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Abstract  24 

The ‘Guytonian paradigm’ places the direct effect of arterial pressure, on renal excretion of salt and 25 

water, at the center of long-term control of blood pressure and thus the pathogenesis of 26 

hypertension. It originated in the sixties and remains influential within the field of hypertension 27 

research. However, the concept of one central long-term feedback loop, through which arterial 28 

pressure is maintained by its influence on renal function, has been questioned. Furthermore, some 29 

concepts in the paradigm are undermined by experimental observations. For example, volume 30 

retention and increased cardiac output induced by high salt intake do not necessarily lead to 31 

increased arterial pressure. Indeed, in multiple models of salt-sensitive hypertension the major 32 

abnormality appears to be failure of the vasodilator response to increased cardiac output, seen in 33 

salt-resistant animals, rather than an increase in cardiac output itself. There is also evidence that 34 

renal control of extracellular fluid volume is driven chiefly by volume-dependent neurohumoral 35 

control mechanisms rather than through direct or indirect effects of changes in arterial pressure, 36 

compatible with the concept that renal sodium excretion is controlled by parallel actions of different 37 

feedback systems, including hormones, reflexes, and renal arterial pressure. Moreover, we still do 38 

not fully understand the sequence of events underlying the phenomenon of ‘whole body 39 

autoregulation’. Thus, the events by which volume retention may develop to hypertension 40 

characterized by increased peripheral resistance remain enigmatic. Finally, by definition, animal 41 

models of hypertension are not ‘essential hypertension’; progress in our understanding of essential 42 

hypertension depends on new results on system functions in patients. 43 

   44 

Abstract word count = 254 45 

 46 

Keywords: Arthur Guyton, pressure natriuresis, Thomas Coleman, water and electrolyte 47 

homeostasis, whole body autoregulation. 48 

49 



Anomalies in the Guytonian paradigm?     3 

Introduction 50 

Thomas Kuhn identified the processes through which new scientific paradigms arise (70). 51 

The process begins with ‘normal science’, where we work within an existing paradigm that defines 52 

our scientific approach. But normal science generates anomalies that can only be resolved through a 53 

‘revolution’ which generates a new paradigm to replace the old one. Kuhn defined an anomaly as a  54 

“violation of the paradigm-induced expectations that govern normal science” (70). Kuhn’s 55 

definition of a paradigm included anything “sufficiently unprecedented to attract an enduring group 56 

of adherents away from competing modes of scientific activity” and “sufficiently open-ended to 57 

leave all sorts of problems for the redefined group of practitioners to resolve” (70).  Arthur Guyton 58 

and Thomas Coleman’s theory of the role of the kidney in long-term control of arterial pressure and 59 

the pathogenesis of hypertension fits nicely with this definition.  60 

Nevertheless, advancement in science is characterized by the replacement of established 61 

paradigms with new ones. This is why paradigms are so useful; they allow us to advance our 62 

theoretical understanding of, in our case, human biology and medicine, by making it ‘less wrong’. 63 

In this article, we examine the anomalies that could be considered to challenge the ‘Guytonian 64 

paradigm’ of the role of the kidney in long-term control of blood pressure. Our intention is not to 65 

propose a new paradigm, but to consider where we are in the ‘Kuhn cycle’ that drives paradigm 66 

change (70). We particularly highlight the evidence that, except in experimental models associated 67 

with extreme volume retention, both renal excretory dysfunction and dysfunction of the systemic 68 

vasculature are associated with the development of hypertension. 69 

There is a long history of criticisms of the Guytonian paradigm, dating back to the time soon 70 

after the first publications of Guyton, Coleman and colleagues’ on the subject (36). Moreover, some 71 

of these authors have even suggested what might be called alternative paradigms (20, 65, 71, 89). In 72 

this respect, it could be argued that we have little new to offer. But rather than advocate for or 73 

against the Guytonian paradigm, we aim to identify the central questions that should be addressed to 74 

advance the field.  75 
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The Guytonian paradigm 76 

Arthur Guyton described with passion the moment of epiphany, in which he and Thomas 77 

Coleman arrived at the interdependent conclusions that define what we will refer to herein as the 78 

Guytonian paradigm: (i) that hypertension can only develop if the relationship between arterial 79 

pressure and sodium and water excretion is shifted to a higher level of arterial pressure and (ii) that 80 

the renal body-fluid mechanism has infinite gain to control arterial pressure (46). The concept has 81 

endured for more than 5 decades, perhaps in part because it shares many of the characteristics of a 82 

good theory outlined by Kuhn (69). That is, the Guytonian paradigm is (i) accurate in the sense that 83 

its consequences are largely in agreement with the results of existing experiments. It has been 84 

bolstered by the results of computational modelling, which have allowed the predictions of the 85 

paradigm to be compared quantitatively with experimental observations. Generally, the more 86 

reliably a particular model is able to simulate experimental observations made under disparate 87 

conditions, the greater confidence we can have in the theoretical basis of the model. However, 88 

concordance between simulated data and the results of real experiments does not necessarily qualify 89 

all elements of the model as different models may provide similar results. Models are wonderful 90 

workshops of hypotheses, but not necessarily sponsors of reality. The Guytonian paradigm is also 91 

(ii) internally consistent and was different from then current concepts, so novel. The great 92 

breakaways were the crucial involvement of the kidney in long-term blood pressure control. This 93 

conceptual breakthrough was based on unique (albeit initially pathophysiological) long-term 94 

experiments demonstrating narrow relations between (a) blood volume and cardiac output, (b) 95 

cardiac output and blood pressure, and (c) blood pressure and volume excretion, and the application 96 

of comprehensive modelling of these and associated relationships. It also (iii) has a broad scope, 97 

offering a coherent framework for understanding of both physiological control of arterial pressure 98 

and the development of hypertension, (iv) is relatively simple, in that its centerpiece comprises only 99 

two concepts (above) (45-47) although they imply several operational features based on modelling 100 

alone, and (v) has been fruitful in the sense that is has driven multiple lines of research over 101 



Anomalies in the Guytonian paradigm?     5 

decades. It is disappointing; however, that the mechanisms of pressure natriuresis remain unclear 102 

despite the explosive increase in insight into cellular and molecular biology (30), and that progress 103 

with regard to understanding the mechanisms of essential hypertension has been limited. 104 

The consequence of the paradigm is that sodium excretion is a monotonous function of 105 

arterial pressure. Therefore, the long-term set point of arterial pressure must be at the point of 106 

intersection of the pressure natriuresis curve and the daily intake of salt and water (23, 47). That is, 107 

arterial pressure varies around an average level that allows maintenance of homeostasis of 108 

extracellular fluid volume (Fig. 1). There are several important criticisms of the paradigm set out in 109 

