have very slow 291 

turnover, and may even be maintained throughout adult life (25), while skin has a much more rapid 292 

turnover rate (50), as also indicated by the lower pentosidine concentrations presently observed in 293 

skin biopsies compared to tendon biopsies. Consequently, pentosidine in tendon most likely 294 

represent an average over a longer time period than that of skin, and therefore the relative effect of 295 

the period with diabetes may be smaller in tendon tissue.   296 

       Another factor potentially affecting the pentosidine concentration in Achilles tendons is the 297 

level of physical activity of the subjects. It has recently been shown that the pentosidine 298 
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concentration of the patellar tendon is reduced in elderly life-long regular endurance runners 299 

(master athletes) compared to sedentary controls (9), and that resistance training can reduce 300 

pentosidine concentration in patellar tendons (28). If loading of tendons can ameliorate AGE 301 

accumulation, it may also explain why greater AGE accumulation was observed in the diabetic 302 

digastric tendon as previously mentioned, since this tendon is not weight bearing.  303 

The present study also revealed markedly greater HP and LP concentrations in the skin of 304 

diabetic patients compared to healthy controls. The concomitant greater in glycation and enzymatic 305 

cross-links is in agreement with previous reports on skin collagen in diabetic conditions (5). 306 

Conversely, in the Achilles tendon we did not observe a similar greater cross-linking (HP and LP (P 307 

= 0.10)) with diabetes, which to our knowledge has not previously been examined in human 308 

diabetic tendons. A simultaneous greater HP, LP and pentosidine with aging have been 309 

demonstrated in the human patellar tendon (8). Based on the 'synchronized' changes in non-310 

enzymatic and enzymatic cross-links reported in both diabetes and aging, it is reasonable to 311 

speculate that some mechanistic link(s) may exist between the two cross-linking processes. The 312 

finding that serum two-year average HbA1c and skin pentosidine in the present study demonstrated 313 

a weak relationship (r = 0.31, P < 0.05) while this was not the case in the tendon (r = 0.03, P = 314 

0.84). This may indicate that the skin tissue is subjected to a systemic effect of AGEs with less 315 

protection by physical activity and mechanical loading, which thereby could lead to greater 316 

accumulation of non-enzymatic cross-links in skin compared to tendon. Despite superior glycemic 317 

control (Hb1Ac) in WCD compared to PCD there were no differences in any of the collagen cross-318 

linking parameters examined, which is in agreement with observations by Lyons et al. who reported 319 

similar skin pentosidine content in type 1 diabetic patients with better glycemic control (34). 320 

Monnier et al (37) reported an approximately 20% lower skin pentosidine in diabetic patients with 321 

improved glycemic control and considering the absolute difference observed in the present study, 322 
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there is in fact a similar difference, so the lacking effect may reflect a sample size issue. 323 

 324 

Collagen fibril morphology 325 

Some studies have reported on tendon microstructural changes in diabetes. Both animal and human 326 

studies have reported greater collagen fibril density and decreased mean fibril area (3, 23, 43). The 327 

present study revealed a 25% higher fibril density in diabetic patients compared to controls. 328 

Furthermore, mean fibril diameter and mean fibril area tended (P = 0.096) to be reduced (11%) in 329 

diabetic patients compared controls, confirming previous findings (3, 23, 43). Why diabetic tendon 330 

collagen fibrils display higher fibril density is unknown. It has been speculated that closer packing 331 

density could be a result of AGEs binding together collagen fibrils (3, 33). Another mechanism 332 

could be that the higher density is a compensating mechanism for a lower mean fibril diameter 333 

thereby maintaining total collagen content and volume fraction in agreement with our findings. 334 

