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Supersymmetric asymptotic safety is not guaranteed
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Abstract
It was recently shown that certain perturbatively accessible, non-supersymmetric gauge-Yukawa

theories have UV asymptotic safety, without asymptotic freedom: the UV theory is an interacting

RG fixed point, and the IR theory is free. We here investigate the possibility of asymptotic safety

in supersymmetric theories, and use unitarity bounds, and the a-theorem, to rule it out in broad

classes of theories. The arguments apply without assuming perturbation theory. Therefore, the

UV completion of a non-asymptotically free susy theory must have additional, non-obvious degrees

of freedom, such as those of an asymptotically free (perhaps magnetic dual) extension.
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I. INTRODUCTION

The discovery of the Higgs crowns the Standard Model as one of the most successful

theories of Nature. Researchers have been desperately seeking hints of possible BSM exten-

sions of the Higgs sector. Gauge-Yukawa theories are backbone of the Higgs sector, and it

is therefore crucial to thoroughly investigate all possibilities for their dynamics.

Recently, a surprise was found. One can consider a gauge theory with too many matter

fields to be asymptotically free in the UV, so it is instead infrared free. Perturbation theory

suggests that the theory is UV unsafe (the Landau pole), requiring a UV cutoff or completion.

A Yukawa interaction for the matter of this theory, on it’s own, would also be IR-free and UV-

unsafe. Taken together, however, at least for a range of colors and flavors, the individually

unsafe gauge and Yukawa interactions can cure each other and combine together to lead

to a perturbatively accessible, fully interacting, non-supersymmetric, RG fixed point in the

ultraviolet [1]. See [1, 2] for the possibility that IR-free gauge and matter theory could have

a UV fixed point even without the Yukawa interactions, albeit beyond perturbation theory.

The phenomenon of UV asymptotic safety opens the door to new model building pos-

sibilities [3, 4], and provide a novel playground to explore, e.g. the vacuum structure [5]

and the thermodynamics of a new kind of matter [6]. The theories are different from the

time-honoured case of complete asymptotic freedom [7–11], where the interactions instead

shut off in the UV; see [12, 13] for recent studies.

Supersymmetry provides additional tools to explore the phases of gauge theories, beyond

perturbation theory. For example, in N = 1 duals, two UV asymptotically free theories

can RG flow to the same IR SCFT, or an IR-free theory can be UV completed to an

asymptotically free UV dual, with different gauge group and matter content [14] (see e.g.

[15] for a review). In this latter case, the IR free theory avoids the Landau pole by completing

to a different free theory in the UV; this is not the same as interacting asymptotic safety.

It is interesting to investigate if asymptotic safety can also occur in supersymmetric theo-

ries – both for model building and for better understanding the phases of gauge theories. We

will here rule out asymptotic safety for broad classes of supersymmetric theories, including

N = 1 cousins of the nonsupersymmetric asymptotically safe theories [1]. Our methods and

results do not rely on perturbation theory. In some cases, a hypothetical asymptotically

safe UV fixed point would violate unitarity bounds [16], and in other cases it would violate

the 4d a-theorem [17–23], which can be explored in the susy context via the connection to

’t Hooft anomalies for the superconformal R-symmetry [24–31].

The outline of this paper is as follows. In Section II, we summarize the perturbatively

accessible, non-supersymmetric asymptotically safe case [1]. In Section III, we summarize

the main susy-based methods that we will use in the following sections. In Section IV, we

consider the directN = 1 cousin of the theory considered in [1], based onN = 1 SQCD above

the asymptotic freedom bound, Nf > 3Nc. We show that there cannot be a UV-interacting

RG fixed point, neither with added gauge singlets Yukawa-coupled to the matter, nor for

SQCD without the gauge singlets. In Section V we apply susy-based methods to rule out

asymptotically safe UV fixed points for theories with more general gauge group and matter

content. We offer our conclusions in Section VI.
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II. N = 0 ASYMPTOTIC SAFETY, BRIEF REVIEW OF [1]

Consider a massless theory with SU(Nc) gauge group and Nf , SU(Nc) fundamental,

Dirac fermions qD; we also write them as Weyl fermions q and q̃. The theory has a global

SU(Nf )×SU(Nf )×U(1)B symmetry, and we include Nf ×Nf complex scalar fields, which

are gauge singlets. The matter content is summarized in Table I. The Lagrangian is

L=− 1
4g2

TrF µνFµν + Tr
(
qD i /D qD

)
+ Tr (∂µH

† ∂µH)

+yTr (q̃Hq + h.c.)− hTr (H†H)2 − v (TrH†H)2 , (2.1)

and Tr indicates the appropriate trace over the suppressed color and flavor indices. The

classical theory is scale invariant with four marginal couplings: the gauge coupling g, the

Yukawa coupling y, the quartic scalar couplings h and the double-trace scalar coupling v.