Fig. 1.  110 

Firstly, the ‘acute pressure natriuresis’ curve shown schematically in Fig. 1A was derived 111 

exclusively from studies of anesthetized animals and isolated perfused kidneys, in which the renal 112 

excretory responses to manipulation of renal perfusion pressure could be observed. As previously 113 

discussed (11), multiple studies document that anesthesia and surgery induce major changes in 114 

multiple regulatory pathways, and that results obtained in anesthetized animals are not necessarily 115 

meaningful with regard to sodium homeostasis.  116 

Secondly, in the ‘chronic pressure natriuresis curve’ depicted schematically in Fig. 1B the 117 

independent and dependent variables are not presented in the conventional way. The data upon 118 

which this figure is based were derived from experiments in which both sodium excretion and mean 119 

arterial pressure were measured at various levels of sodium intake. Yet the independent variable 120 

(sodium intake estimated from sodium excretion) is plotted on the ordinate and the dependent 121 

variable (mean arterial pressure) is plotted on the abscissa.  122 

Thirdly, in most of the experimental studies in which this relationship was derived in intact 123 

animals, its slope did not differ measurably from infinity (22), or was even negative (92), 124 

compatible with the notion that arterial blood pressure is not sensitive to salt intake. It could be 125 

argued that the absence of a finite slope of the pressure-natriuresis relationship under steady-state 126 

conditions is the consequence of a long-term regulatory mechanism operating with infinite gain. 127 
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Real cellular and systemic mechanisms compatible with such control have not been proposed, but 128 

might involve integrative control (activity being a function of the time integral of the error signal) 129 

rather than the usual proportional control (activity being a function of the magnitude of the error 130 

signal). However, even such a hypothetical, integrative control system would require an initial error 131 

signal in order to initiate regulation. As we discuss below, there is also an important caveat that 132 

must be applied to the concept of infinite gain of the renal-body fluid feedback mechanism for the 133 

long-term control of arterial pressure (see Misinterpretation 2, below), Moreover, robust increases 134 

in sodium excretion with sodium loading may well occur without any increase in blood pressure 135 

(see anomaly 1 below).  136 

Nevertheless, provided that some kind of causal relationship between renal arterial pressure 137 

and sodium excretion does hold true even for small changes in arterial pressure, the Guytonian 138 

paradigm provides an explanation for the development of hypertension when the excretory function 139 

of the kidney is impaired. That is, water and electrolyte homeostasis can only be maintained at the 140 

cost of chronically increased arterial pressure. In addition to the questionable assumption of a causal 141 

relationship between arterial pressure and sodium excretion, it is vital to this concept (i) that 142 

baroreceptor reflexes and other extra-renal counter-regulatory blood pressure control mechanisms 143 

reset in response to sustained changes in arterial pressure, and (ii) that renal excretory function does 144 

not reset (82). These two concepts are widely accepted, although the degree to which arterial 145 

baroreceptors reset has remained a matter of controversy (77, 104). Indeed, the Guytonian paradigm 146 

has its critics. As reviewed by Montani and Van Vliet, some of these criticisms are based on 147 

misinterpretations of Guyton and Coleman’s theory (83). Our intention is not to review the evidence 148 

for a role of the kidney in the pathogenesis of hypertension. For this, we refer the reader to some 149 

excellent recent reviews (15, 24). Rather, our intention is to focus on the potential anomalies that 150 

might challenge the Guytonian paradigm.  But first we will address some misinterpretations of the 151 

Guyton-Coleman theory that were not addressed in detail by Montani and Van Vliet, (83) before 152 

discussing what we see as true anomalies. 153 
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Common misinterpretations of Guyton and Coleman’s theory 154 

Misinterpretation 1: Initial salt and water retention and increased cardiac output is a necessary 155 

pre-requisite for development of hypertension 156 

Many of the early studies of Guyton and colleagues and their contemporaries employed 157 

models of hypertension induced by maneuvers that severely reduced renal function and/or increased 158 

salt and water intake. These models included one-kidney, one clip (1K1C) hypertension in rats (72, 159 

73) and dogs (9, 32), salt-loading in dogs (18, 28) and rats (78) with reduced renal mass, cellophane 160 

wrap hypertension in dogs (one kidney, one wrap; 1K1W) (32-34), and a combination of 161 

intravenous angiotensin II infusion and salt loading in dogs (68). In the latter model, hypertension 162 

could be prevented by servo-control of total body water, indicating a critical role of extracellular 163 

fluid volume expansion (66). In each of these models, hypertension was initiated by salt and water 164 

retention and (when measured) increased cardiac output (CO). But over a period of time ranging 165 

from days to weeks (depending on the experimental model), total peripheral resistance (TPR) 166 

increased and CO fell. Similar observations were made in anephric humans who were overhydrated 167 

over a period of weeks (16, 17) (Fig. 2). These observations led to the classical view of so-called 168 

‘volume-dependent’ hypertension, in which a shift in the pressure natriuresis relationship to the 169 

right results in volume retention and so increased CO. Peripheral resistance then increases in 170 

response to tissue hyper-perfusion, through still ill-defined mechanisms (so-called ‘whole body 171 

autoregulation’), so that hypertension is sustained by increased TPR rather than by increased CO 172 

(Fig. 2) (17). Thus, this view of the pathogenesis of hypertension conflated two concepts; (i) that 173 

hypertension could develop from salt and water retention and (ii) that autoregulatory mechanisms 174 

could transform a hyper-dynamic state into a state of elevated TPR. We will return to the vexed 175 

issue of whole body autoregulation later, but first consider the proposition that volume retention 176 

represents a common pathway to the development of hypertension. 177 

In contradiction to what some have claimed (e.g. (65)), Guyton himself acknowledged that 178 

hypertension need not be associated with an initial increase in CO (17). He accepted that some 179 
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experimental models of hypertension are associated with well-maintained or even decreased CO 180 

during their early phases. His interpretation was that “The contrasting results suggest that if 181 

angiotensin or other vasoconstrictors can bring renal perfusion pressure back to normal without 182 

changing the blood flow to the other tissues, then the autoregulatory response will not be initiated” 183 

(17). In other words, whole body autoregulation is not a necessary element of models of 184 

hypertension associated with marked peripheral vasoconstriction. A good example is hypertension 185 

induced by chronic infusion of norepinephrine in dogs, which is associated with an initial 186 

natriuresis and contraction of extracellular fluid volume (48, 50) (Fig. 3). Here, the pressure 187 

natriuresis relationship is shifted to the right. Furthermore, arterial pressure increased more, and did 188 

not reach a steady state, when renal perfusion pressure was servo-controlled to its level prior to 189 

infusion of norepinephrine (48, 50). Nevertheless, because a major effect of norepinephrine is on 190 

TPR, the hypertension is associated with contraction of extracellular fluid volume even in its very 191 

early stages. 192 

There is also good evidence that renovascular hypertension can develop even when salt and 193 

water retention is prevented. In animals on a standard laboratory diet, hypertension induced by 194 

constriction of a clip on a single kidney is usually associated with an initial retention of salt and 195 

water and, when it has been measured, increased CO. However, others have observed reduced CO 196 

during the onset of 1K1C hypertension in dogs (87) and renal wrap hypertension in rabbits (36). 197 