However these mechanisms need to be explored further.   335 

 336 

Achilles Tendon Mechanical Properties 337 

In the present study we observed no difference in Achilles tendon mechanics expressed in absolute 338 

terms between WCD and PCD, however a 54% greater Young modulus was observed in diabetic 339 

patients compared to healthy controls, indicating that qualitative differences exist between diabetic 340 

and healthy Achilles tendon tissue. Diabetes has previously been associated with mechanical 341 

changes in different tissues including tendon. In experimental diabetic animals greater stiffness has 342 

been extensively reported in non-weight bearing rat-tail tendon (2, 19, 21, 22, 35, 42, 53) and knee 343 

ligaments (15). Likewise, in various human non-weight bearing connective tissue such as blood 344 

vessels (49) and the lens of the eye (44), it has been reported that diabetes induces greater tissue 345 

stiffness. A modest increased stiffness has also been demonstrated in weight bearing diabetic canine 346 
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patellar tendon under long-term insulin therapy (31). In contrast, lower stiffness of the Achilles 347 

tendon has been reported in several experimental diabetic animal studies (7, 12, 18), and this may 348 

be attenuated by weight bearing physical activity (11). It was recently shown that Achilles tendon, 349 

strains are less during walking in human diabetic patients than in controls, which may indicate that 350 

greater tendon stiffness could be related to observed differences in the gait pattern of these patients 351 

(10). To our best knowledge the present study is the first to directly measure the mechanical 352 

properties of human diabetic Achilles tendons in vivo. Our data show a markedly (54%) higher 353 

Achilles tendon material stiffness (modulus) compared to controls, however, absolute tendon 354 

stiffness was not significantly different despite it was numerically 27% greater in diabetic patients. 355 

The difference between the modulus and stiffness lies in the tendon dimensions, with the diabetic 356 

tendon towards a greater tendon length and reduced cross-sectional area (neither significant), which 357 

counteracts the greater material stiffness. It is possible that the Achilles tendon dimensions of 358 

diabetic patients may have adapted to counteract increased material stiffness in order to maintain 359 

functional stiffness, but this hypothesis cannot be addressed by the data obtained in the present 360 

study.  361 

Cross-linking by AGEs is the likely mechanism underpinning tissue stiffening with diabetes 362 

(38), and AGE cross-links have been shown to increase tendon stiffness in vitro, where tendon is 363 

incubated with a reducing sugar (26, 27, 45). In the present study the material stiffness of the 364 

Achilles tendon was greater with diabetic patients, however no differences were observed in 365 

pentosidine or HP, LP cross-link concentrations. In addition, collagen content also did not differ 366 

between diabetic patients and healthy controls. The diabetic patients had a higher fibril density, but 367 

due to their tendency (P = 0.096) to toward a lower fibril size the total volume fraction, and thus the 368 

load bearing cross-sectional area was unaltered.  369 

 370 
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Gait 371 

In the present study, diabetic patients demonstrated higher forefoot/rearfoot PPP-ratio indicating 372 

increased forefoot loading during walking. This finding is in agreement with our initial hypothesis. 373 

A forward shift in pressure could be caused by an increased ankle joint stiffness; however, the 374 

hypothesized relation to absolute Achilles tendon stiffness was not observed. As previously 375 

discussed, the weight bearing nature of the Achilles tendon may render it less susceptible to diabetic 376 

changes than other tissues crossing the joint. Since diabetes is a systemic disease these other tissues 377 

are likely also affected and may contribute to overall joint stiffness. One concern could be that the 378 

difference in tendon moment arm observed between the two subject groups would influence these 379 

findings, however, the moment arm was not correlated to either forefoot/rearfoot PPP-ratio or 380 

tendon modulus, respectively.  However, the potential influence of the Achilles tendon should not 381 

be completely disregarded, since the modulus was greater and there were tendencies for both 382 

greater absolute stiffness and reduced strain, and as such, a lack of sensitivity may have prevented. 383 