In the quantum theory, it is convenient to introduce

αg =
g2Nc

(4π)2
, αy =

y2Nc

(4π)2
, αh =

hNf

(4π)2
, αv =

v N2
f

(4π)2
, (2.2)

with appropriate powers of Nc and Nf in the normalization to allow for the Veneziano limit

of large Nc and Nf , holding fixed

x ≡ Nf

Nc

≡ 11

2
+ ε. (2.3)

The one-loop beta function is asymptotically free for ε < 0, and infrared free for ε > 0.

In this notation, the usual Banks-Zaks [32] limit is ε infinitesimally negative, whereas [1]

instead considers ε infinitesimally positive.

The relevant beta functions βi(αg, αy, αh, αv) ≡ ∂tαi for each coupling i = (g, y, h, v)

of the theory (2.1) have been obtained in [33] in dimensional regularization using [34–37].

The point αi = 0 is IR attractive, since none of the couplings are asymptotically free. As

shown in [1], the beta functions vanish at non-zero couplings, compatible with classical and

Fields [SU(Nc)] SUL(Nf ) SUR(Nf ) UV (1)

Aµ Adj 1 1 0

q 1 1

q̃ 1 −1

H 1 0

Table I: Field content of the N = 0 theory and field. The Aµ are the gauge fields, q and q̃ are Weyl

spinors in the (1/2, 0) Lorentz representation, and the H are scalars.
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quantum scalar potential stability [5], given by

α∗g = 26
57
ε+ 23(75245−13068

√
23)

370386
ε2 +O(ε3)

α∗y = 4
19
ε+

(
43549
20577

− 2300
√
23

6859

)
ε2 +O(ε3)

α∗h =
√
23−1
19

ε+O(ε2) ,

α∗v = 1
19

(−2
√

23 +
√

20 + 6
√

23) ε+O(ε2) .

(2.4)

The phase diagram of the theory was established in [1] at the next-to-leading order accuracy

and extended to the next-to-next leading order in [5].

See Fig. 1 of [5] for the RG trajectories of the couplings (αg, αy, αh, αv); the beta functions

are all positive for αi=g,y,h,v < α∗i . The interesting RG trajectory goes from the interacting

fixed point at αi = α∗i in the UV, and ends at the free theory, αi = 0 in the IR. Along this

one-dimensional line of physics, in the 4d αi space, the Yukawa and scalar quartic couplings

are all determined in terms of the running gauge coupling. This dynamical relation among

the couplings is dictated by the dimension of the critical surface. In the UV, the gauge

coupling approaches the interacting, asymptotically safe, UV fixed point by a power-law in

the RG scale

lim
µ/µ0→∞

αg(µ)→ α∗g + (αg(µ0)− α∗g)
(
µ

µ0

)−104
171

ε2+O(ε3)

, (2.5)

(see [5] for the all-µ running, in terms of the Lambert function W (µ)).

It would interesting to extend the results beyond the perturbative regime via, for example,

first principle lattice simulations [38–42]. An alternative limit is QCD for fixed Nc and large

Nf where, for the theory without scalars, at leading order 1/Nf , an UV asymptotically safe

fixed point seems also to appear [1, 2]. Supersymmetry provides tools to explore beyond

perturbation theory, as we will discuss in the following sections.

III. SUPERSYMMETRIC RG FIXED POINTS AND RG FLOWS

We focus on theories in d = 4 spacetime dimensions, with N = 1 supersymmetry. A

RG fixed point is an N = 1 superconformal field theory (SCFT), which necessarily has a

conserved U(1)R global symmetry. The U(1)R current is in the same supermultiplet [43]

as the energy-momentum tensor and the supercharge currents; this leads to many useful

exact relations. For a unitary theory, the operators form unitary representations of the

superconformal group, which implies that operator dimensions have various lower bounds.

For example, regardless of supersymmetry, all gauge invariant spin j = j̄ = 0 operators have

the lower bound (generators act with implicit commutators) [16] (see also e.g. [44])

D(O) ≥ 1, D(O) = 1↔ PµP
µ(O) = 0, (3.1)

so the bound is saturated if and only if the operator O is a decoupled, free field. Chiral

primary operators have dimension, D, and superconformal U(1)R charge, R, related by

D(O) =
3

2
R(O). (3.2)
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In particular, using (3.2) for the matter chiral superfields Qi of a supersymmetric gauge

theory relates the matter anomalous dimensions γi to their superconformal U(1)R charge.