Furthermore, 1K1C (19, 101) and 1K1W (27, 38) hypertension still develops in dogs in which 198 

sodium intake is restricted to prevent increased extracellular fluid volume. Qi and colleagues also 199 

showed development of hypertension in Dahl salt sensitive rats, when placed on a high salt diet, 200 

even if body weight (and thus total body water) was servo-controlled (95). All of these observations 201 

are compatible with a role of the kidney in the development of hypertension, but not with an 202 

absolute requirement for sodium retention and increased CO.  203 

If the contributions of increased CO and TPR vary in the initial stages of experimental 204 

hypertension, it seems plausible that they might also vary in human essential hypertension. Indeed, 205 
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this appears to be the case. In so-called borderline or mild hypertension, relatively high CO has 206 

been observed in some but not all reported studies (reviewed by (79, 98)). This variability is likely 207 

real, reflecting the varying contributions of increased vascular tone and increased extracellular fluid 208 

volume to the development of hypertension. Consequently, if we are to understand mechanisms 209 

mediating the pathogenesis of human essential hypertension, we must consider dysfunction of both 210 

renal excretory capacity and peripheral vascular tone. But we also must accept that the 211 

hemodynamic profile in established hypertension tells us little, if anything, about the pathway(s) 212 

leading to the development of hypertension. Arthur Guyton made this point himself at least 35 years 213 

ago (45). 214 

Misinterpretation 2: The concept of ‘infinite gain’ implies that the pressure natriuresis relationship 215 

does not reset in response to chronic changes in arterial pressure 216 

The kidneys not only respond to neurohumoral control systems, but are also the master 217 

controllers of one of the most important of these mechanisms; the renin-angiotensin-aldosterone 218 

system. Thus, changes in arterial pressure alter renal excretory function not just through intrinsic 219 

mechanisms (i.e. pressure natriuresis), but also by altering extrinsic (i.e. hormonal and perhaps even 220 

neural) control of renal excretory function. Let us assume that changes in extracellular fluid volume 221 

necessarily lead to changes in arterial pressure, and that small changes in arterial pressure 222 

necessarily lead to changes in sodium excretion. We will address these assumptions later 223 

(Anomalies 1 and 2). Nevertheless, if they hold, the proposed infinite (or near infinite) gain of the 224 

renal-body fluid feedback mechanism for the long-term control of arterial pressure would be 225 

capable of returning arterial pressure to (or very near) its long-term set-point in response to any 226 

perturbation that does not influence renal excretory function (48). But this set-point is itself 227 

determined not just by intrinsic factors within the kidney, but also by the influence of neurohumoral 228 

(extrinsic) factors on kidney function. Thus, the only way to alter the arterial pressure to which the 229 

kidney is exposed without also altering the neurohumoral mechanisms that influence renal excretory 230 

function, is to block these neurohumoral mechanisms (100). Such manoeuvers necessarily open the 231 
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feedback loops that govern renal control of extracellular fluid volume, and thus the long-term set-232 

point of renal control of arterial pressure. Pressure natriuresis and neurohumoral control of sodium 233 

excretion can be considered as parallel, but inter-dependent mechanisms. Consequently, the 234 

pressure-natriuresis relationship could only truly have infinite gain if all neurohumoral regulators of 235 

renal excretory function were blocked. This caveat reduces the utility of the concepts of infinite 236 

gain, and the kidney’s long-term set point of arterial pressure, for our understanding of long-term 237 

regulation of arterial pressure.   238 

Under some conditions, renal arterial pressure and neurohumoral control might be expected to 239 

influence sodium excretion in opposite directions. This has been addressed experimentally in 240 

conscious animals by use of sophisticated and demanding techniques.  241 

Reinhardt and colleagues provided strong evidence that extrinsic (neurohumoral) factors can 242 

modulate renal excretory function in the face of chronic changes in renal perfusion pressure (97, 243 

100). By remote control, they servo-controlled renal arterial pressure in conscious, freely moving 244 

dogs, for a period of 4 days, to a level 20% below each dog’s control systemic arterial pressure (e.g. 245 

from 115 to 92 mmHg). Total body water and sodium and systemic MAP increased across the first 246 

day, but thereafter remained relatively stable, even though the servo-control of renal artery pressure 247 

kept said pressure at 92 mmHg (Fig. 4). They dubbed this mechanism ‘pressure escape’. This 248 

escape from the volume retaining effects of reduced renal artery pressure could potentially be 249 

explained by altered extrinsic control of the kidney. Reinhardt and colleagues observed decreased 250 

plasma aldosterone and increased atrial natriuretic peptide concentrations, consistent with a role of 251 

extrinsic factors. Notably, volume retention in response to the reduction in renal arterial pressure 252 

did not occur when the renin system was blocked (i.e. the 20% reduction in renal arterial pressure 253 

did not per se contribute to volume retention). In subsequent studies they showed that the ‘pressure 254 

escape’ phenomenon could be prevented by clamping the renin-angiotensin-aldosterone system at 255 

baseline levels by continuous intravenous infusion of angiotensin II and aldosterone along with an 256 

angiotensin converting enzyme inhibitor. During continued hormone infusion, sudden release of the 257 
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vascular clamp reintroduced the pressure escape situation at the expense of a 20% increase in renal 258 

arterial pressure. However, the elevated renal artery pressure did not correct the hormone-mediated 259 

volume surplus, and blood pressure remained elevated (100).  260 

Mizelle and colleagues (82) performed an experiment similar to that of Reinhardt and 261 

colleagues (97, 100), but servo-controlled renal arterial pressure to only one of the two kidneys, to a 262 

level ~12 mmHg (~14%) below baseline systemic arterial pressure. Using a split-bladder technique, 263 

they performed side-specific urine collections in this well controlled analogy in dogs of the 2-264 

kidney-1-clip model of renovascular hypertension. Consequently, the two kidneys were exposed to 265 

identical (extrinsic) circulating hormones, but different levels of arterial pressure. Sodium excretion 266 

by the kidney exposed to a lower arterial pressure decreased, but sodium excretion from the kidney 267 

exposed to the slightly elevated systemic arterial pressure increased (Fig. 4). Surprisingly, they 268 

found that the antinatriuretic effect of the 12 mmHg decrease in renal artery pressure in one kidney 269 

was matched precisely by the 4 mmHg increase in systemic pressure and thus pressure to the 270 

contralateral kidney, despite the concomitant 2.3-fold increase in plasma renin activity. These 271 

changes were maintained at a relatively stable level for the 12 days of the experiment. Thus, when 272 

extrinsic factors controlling the two kidneys were identical, changes in the intrinsic factors 273 

controlling renal function were unable to reset the pressure natriuresis relationship. This result is 274 

also remarkable because it shows that in the unperturbed kidney a minute elevation in arterial 275 

pressure is able to override a substantial increase in systemic renin system activity seemingly at 276 

odds with the results of the Reinhardt group (see above). However, it aligns with Guyton’s 277 

representation of the renal-blood volume pressure control complex as the dominating pressure 278 

servo-control system (45).  279 

Notably, these two unique sets of protocols were carried out under different baseline 280 

conditions, particularly with regard to baseline arterial pressure (measured 20-23 h/d) which 281 

averaged 115-120 mmHg in the Reinhardt study and 87 mmHg in the Mizelle study, despite similar 282 