Stiffening of the Achilles tendon material properties combined with the observed tendency for 384 

decreased tendon strain (potentially causing reduced dorsiflexor ROM during the late stance phase) 385 

could per se cause an increased magnitude of forefoot loading, and any systemic glycation effect 386 

would likely also stiffen other connective tissues surrounding the joint.  Notably, reduced 387 

dorsiflexion ability has been shown to increase peak plantar pressure during walking (17) while 388 

excessive plantar pressure has been shown to result in accelerated tissue breakdown and delayed 389 

wound healing (41).  390 

 391 

Study Limitations 392 

The present investigation is a cross-sectional case-control study and, therefore, has inherent 393 

limitations. Furthermore, while a fairly large number of diabetic patients were recruited, a larger 394 
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number of control subjects would have improved the statistical strength. In the present study the 395 

only measured AGE marker was pentosidine, which constitutes a small fraction of AGE cross-links 396 

(47). Even though pentosidine is reported to correlate well with diabetic tissue complications (48), 397 

total AGE fluorescence (36, 48) and with more abundant AGEs such as carboxymethyllysine 398 

(CML)(4), it is possible that investigating other AGE targets (47) could have provided additional 399 

information to help explain the greater Achilles tendon mechanics in our diabetic patients. 400 

In vivo mechanical measurements are also affected by several limitations. The tendon load 401 

is estimated from external moments, and while muscle activation was partly accounted for by EMG 402 

measurements, there are still uncertainty in such measures. In addition, the CSA used for 403 

determining tendon stress was measured by ultrasound, which is less precise than for example MRI. 404 

Finally, tendon deformation is also determined with ultrasound in 2D and some uncertainty may be 405 

present due to out of plane motion. These factors combine to increase the variance of the 406 

measurements, but should affect the groups equally. 407 

There were differences in the baseline characteristics of the two groups, which could affect 408 

the outcome. The diabetic group had a higher body mass, and as would be expected peak plantar 409 

pressure did correlate with body mass (r = 0.23, P = 0.1), the forefoot/rearfoot PPP-ratio was not 410 

correlated to body mass (r = 0.06, P = 0.66). Furthermore, tendon stiffness correlated with body 411 

mass (r = 0.34, P = 0.03), but body mass was not linked to modulus (r = 0.22, P = 0.14). 412 

Moreover, the moment arm in diabetic group was higher than in controls. In the present study, the 413 

method used to determine moment arm may have some limitations that could have influenced our 414 

results.  Using e.g. x-ray would have been more precise. However, we were not able demonstrate 415 

that the difference in moment arm correlated with the outcome parameters (Forefoot/rearfoot PPP-416 

ratio: r = - 0.10, P = 0.48, Modulus: r = - 0.16, P = 0.30). In addition, the higher moment arm in 417 

the diabetic group would have underestimated modulus and thereby cannot be the reason for the 418 
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observed increase in the diabetic group. To our knowledge there is no evidence that diabetes results 419 

in altered moment arm and so we would believe that the difference observed in the present study is 420 

spurious. Altogether, if we include mass and moment arm as confounding factors in an ANOVA, 421 

the main findings of increased forefoot/rearfoot PPP-ratio and modulus in the diabetic group remain 422 

significant. 423 

 424 

Conclusions  425 

For the first time it was demonstrated that irrespective of hyperglycemia severity Achilles tendon 426 

material stiffness was greater in diabetic patients compared to age-matched healthy controls. The 427 

finding that well and poor glycemic controlled diabetic patients did not differ in terms of 428 

biomechanical Achilles tendon properties was in contrast to our initial hypothesis. Surprisingly, 429 

collagen cross-linking also did not differ in the Achilles tendon of the diabetic patients compared to 430 

that of controls. In contrast, when assessed in the skin HP, LP and pentosidine cross-link 431 

concentrations were markedly greater in diabetic patients compared to controls. Furthermore, 432 

diabetic patients showed higher forefoot/rearfoot PPP-ratio during walking, however, a direct 433 

relation to increased Achilles whole tendon stiffness was not found, indicating that altered Achilles 434 

tendon material stiffness and possibly also in other tissues (e.g skin and joint capsule) may 435 

influence plantar pressure distribution during gait habitual walking. Collectively, our data suggest 436 

that both the material stiffness of the Achilles tendon and foot pressure distribution are altered in 437 

diabetic patients. Such changes in tendon material properties and loading may have implications for 438 

the development of diabetic foot ulcers. 439 
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Tables 594 