D(Qi) ≡ 1 +
1

2
γi(g) =

3

2
R(Qi) ≡

3

2
Ri. (3.3)

The conformal anomaly a of the SCFT is exactly given by the superconformal U(1)R ’t

Hooft anomalies [24, 25] (we rescale the overall normalization factor for convenience)

a(R) = 3TrU(1)3R − TrU(1)R. (3.4)

For a gauge theory with gauge group, G, and matter fields Qi, in representations ri of G,

the ’t Hooft anomalies evaluate to

a(Ri) = 2|G|+
∑
i

|ri|a1(Ri), (3.5)

where |G| = |rAdjoint| is the number of generators of the gauge group, |ri| is the dimension

of the ri representation, Ri ≡ R(Qi) is the U(1)R charge of Qi, and we define the function

a1(R) ≡ 3(R− 1)3 − (R− 1) . (3.6)

Among all possible, conserved U(1)R symmetries, the superconformal U(1)R is that which

maximizes a(R) [26]. For example, for a chiral superfield X of charge R(X) = R (so

R(ψX) = R − 1), the function is a(R) = a1(R) in (3.6). The function a1(R) has a local

maximum at the free-field value, R = 2
3
, and a local minimum at R = 4

3
. Indeed a1(R) =

−a1(2 − R), so a1(R = 1) = 0, fitting with massive operators contributing a = 0. Note

also that a1(R) is below the local maximum, a1(R) < a1(R = 2/3), for all R in the range

R < 5/3 (see [48] for a related conjectured phase diagnostic). For unconstrained, i.e. free

chiral superfields, we maximize the function (3.6) to get R∗ = 2/3, the free-field value of

the R-charge, corresponding to D(X) = 1. With interactions, we maximize a(R) subject to

the constraint that the interactions do not violate the R-symmetry. Accidental symmetries

affect a-maximization [28](see also e.g. [29]), which if present leads to a larger value of a.

Away from a RG fixed point, the beta functions are proportional to how the couplings

break the superconformal U(1)R. The gauge coupling beta function is proportional to the

ABJ triangle anomaly of the U(1)R current with two G gauge fields, i.e. Tr G2U(1)R:

β(g) = − 3g3

16π2
f(g2)Tr G2U(1)R, Tr G2U(1)R = T (G) +

∑
i

T (ri)(Ri − 1). (3.7)

Our normalization for the quadratic Casimir of the adjoint T (G) is T (SU(Nc)) = Nc, so the

fundamental representation of SU(N) has T (rfund) = 1
2
. The function f(g2) = 1 +O(g2) is

scheme dependent (and presumed positive). Using (3.3) gives the statement of the NSVZ

exact beta function (NSVZ also have a favored, specific scheme choice for f(g2)) [45]:

β(8π2g−2) = f(g2)(3T (G)−
∑
i

T (ri)(1− γi(g))). (3.8)

For superpotential terms Wy, the holomorphic coupling y prefactor has beta function

β(y) =
3

2
y(R(Wy)− 2). (3.9)
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Fields [SU(Nc)] SUL(Nf ) SUR(Nf ) UV (1) U(1)R

Wα Adj 1 1 0 1

Q 1 1 1− Nc
Nf

Q̃ 1 −1 1− Nc
Nf

H 1 0 2Nc
Nf

Table II: The N = 1 superfield content, cousins of the theory (I). Wα is the gauge vector superfield,

Q and Q̃ are the matter chiral superfields, and H are gauge singlet chiral superfields.

IV. SUPERSYMMETRIC QCD WITH Nf > 3Nc IS UNSAFE

As a first class of examples, we consider the N = 1 cousin of the theory (2.1), with

superfield content and quantum symmetries summarized in Table II. The superpotential is:

W = yTrQHQ̃ , (4.1)

with y the Yukawa coupling and Tr contracts the implicit gauge and flavor indices. The

quartic in H interactions in (2.1) are incompatible with holomorphy of the superpotential

(and the SU(Nf )× SU(Nf ) global symmetry does not allow for a holomorphic variant).

Taking Nc and Nf large, and properly rescaling the couplings as

αg ≡
g2Nc

(4π)2
, αy ≡

y2Nc

(4π)2
, (4.2)

the two loops beta functions are, dropping terms subleading in 1/Nc,

β(αg)≈−2α2
g

[
3− Nf

Nc

+

(
6− 4

Nf

Nc

)
αg + 2

N2
f

N2
c

αy +O(α2)

]
,

β(αy)≈ 2αy

[(
2
Nf

Nc

+ 1

)
αy − 2αg +O(α2)

]
. (4.3)

To connect with (3.8) and (3.9) note that they give (using (3.3), and R(W ) = R(H)+2R(Q))

β(αg) = −2α2
gf(αg)

(
3− Nf

Nc

(1− γQ)

)
, β(αy) = αy(γH + 2γQ), (4.4)

and to the relevant order (dropping O(α2
g,y) and O(1/Nc)) we have

f(αg) ≈ 1 + 2αg, γQ ≈ −2αg + 2
Nf

Nc

αy, γH ≈ 2αy (4.5)

For Nf > 3Nc, the theory is not asymptotically free, and αg = αy = 0 is IR-attractive.