sodium turnover. Neither study seems to have been repeated by independent parties. More 283 
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surprisingly, neither protocol seems to have been subjected to computer simulations. Yet regardless 284 

of their apparent inconsistencies, the findings of these two studies do allow us to conclude that 285 

chronic changes in arterial pressure, that are sufficient to alter the activity of the renin-angiotensin 286 

system, will reset the relationship between arterial pressure and renal excretory function. However, 287 

there is no support for the idea that direct effects of altered renal perfusion pressure on the kidney 288 

can reset this relationship.  289 

Anomalies 290 

Thomas Kuhn proposed that “Discovery commences with the awareness of anomaly, i.e. with 291 

the recognition that nature has somehow violated the paradigm-induced expectations that govern 292 

normal science. It then continues with a more or less extended exploration of the area of the 293 

anomaly. And it closes only when the paradigm theory has been adjusted so that the anomalous has 294 

become the expected.” (70). According to this approach, the pathway to a neo-Guytonian paradigm, 295 

or a paradigm shift, must begin with the identification of anomalies in the Guytonian paradigm. 296 

Anomaly 1: Volume retention and increased cardiac output during salt loading does not necessarily 297 

increase arterial pressure  298 

One of the central concepts in Guyton and Coleman’s theory of long-term control of blood 299 

pressure is the notion that retention of salt and water (through changes in the so-called mean 300 

systemic filling pressure) increases MAP by increasing CO (46, 47). However, there are a number 301 

of conditions in which MAP remains remarkably stable in the face of altered extracellular fluid 302 

volume and/or CO. One of these is the response to changes in salt intake in ‘salt resistant’ animals 303 

and man. In man, plasma volume increases by about 1.5 ml per mmol increase in daily sodium 304 

intake (25, 96). Kjolby et al. varied daily sodium intake in dogs across more than an order of 305 

magnitude (64). While they observed considerable changes in plasma volume, arterial pressure 306 

changed little in response to altered sodium intake. The maintenance of arterial pressure was 307 

possibly due to compensatory changes in the degree of activation of the renin-angiotensin-308 
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aldosterone system, since the plasma concentrations of components of this system varied linearly 309 

with the logarithm of the intake of sodium. These observations accord with those of Krieger and 310 

colleagues, who found that 7 days of high salt intake in previously salt-depleted dogs resulted in 311 

retention of salt and water and increased CO, but that MAP remained relatively stable due to 312 

reduced TPR (67). In contrast, when dogs were salt loaded while receiving a continuous intravenous 313 

infusion of angiotensin II, the increased CO was associated with a gradually increasing TPR, so that 314 

MAP increased (68). This form of experimental hypertension was completely prevented by servo-315 

control of total body water (66). Collectively, these observations indicate that there is considerable 316 

scope for neurohumoral mechanisms, including the renin-angiotensin-aldosterone system, to 317 

maintain MAP at a relatively stable level in the face of altered CO, by altering TPR. Thus, under 318 

physiological conditions, small changes in body fluid volume do not necessarily lead to changes in 319 

arterial blood pressure. 320 

Evidence that the failure of such compensatory mechanisms might be important in the 321 

pathogenesis of hypertension came from studies of Dahl salt-sensitive (SS) and salt-resistant (SR) 322 

rats. Greene and colleagues examined the responses to increased salt intake (by intravenous 323 

infusion) in Dahl SS and SR rats, with or without servo-control of body weight (and thus total body 324 

water) (44). They found that servo-control of body weight prevented development of hypertension 325 

in SS rats exposed to a high salt diet. However, when body weight was not servo-controlled, SS and 326 

SR rats had similarly increased blood volume, but MAP increased only in SS rats. In a separate 327 

protocol, in which CO was measured by thermodilution, increased dietary salt intake was found to 328 

increase CO in both SS and SR rats. Importantly, hypertension only developed in SS rats, because 329 

of failure of a compensatory reduction in TPR (Fig. 5). Thus, while volume retention was a 330 

necessary pre-requisite for hypertension in the SS rat, salt-loaded by either intravenous infusion or 331 

dietary intake, it appears not to be the critical mediator. Rather, the critical deficit may lie in failure 332 

of counter-regulatory mechanisms that control vascular tone. This concept has recently been dubbed 333 
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the ‘vasodysfunction theory’ by Kurz and colleagues (71). It has also been central to arguments for 334 

a pivotal role of the central nervous system in the development of hypertension (89). 335 

The findings of Greene and colleagues (44)  are consistent with those of Ganguli and 336 

colleagues in SS and SR rats, studied under anesthesia three days after commencing a high or low 337 

sodium diet (40). That is, CO apparently increased in response to increased salt intake in both SS 338 

and SR rats, but TPR fell only in SR rats. Simchon and colleagues described changes in arterial 339 

pressure, CO and renal blood flow (RBF) during development and maintenance of hypertension in 340 

SS rats on 8% NaCl (102). They found that the increase in MAP after 4 weeks was mediated by 341 

increased CO, but at 46 weeks CO was sub-normal and TPR was elevated. They were unable to 342 

detect a significant increase in CO in SR rats, although it certainly tended to be increased at the 4 343 

week time-point. Importantly, in these three sets of experiments (40, 44, 102), volume expansion 344 

and increased CO was apparently a requirement for development of hypertension in the SS rat. 345 

However, in each case the critical difference between the SS rat and SR rat appeared to be the 346 

response of the resistance vasculature to increased salt intake. This notion also accords with the 347 

findings of renal transplantation studies in Dahl rats, indicating roles for both intrarenal and 348 

extrarenal factors in salt sensitivity of blood pressure in this model (85). However, it is not 349 

consistent with the idea that salt-sensitivity of arterial pressure arises from dysfunctional 350 

neurohumoral control of renal excretory function (Fig. 1), which would appear to be a critical test of 351 

the Guytonian paradigm. 352 

The observations described above raise two important questions: (1) what are the critical loci 353 

for the disparate vascular response in SS compared with SR rats, and (2) how relevant are 354 

observations in the Dahl rat to our understanding of human essential hypertension? Regarding the 355 

first of these questions, it is possible that the kidney represents a major locus for the disparate 356 

vascular response in SS compared with SR rats. For example, Simchon and colleagues observed 357 

selective renal vasoconstriction (but not systemic vasoconstriction) at the 4 week time point in SS 358 

rats on 8% NaCl (102). These observations are strikingly similar to those from a recent study of a 359 
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group of carefully selected patients with mild, uncomplicated hypertension, whose renal vascular 360 

conductance was much smaller than that of a control group while the non-renal vascular 361 

conductances were indistinguishable (26). That is, the greater TPR in the patients, compared to 362 

control subjects, could be attributed entirely to augmented renal vascular resistance. Thus, while it 363 

would be dangerous to extrapolate from studies in the Dahl SS rat to human essential hypertension, 364 

these findings indicate that abnormal renal vascular tone and/or renal vascular structure could play a 365 

critical role in the pathogenesis of hypertension, not just through its effects on renal excretory 366 

function, but also through effects on TPR.  367 

There may also be inherent differences in the non-renal vasculature between individuals 368 

susceptible to hypertension and those not. In anephric patients, volume expansion increased arterial 369 

pressure only in individuals who had been hypertensive prior to nephrectomy (88).  370 