 595 

 WCD  
 

PCD  
 

DB 
 

CON  
 

Number of participants 22 22 44 11 

Age (yrs) 60 ± 7 58 ± 7 59 ± 7 58 ± 5 

Height (cm) 177 ± 5 180 ± 6  178 ± 6 177 ± 5 

Mass (kg) 91± 13 96 ± 10 93 ±12** 83 ± 8 

BMI (kg⋅m-2) 29 ± 4 30 ± 4 29 ± 6 27 ± 3 

Diabetes duration (yr) 12 ± 6 15 ± 8 13 ± 7 - 

HbA1c 2yr average (%) 6.9 ±  0.5 9.4  ± 1.4## 8.1 ± 0.3 - 

(mmol⋅mol-1) 51 ± 6 79 ± 16 65 ± 3 - 

HbA1c  present (%) 7.2 ± 0.9** 8.9 ± 1.7##,** 8.0 ± 0.3** 5.5 ± 0.3 

(mmol⋅mol-1) 61 ± 9 73 ± 18 64 ± 3 36 ± 4 

Triglyceride (mmol⋅l-1) 1.7 ± 0.3 1.7 ± 0.2 1.7 ± 0.1 1.7 ± 0.4 

Total cholesterol (mmol⋅l-1) 4.6 ± 0.3 4.9 ± 0.2 4.7 ± 0.2 5.6 ± 0.4 

HDL Cholesterol (mmol⋅l-1) 1.30 ± 0.09 1.21 ± 0.10 1.25 ± 0.07 1.37 ± 0.13 

LDL Cholesterol (mmol⋅l-1) 2.4 ± 0.2 2.9 ± 0.1 2.7 ± 0.2* 3.6 ± 0.3 

IPAQ (MET Score) 2300 ± 1800  1700 ± 1800 2000 ± 300 1400 ± 900 

Table 1 - Subject characteristics. WCD = well-controlled diabetic patients, PCD = poorly-controlled diabetic 596 
patients, DB = merged diabetic patients (WCD + PCD), CON = healthy, age -matched controls. Data are given as 597 
mean ± SD). Different from WCD, #P < 0.05, ##P < 0.01*Different from CON, *P < 0.05. **P < 0.01. 598 
 599 
 600 
 601 
 602 
 603 
 604 
 605 
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 606 
 607 
 WCD  PCD  DB 

 

CON 

Tendon Composition     

Number of participants 21 21 42 10 
 

Collagen (mg⋅mg-1 dry wt) 
 

0.73 ± 0.03  0.70 ± 0.02 0.72 ± 0.03 0.75 ± 0.03 
  

Hydroxylysyl pyridinoline (HP, mmol⋅mol-1 
collagen) 
 

1230 ± 80 
  

1340 ± 70 
  

1250 ± 50 1220 ± 80 
  

Lysyl pyridinoline (LP, mmol⋅mol-1 collagen) 52 ± 3 53 ± 3 52 ± 2 (*) 
P = 0.101  

43 ± 5 

Pentosidine, (mmol⋅mol-1 collagen) 33 ± 2 30 ± 3 31 ± 2 28 ± 2 

Skin Composition     

Number of Participants 21 20 41 9 

Collagen (mg⋅mg-1 dry wt) 
 

0.62 ± 0.01 
  

0.64 ± 0.02 
  

0.63 ± 0.01 0.65 ± 0.02 
 

Hydroxylysyl pyridinoline (HP, mmol⋅mol-1 
collagen) 
 

35 ± 10 
  

54 ± 10 
  

45 ± 6** 19 ± 4 
  

Lysyl pyridinoline (LP, mmol⋅mol-1 collagen) 
 

8 ± 1 
  

9 ± 2 
 

9 ± 1** 5 ± 1 
 

Pentosidine, (mmol⋅mol-1 collagen) 
 