Regarding the second question posed above, it seems likely that vascular dysfunction does 371 

play an important role in salt-sensitive hypertension in humans. For example, Schmidlin and 372 

colleagues demonstrated similar increases in CO in salt-sensitive and salt-resistant individuals 373 

placed on a high-salt diet. Arterial pressure increased in salt-sensitive individuals because, unlike 374 

the salt-resistant subjects, TPR did not fall when salt intake was increased (99). Furthermore, Kurtz 375 

and colleagues recently presented a detailed argument that Mendelian forms of salt-sensitive 376 

hypertension could be driven by failure of the counter-regulatory vasodilatation that normally 377 

occurs when salt intake is chronically increased (71).   378 

The considerations described above do not necessarily require us to reject Guyton and 379 

Coleman’s view of the pathogenesis of hypertension, but they certainly do require it to be deployed 380 

with some subtlety, a point emphasized by Guyton and his colleagues (45). We accept the concept 381 

that hypertension can occur either in the absence or presence of volume expansion. But the critical 382 

subtlety, as we see it, is that we must also accept that a combination of altered renal excretory 383 

function AND altered control of peripheral resistance vessels must be a hallmark of forms of 384 

hypertension other than those associated with rapid and frank volume expansion. There are a 385 
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number of candidate mechanisms that might mediate this altered control of vascular tone, including 386 

the sympathetic nervous system (4, 37), multiple signaling cascades mediated by endogenous 387 

ouabain-like factors (13, 74), reductions in vascular nitric oxide bioavailability induced by 388 

asymmetrical dimethyl-arginine (99), certain G-protein (Gq-G11 and G12-G13) signaling cascades 389 

(106), and interactions between immune cells, cytokines and oxidative stress (80).  390 

In conclusion, as pointed out by Guyton and his colleagues (45), the notion that essential 391 

hypertension develops initially from salt and water retention, and that increased CO is transformed 392 

to increased TPR (Fig. 2), is likely a gross over-simplification of the clinical situation. This concept 393 

arose from early studies of models of hypertension characterized by marked fluid retention (e.g (16-394 

18)), which probably have little direct relevance to human essential hypertension. Moreover, there 395 

is strong evidence that arterial pressure can be maintained in the face of increased extracellular fluid 396 

volume and CO, and that at least some forms of hypertension are attributable to failure of this 397 

compensatory vasodilatation.  398 

Anomaly 2: Day-to-day and hour-to-hour renal regulation of salt and water homeostasis is not 399 

driven by changes in arterial pressure 400 

This issue has been reviewed in detail previously (10, 12, 25, 59, 100), so it will only be 401 

discussed briefly. There is now strong evidence that the major driver of day-to-day changes in 402 

sodium excretion, in response to day-to-day changes in sodium intake, is the renin-angiotensin-403 

aldosterone system, at least in animals and humans in which this system is intact. That is, acute and 404 

chronic changes in salt and water intake, either orally or via intravenous infusion, are usually 405 

accompanied by changes in salt and water excretion that maintain salt and water homeostasis, 406 

without appreciable changes in arterial pressure. Indeed, natriuresis has even been observed during 407 

acute sodium loading in the face of reduced arterial pressure (1). However, acute and chronic 408 

changes in sodium intake are accompanied by marked changes in the activity of the renin-409 

angiotensin-aldosterone system, which appears to be the dominant mechanism mediating changes in 410 

sodium and water excretion (12). It is also relevant to note that the phenomenon of ‘pressure 411 
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escape’ initially described by Reinhardt and colleagues (97) (vide supra), could be abolished by 412 

‘clamping’ the renin-angiotensin-aldosterone system (100) (Fig. 4). This group also found no 413 

significant correlation between spontaneous diurnal variations in arterial blood pressure and the 414 

concomitant rates of sodium and volume excretion (100). Thus, it appears that neurohumoral 415 

mechanisms can readily over-ride the influence of minor changes in renal perfusion pressure on 416 

renal excretory function. 417 

All of these observations are consistent with the view that the relationship between blood 418 

pressure and natriuresis is exquisitely sensitive to neurohumoral status (Fig. 1). The effects of 419 

altered activity of the renin-angiotensin-aldosterone system (or of renal sympathetic nerve activity, 420 

atrial natriuretic peptides, or indeed any other regulatory mechanism) may well be considered to be 421 

mediated via a shift in the pressure natriuresis relationship. Nevertheless, we also must concede that 422 

the major factor that controls short-term changes in salt and water excretion under physiological 423 

conditions is neurohumoral status, not renal artery pressure. 424 

Based on the discussion above, and as suggested previously (12, 100), we can envisage 425 

multiple lines of defense against the development of salt-sensitive hypertension (Fig. 6). The first 426 

line of defense is the response of the kidney to altered neurohumoral influences, including the renin-427 

angiotensin-aldosterone system, which are initiated by volume-dependent mechanisms. This allows 428 

sodium and water balance to be achieved, albeit at the expense of some expansion of extracellular 429 

fluid volume. The second line of defense is the response of the vasculature to altered neurohumoral 430 

influences, which allows compensatory reductions in TPR so that MAP is not increased, even in the 431 

face of increased CO. The third line of defense is the pressure natriuresis mechanism, which is 432 

engaged when arterial pressure increases, presumably as a result of malfunction of the first two 433 

mechanisms. These three mechanisms must operate within some hierarchy. The nature of this 434 

hierarchy remains one of the central questions in our understanding of the mechanisms that control 435 

blood pressure in the long-term, and thus the pathogenesis of hypertension. Nevertheless, it seems 436 
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reasonable to propose that all three lines of defense must malfunction in order for chronic 437 

hypertension to develop.    438 

Anomaly 3: Sodium homeostasis might rely on extrarenal mechanisms 439 

This concept has been reviewed in detail recently (105). In brief, recent evidence suggests that 440 

sodium can be stored in skin and muscle in an osmotically inactive form bound to 441 

glycosaminoglycans, providing sinks and sources of free sodium ions under conditions of increases 442 

and decreases, respectively, of total body sodium. There is evidence that these storage depots are 443 

regulated by a complex interplay between immune cells and the lymphatic system. These concepts 444 

represent an anomaly for the Guytonian paradigm, which is based on the underlying assumption 445 

that the various components of the extracellular fluid volume are in equilibrium. The presence of 446 

osmotically inactive sodium would allow some level of uncoupling of total body sodium from total 447 

body water. The apparent existence within the body of mechanisms buffering changes in total body 448 

sodium will not, by their buffer capacity alone, change the principles of body fluid regulation. 449 

However, they may well explain how the magnitude of changes in body fluid can deviate 450 

quantitatively from those predicted from the physico-chemistry of simple electrolyte solutions. The 451 

implications of these relatively new findings, for our understanding of the long-term regulation of 452 

sodium homeostasis and arterial pressure, must await further research.  453 

Anomaly 4: The mechanisms underlying ‘whole body autoregulation’ have not been identified 454 