13 ± 2 
  

16 ± 2 
 

14 ± 1* 9 ± 2 
  

Tendon Fibril Morphology     

Number of Participants 18 22 40 10 

Volume fraction (%) 53 ± 2 54 ± 1 53 ± 1 57 ± 2 

Density (#fibril⋅μm-2) 132 ± 10 130 ± 11 131 ± 7* 105 ± 8 

Mean fibril diameter (nm) 
 

64 ± 4 
  

65 ± 3 
  

64 ± 2(*) 
 P = 0.096 

73 ± 14 
 

Mean fibril area (nm2) 4300 ± 500 4400 ± 400 4400 ± 300 5500 ± 600 

Table 2. Tendon collagen cross-link and fibril composition. Data are given as mean ± SE. Different from CON, *P < 
0.05, ** P < 0.01. Compared with CON (*). 
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 612 
 613 
 WCD  PCD  DB CON 

Achilles Tendon Mechanics 
(At maximum force 

    

Number of participants 20 21 41 9 
 

Deformation (mm) 1.80 ± 0.2 1.9 ± 0.1 1.9 ± 0.1 2.3 ± 0.3 

Max force (N) 
 

2600 ± 200 2400 ± 200 2500 ± 200 2800 ± 200 

Stiffness (kN⋅mm-1) 3.4 ± 0.3 3.4 ± 0.1 3.4 ± 0.3 3.1 ± 0.5 

Stress (MPa) 41 ± 5 36 ± 3 39 ± 3 40 ± 3 

Strain (%) 
 

2.8 ± 0.3
 

2.7 ± 0.2 2.8 ± 0.2(*) 
P = 0.075  

3.7 ± 0.4 

Modulus (GPa) 3.1 ± 0.2 
 

3.2 ± 0.4 3.1 ± 0.3 
 

2.5 ± 0.3 

Achilles Tendon Mechanics 
(At common force) 

    

Number of Participants 17 17 34 9 

Deformation (mm) 1.6 ± 0.3 1.6 ± 0.2 1.6 ± 0.2 1.9 ± 0.3 

Stiffness (kN⋅mm-1) 2.7 ± 0.3 2.7 ± 0.3 2.7 ± 0.2 2.0 ± 0.4 

Stress (MPa) 28 ± 2 25 ± 1 27 ± 1 26 ± 1 

Strain (%) 
 

2.5 ± 0.4 2.5 ± 0.2 2.5 ± 0.2 3.2 ± 0.4 

Modulus (GPa) 2.5 ± 0.2 2.5 ± 0.3 2.5 ± 0.2** 1.7 ± 0.1 

Foot pressure mapping     

Number of Participants 21 22 43 10 

Peak Plantar Pressure (PPP) (kPa) 650 ± 40 620 ± 40 640 ± 30 580 ± 50 

Forefoot PPP (kPa) 630 ± 40 600 ± 40 620 ± 30 530 ± 60  

Rearfoot PPP (kPa) 410 ± 20  440 ± 30 42 ± 20 450 ± 30 

Forefoot/rearfoot PPP-Ratio 1.7 ± 0.2 1.5 ± 0.1  1.6 ± 0.1* 1.2 ± 0.1 
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Table 3. Achilles tendon mechanics and foot pressure mapping. Data are given as mean ± SE. Different from CON, 
*P < 0.05, ** P < 0.01. 
Achilles tendon mechanical properties determined at maximum and highest common force of 1815 N. Note: Modulus is 
based on average Achilles tendon CSA. 
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 616 
Figure legends 617 
 618 

Figure 1 619 

The Achilles tendon stress-strain relationship based on largest common tendon force observed for 620 

merged Diabetic patients (DB) and age-matched healthy controls. Data are given as mean ± SE. DB 621 

showed higher Achilles tendon modulus than controls at highest common tendon force (P < 0.001).  622 

A = Ultrasound Transducer, B = Strain Gauge. 623 
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