We have already established that hypertension need not be initiated by volume retention and 455 

increased CO (see Anomaly 1). There is also evidence that some forms of experimental 456 

hypertension can be associated with increased CO, with no evidence of progression towards 457 

increased TPR. For example, Fine and colleagues assessed the effects of increased dietary salt 458 

intake in rats in which the renin-angiotensin system was clamped by combined intravenous infusion 459 

of the angiotensin converting enzyme inhibitor enalapril and angiotensin II (35). Arterial pressure, 460 

measured telemetrically, increased when the animals were placed on a high salt diet for 7 days, due 461 
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to increased CO (measured by transit-time ultrasound flowmetry). Over the course of the 7-day 462 

protocol there was no evidence of increased TPR. On the other hand, progression from increased 463 

CO to increased TPR has been observed in many forms of hypertension associated with salt and 464 

water retention. These include 1K1C hypertension in the rat (72, 73) and dog (32, 33), 1K1W 465 

cellophane wrap hypertension in the dog (34), hypertension in dogs subjected to increased sodium 466 

intake with reduced renal mass (18) or during infusion of a low dose of angiotensin II (68). It has 467 

also been observed in response to volume loading in anephric patients in some (16), but not all (63) 468 

studies. The only plausible theory to explain this transition relies on the phenomenon of whole body 469 

autoregulation (47). That is, that the long-term set-point of local (and thus total) peripheral 470 

resistance is determined by the requirements of the tissues for blood flow. In Guyton and Coleman’s 471 

original formulation of the renal-body fluid system for arterial pressure control it merited little 472 

discussion; as if it was assumed that local autoregulatory mechanisms would naturally respond on a 473 

whole-body basis (47). Yet this concept remains controversial and poorly defined. 474 

There is also good evidence that whole body autoregulatory mechanisms can operate when 475 

arterial pressure is chronically decreased. Until the seminal work of Horace Smirk, it was widely 476 

believed that pharmacotherapy to reduce arterial pressure would be dangerous because it would lead 477 

to tissue ischemia (29). Smirk was able to show that arterial pressure could be safely lowered in 478 

patients with hypertension, by pharmacological ganglion blockade (103). This work paved the way 479 

for larger clinical trials of antihypertensive therapy that definitively demonstrated the beneficial 480 

effects of these drugs. Later studies provided more direct evidence that diuretic agents, in particular, 481 

lower arterial pressure through an initial reduction in CO which is later transformed to a reduction 482 

in TPR (21, 39). 483 

So-called borderline or mild hypertension has been of considerable interest to the protagonists 484 

of the whole body autoregulatory theory, since it is generally thought to reflect the early stages in 485 

the pathogenesis of hypertension. The observation of relatively high CO in patients with borderline 486 

hypertension would therefore provide support for the theory This has been observed in the majority 487 
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of reported studies (79). However, the observation that the difference in CO between patients with 488 

borderline hypertension and controls is abrogated by assuming a sitting position or exercise 489 

suggests that abnormally high CO in the recumbent position might have dubious significance (61). 490 

Nevertheless, it seems reasonable to propose that volume retention and subsequent whole body 491 

autoregulation might contribute to the pathogenesis of human essential hypertension in at least a 492 

subset of patients. But what do we mean by ‘whole body autoregulation’ and what are the 493 

mechanisms that mediate it? 494 

For our current purposes, we can define autoregulation as any phenomenon that opposes 495 

changes in blood flow in response to altered perfusion pressure. At least three mechanisms might 496 

mediate whole body autoregulation in response to increased arterial pressure: (1) vasoconstriction, 497 

either as a direct response to the increased perfusion pressure or as a longer-term consequence of 498 

increased sensitivity of the vasculature to constrictor agents, (2) vascular rarefaction, and (3) 499 

vascular hypertrophy or (eutrophic) remodeling of resistance vessels around a smaller lumen. 500 

Unfortunately, we currently have very limited understanding of the relative contributions of these 501 

mechanisms to whole body autoregulation.    502 

Acute mechanisms: Autoregulation can be observed in most organs and tissues when 503 

perfusion pressure is acutely altered. The underlying mechanisms are tissue-dependent, although 504 

some generalizations can be made. Firstly, acute autoregulatory responses to increased perfusion 505 

pressure are largely mediated by the so-called ‘myogenic response’, whereby stretch of vascular 506 

smooth muscle increases cytosolic calcium concentration leading to smooth muscle contraction and 507 

thus vasoconstriction. In contrast, metabolic factors likely dominate the response to reduced 508 

perfusion pressure, whereby hypoxia itself or accumulation of local metabolites such as adenosine, 509 

carbon dioxide and hydrogen ions drive the vasodilatation. In some organs, such as the kidney, 510 

additional mechanisms come into play (62). From a ‘whole body’ point of view, acute 511 

autoregulation encompasses mechanisms that maintain adequate oxygen delivery to tissue in the 512 

face of changes in either driving pressure or oxygen demand. This is achieved both through a 513 
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combination of changes in oxygen extraction and the state of dilatation of local resistance vessels 514 

(101). Whole body autoregulation has been observed acutely in experimental animals, beginning 515 

with the seminal studies of Guyton and Coleman in dogs in which the central nervous system had 516 

been destroyed (17) and extending to studies in conscious dogs (81) and rats (55-58) in which 517 

cardiovascular reflexes had been blocked. However, for two reasons, such acute mechanisms are 518 

unlikely to make much contribution to the transition from increased CO to increased TPR in 519 

essential hypertension. Firstly, if the relatively high CO in borderline hypertension were to reflect 520 

‘over-perfusion’ of tissues, the arteriovenous oxygen concentration difference in these individuals 521 

might be expected to be relatively low, but this has not been observed (79). Secondly, the time 522 

course is all wrong. Acute autoregulatory mechanisms operate over a time-course of seconds to 523 

hours (41), whereas the transition from increased CO to increased TPR takes days or weeks in 524 

experimental hypertension (16, 18, 32-34, 68, 72, 73) and perhaps years in human essential 525 

hypertension (79). 526 

Chronic mechanisms: Candidate mechanisms include changes in the sensitivity of the 527 

vasculature to vasoactive agents, vascular rarefaction, and vascular remodeling.  528 

Increased sensitivity to vasoconstrictors has been observed in established hypertension (8), as 529 

has reduced influence of endothelial-derived vasodilator factors (54). There is also evidence for 530 

altered calcium signaling in the vasculature in certain forms of hypertension, perhaps driven by 531 

endogenous ouabain-like factors (13, 75, 76, 94) or by increased expression of L-type calcium 532 

channels induced by increased arterial transmural pressure (93). An increased propensity of 533 

resistance vessels to constrict leads to functional rarefaction (14). Functional rarefaction, in turn, 534 

can lead to loss of the microvasculature (structural rarefaction) (14).  535 

Structural rarefaction has been observed in multiple animal models of hypertension, including 536 

the spontaneously hypertensive rat (SHR) and reduced renal mass hypertension (42, 52, 78). 537 

Evidence of structural rarefaction has also been obtained in established human hypertension (3), 538 

borderline essential hypertension (2), high-output borderline hypertension, and in individuals with a 539 
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familial predisposition towards hypertension (86). Furthermore, computational models predict that 540 

rarefaction could make a significant contribution to the increased vascular resistance in established 541 

hypertension (43). There is also evidence that antihypertensive pharmacotherapy can reverse 542 

rarefaction (6). But is rarefaction an important factor in the hemodynamic alterations in 543 

hypertension? 544 

Hallback and colleagues examined the characteristics of the relationships between flow and 545 

perfusion pressure in the isolated hind-limb of SHR compared with normotensive controls. Their 546 

findings indicated that vascular rarefaction could not adequately explain the alterations in hind-limb 547 

pressure-flow relationships in the SHR. Rather, they concluded that the vascular abnormality in the 548 

SHR is best explained by structural changes in pre-capillary resistance vessels, leading to reduced 549 

lumen diameter even at maximal vasodilatation (51). Such structural changes amplify the effects of 550 

constrictor factors on peripheral resistance and thus arterial pressure. In intact rabbits with 2K2W 551 

hypertension Wright, Angus and Korner provided evidence that this ‘vascular amplifier’ makes a 552 

major contribution to the enhanced sensitivity of the circulation to constrictor factors, and thus 553 

maintenance of hypertension (107, 108). Critically, there is evidence that oxidative stress can drive 554 

development of vascular hypertrophy (54). However, remodeling of the resistance vasculature has 555 

traditionally been viewed as an adaptive response to hypertension, rather than a primary pathogenic 556 

event (31).  557 

Unfortunately, most experimental studies of the changes in microvascular (42) and resistance 558 

vessel (65) structure and function in hypertension have been performed in animals with established 559 

hypertension. Structural rarefaction has been observed within three days of commencing a high salt 560 

intake in rats. But these responses were similar in rats with reduced renal mass to those of sham-561 

operated rats who did not develop hypertension (53). Functional evidence of vascular remodeling, 562 

consistent with the vascular amplifier concept, has been seen as early as 2 weeks after initiation of 563 

angiotensin II-dependent hypertension (84). However, to our knowledge, no true time-course 564 

studies have been performed. Consequently, we really do not know whether these structural 565 
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changes occur over a time-course consistent with a role in the phenomenon of whole-body 566 

autoregulation, or whether they simply reflect a structural adaptation to increased arterial pressure. 567 

Furthermore, the relative contributions of functional and structural rarefaction, changes in vascular 568 

sensitivity to vasoactive agents, and remodeling of resistance vessels, remain unknown.  569 

Anomaly 5: The Guytonian paradigm does not allow us to understand the sequence of events that 570 

lead to the pathogenesis of hypertension. 571 

One argument that is often used to support a critical role of the kidney in long-term control of 572 

arterial pressure and the pathogenesis of hypertension can be encapsulated in the statement that 573 

‘hypertension is always accompanied by a right-ward shift in the pressure natriuresis relationship’. 574 

While we accept the truth of this statement, we also concede that it represents a tautology. A ‘right-575 

ward shift in the pressure natriuresis relationship’ is a physical necessity; the statement reiterates 576 

that sodium balance occurs in chronic hypertension. It is true under all conditions of steady state in 577 

all forms of hypertension. Therefore, it does not add any insight into these states (7). Indeed, if we 578 

accept that volume retention need not lead to increased arterial pressure (Anomaly 1), that hormonal 579 

and neural factors, rather than renal perfusion pressure, dominate renal control of extracellular fluid 580 

volume (Anomaly 2), that non-renal mechanisms contribute to control of sodium homeostasis 581 

(Anomaly 3), and that we have little understanding of the mechanisms that mediate whole body 582 

autoregulation (Anomaly 4), it could be argued that such a statement really only serves to divert out 583 

attention from the important questions in the field. We believe these important questions relate to 584 

the inter-relationships between dysfunction of control of CO by the kidney and venous system, and 585 

control of TPR by resistance vessels. Our interpretation of the available literature is that essential 586 

hypertension must be driven by the interplay between the dysfunction in these two components of 587 

the cardiovascular system. A focus on any one of these systems in isolation from the other is 588 

unlikely to lead to major advances in the field.  589 

  590 



Anomalies in the Guytonian paradigm?     24 

A way forward for ‘normal science’ 591 

The anomalies associated with Guytonian theory, we have described above, hardly constitute 592 

a crisis that in the near future might lead to a new paradigm in our view of the role of the kidney in 593 

the pathogenesis of hypertension. However, a number of the experimental results seem to justify 594 

that ‘pressure natriuresis’ should be considered as one natriuretic mechanism operating parallel to 595 

other control mechanisms. An immediate benefit would be to eliminate the need for the complex 596 

explanation that volume mediated natriuresis, occurring along with concomitant decreases in blood 597 

pressure and renin system activity, is due to shifts of the former rather than to deactivation of the 598 

latter. The inclusion of parallel actions of multiple hierarchical, primarily independent natriuretic 599 

control systems into the concepts of Guyton could be considered an adjustment justifying the label 600 

of a ‘neo-Guytonian’ paradigm. Otherwise, the anomalies probably indicate that there is 601 

considerable scope for normal science, as defined by Thomas Kuhn (70), to proceed. But how might 602 

this normal science best be directed towards a neo-Guytonian paradigm? 603 

The massive research effort in hypertension, in the 20 years since Arthur Guyton’s last 604 

published contribution to the field (49), has yielded a wealth of understanding of the molecular 605 

mechanisms that influence cardiovascular control and that drive development of hypertension in 606 

animal models (60). However, we would argue that they have not got us much closer to 607 

understanding the mechanisms that drive the pathogenesis of human essential hypertension. This 608 

failure might be partly a result of ‘the molecular revolution’, which we would argue has led many 609 

researchers to focus on their favorite molecule rather than on the broader integrative questions. It is 610 

probably also fair to say that interest has dwindled in ‘the big questions’ in the field of 611 

hypertension. For some these questions might seem already answered. For others they might seem 612 

unanswerable.  613 

We accept the Guytonian principle in so far that hypertension can only occur when renal 614 

excretory function is impaired, either through intrinsic changes in the kidney or altered 615 

neurohumoral control of the kidney, so that a greater level of arterial pressure is required to assist in 616 
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the excretion of the daily sodium load. However, intact experimental animals and humans that are 617 

not susceptible to hypertension appear able to deal with some level of salt and water retention and 618 

increased CO without increased MAP, through neurohumorally-mediated reductions in TPR (see 619 

Anomaly 1). Simultaneously, these neurohumoral mechanisms must also influence renal excretory 620 

function in a manner that allows homeostasis of extracellular cellular fluid volume at its new level, 621 

without the need for increased arterial pressure. Changes in neurohumoral control of the kidney 622 

even appear able to maintain salt and water homeostasis in the face of chronically reduced renal 623 

perfusion pressure (see Misinterpretation 2). These observations at least partly break the 624 

mechanistic link between altered renal excretory function and the development of hypertension, that 625 

are at the heart of the Guyton-Coleman view of the pathogenesis of hypertension. Consequently, we 626 

must accept that we really do not understand the sequence of events that might lead from altered 627 

renal excretory function to the development of chronic hypertension (Anomaly 5). We even have 628 

little understanding of the sequence of events that might transform so-called volume-dependent 629 

hypertension into a state of increased TPR (Anomaly 4).  Elucidation of these issues will probably 630 

require a renewed and focused effort in integrative cardiovascular physiology in human subjects. 631 

Prospective studies are required, with frequent follow-up, in order to characterize the sequence of 632 

events in the pathogenesis of hypertension. Information regarding systemic and renal 633 

hemodynamics, water and electrolyte homeostasis, small and large vessel structure and function, 634 

neuro-humoral status, and metabolic and immunological functions will be required. Remarkable 635 

methodological advances have been made in all of these fields in recent years, including in the use 636 

of non-invasive methods, so such a renewed effort would be timely and feasible. Perhaps the 637 

greatest challenge in this research effort will be to overcome the confounding effects of 638 

pharmacological and non-pharmacological interventions that are, quite rightly, offered soon after 639 

clinical diagnosis of hypertension.    640 

Another important activity for advancement in the field is the development of advanced 641 

computational models of the long-term control of arterial pressure and the pathogenesis of 642 
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hypertension (90, 91). Computational models were vital to the initial development of the two central 643 

concepts in the Guytonian paradigm: (i) the over-riding dominance of the kidney in long-term 644 

control of arterial pressure, and (ii) the principle of infinite gain of the body fluid mechanism of 645 

long-term blood pressure control (45). More recently, alternative models have been developed that 646 

can replicate some of the outcomes of the model generated by Guyton, Coleman and colleagues, but 647 

are based on very different assumptions regarding the hierarchy of importance of blood pressure 648 

control mechanisms (4, 5). For example, simulations of hypertension induced by angiotensin II and 649 

high salt intake by the ‘neurogenic’ model of Averina and colleagues generate hemodynamic 650 

profiles in that are very similar to those of the Guyton-Coleman model (4, 5). Yet this new model is 651 

not based on the assumption of a direct relationship between arterial pressure and sodium excretion, 652 

thereby illustrating the point that conceptually different models may provide equally attractive 653 

simulation results. The complexity of the control mechanisms dictates that intimate interactions 654 

between in vivo and in silico experiments are necessary to identify the most fruitful working 655 

hypotheses. 656 
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Figure Legends 925 

Fig. 1 The central component of the Guytonian paradigm; pressure natriuresis and the long-term 926 

control of arterial pressure. A: The acute pressure natriuresis relationship. The long-term set-point 927 

of arterial pressure is predicted to be at the intercept of the pressure natriuresis relationship (red) 928 

and daily sodium intake (blue). The critical attribute of this system is its (theoretical) ‘infinite gain’. 929 

That is, changes in arterial pressure are predicted to lead to changes in sodium excretion, which in 930 

turn lead to changes in extracellular fluid volume that return arterial pressure to its equilibrium 931 

point.  B: The chronic pressure natriuresis relationship (solid red line). Changes in sodium intake 932 

(blue dashed lines for low, moderate and high salt intake) alter the pressure natriuresis relationship 933 

(red dashed lines for low, moderate and high salt intake) because they alter the neurohumoral 934 

influences on renal excretory function (e.g. the renin-angiotensin-aldosterone system, renal 935 

sympathetic drive, and atrial natriuretic peptides). Consequently, arterial pressure can remain 936 

relatively stable in the face of large changes in sodium intake, at least in so-called ‘salt-resistant’ 937 

individuals. Figures are modified from (47). 938 

 939 

Fig. 2 Progressive changes in hemodynamics in an anephric female patient during volume overload. 940 

Redrawn from (17). 941 

 942 

Fig. 3 The ‘Guytonian pathway’ to hypertension during infusion of norepinephrine, or some other 943 

powerful vasoconstrictor stimulus that also shifts the pressure natriuresis relationship to higher 944 

arterial pressure. Initially, the vasoconstrictor stimulus may increase total peripheral resistance to 945 

such an extent that the increase in arterial pressure exceeds that required to compensate for the shift 946 

in the pressure natriuresis relationship (1 to 2 in panel A). The resultant natriuresis causes 947 

contraction of extracellular fluid volume (panel B) and so reduced cardiac output. Consequently, 948 

arterial pressure falls until a new equilibrium point (3 in panel A) is reached. Redrawn from (48). 949 

  950 
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Fig. 4 Extrinsic, but not intrinsic factors can reset the pressure natriuresis relationship. The panels 951 

on the left show a schematic representation of the findings of Seeliger and colleagues (100). Renal 952 

perfusion pressure was reduced bilaterally by 20% of each dog’s control arterial pressure for a four 953 

day period. This resulted in sodium retention and increased arterial pressure, but a new equilibrium 954 

was reached (red line). Inhibition of angiotensin converting enzyme (ACEI) prevented sodium 955 

retention and increased arterial pressure in response to bilateral servo-control of renal artery 956 

pressure (black line). Clamping the renin-angiotensin-aldosterone system by intravenous infusion of 957 

low doses of angiotensin II (AngII) and aldosterone (Aldo), along with ACEI, resulted in continued 958 

increases in arterial pressure and total body sodium during bilateral servo-control of arterial 959 

pressure (blue line). Panels on the right are a schematic representation of the findings of Mizelle 960 

and colleagues (82). They reduced perfusion pressure to only one kidney, by ~10 mmHg, so the 961 

other kidney was exposed to systemic arterial pressure. Importantly, in this experiment both kidneys 962 

were exposed to the same neuro-humoral (extrinsic) influences. In this experiment, sodium 963 

excretion by the servo-controlled kidney (red line) was reduced for the duration of the experiment, 964 

while that to the contralateral kidney was increased (black line), presumably reflecting the level of 965 

perfusion pressure each was exposed to. Figures were redrawn and modified from those in the 966 

original reports (82, 100).   967 

 968 

Fig. 5 The critical difference between Dahl salt-sensitive rats and their salt-resistant counterparts is 969 

the vascular response to increased salt intake. The figure is a schematic representation of the 970 

findings of Greene and colleagues (44). A high salt diet led to volume expansion and increased 971 

cardiac output (CO) in both salt-sensitive (red) and salt-resistant (blue) rats. Mean arterial pressure 972 

(MAP) increased in salt-sensitive rats due to an inadequate compensatory reduction in total 973 

peripheral resistance (TPR). 974 

 975 

 976 
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Fig. 6 Three lines of defense against salt-sensitive hypertension. Increased salt intake leads to 977 

expansion of extracellular fluid volume, but this is limited by altered neurohumoral control of renal 978 

excretory function, so that homeostasis of total body sodium is re-established, albeit at a higher 979 

level (first line of defense). But even when cardiac output increases, altered neurohumoral control 980 

of resistance vessels can prevent an increase in arterial pressure through a compensatory reduction 981 

in total peripheral resistance (second line of defense). In the face of failure of these mechanisms, 982 

pressure natriuresis limits subsequent increases in arterial pressure (third line of defense). 983 
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