We first note that there cannot be a perturbative, interacting, UV-safe fixed point. Define

ε ≡ Nf/Nc − 3, with Nf and Nc such that 0 < ε � 1. The condition β(αy) = 0 then gives

αy ≈ 2
7
αg, and then β(αg), to leading order in small ε, is

β(αg) ≈ 2α2
g

[
ε+

6

7
αg

]
, (4.6)
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so the relative sign is such that, for positive ε, β(αg) 6= 0 unless αg = 0.

We now argue, including at the non-perturbative level, that there cannot be a UV-safe

interacting SCFT. We assume that the superconformal U(1)R is not emergent or accidental,

in which case it must be the anomaly free R-symmetry that is preserved by the superpoten-

tial, i.e. the U(1)R given in Table II; this ensures that the beta functions (4.4) vanish. The

dimension of the operators H are then determined to be

D(H) =
3

2
R(H) = 3

Nc

Nf

. (4.7)

These statements are all correct for the IR SCFT fixed point when Nf < 3Nc. But, for

Nf > 3Nc, (4.7) would violate the unitarity bound (3.1). This is impossible, since the

original theory is unitary. There thus cannot be an interacting UV SCFT for Nf > 3Nc.

It follows from Seiberg duality [14] that the Nf > 3Nc theory can actually be UV-

completed to an asymptotically free dual, rather than an interacting, UV-safe, SCFT.

A potential loophole in the above argument is that apparent unitarity bound violations

mean that the corresponding field – in this case H – is instead a free, decoupled field. So we

set αy = 0, which is equivalent to considering SQCD without the H singlets. We now argue

that SQCD without the H fields also cannot have a UV safe RG fixed point for Nf > 3Nc.

Consider first the perturbative regime, ε ≡ Nf/Nc − 3, with 0 < ε � 1. Taking αy = 0 in

(4.3) gives

β(αg) ≈ 2α2
g [ε+ 6αg] ; (4.8)

so β(αg) 6= 0 for ε > 0 and αg 6= 0, i.e. there is no perturbative UV-safe fixed point.

We now rule out asymptotic safety beyond perturbation theory. First note that, for

αg 6= 0, having β(αg) = 0 requires that the superconformal U(1)R be that in Table II, so

DSCFT (Q) = DSCFT (Q̃) ≡ 1 +
1

2
γQ =

3

2
RSCFT (Q) =

3

2

(
1− Nc

Nf

)
. (4.9)

The gauge invariant chiral operators, the mesons M = QQ̃ and baryons B = QNc have

DSCFT (M) =
3

2
RSCFT (M) = 3

Nf −Nc

Nf

,

DSCFT (B) =DSCFT (B̃) =
3

2
RSCFT (B) =

3

2
Nc
Nf −Nc

Nf

. (4.10)

These expressions are indeed correct for the IR fixed point of SQCD in the conformal window

[14] 3
2
Nc < Nf < 3Nc. Extrapolating to the hypothetical, UV fixed point for Nf > 3Nc,

these expressions would apply, and the operators would satisfy the unitarity bound (3.1).

We therefore rule out a hypothetical, interacting UV fixed point for Nf > 3Nc SQCD on

different grounds, by noting that it would violate the 4d a-theorem [17, 22, 23],

∆a ≡ aUV − aIR > 0. (4.11)

If the hypothetical UV-safe fixed point exists, its a would be given by (3.5) with the inter-

acting, anomaly free U(1)R, i.e. RSCFT (Q) = (Nf −Nc)/Nf ,

ahypothetical UV = aSCFT = 2(N2
c − 1) + 2NfNca1(R = 1− Nc

Nf

) , (4.12)
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with a1(R) the function (3.6). There would be a RG flow from the hypothetical UV SCFT

to the IR-free theory with αg = 0 and thus R(Q) = 2/3:

aIR = afree = 2(N2
c − 1) + 2NfNca1(R = 2/3) = 2(N2

c − 1) +
4

9
NfNc . (4.13)

So this RG flow would violate the a-theorem (4.11):

aUV−safe − aIR−free = 2NcNf

(
a1(R = 1− Nc

Nf

)− a1(R = 2/3)

)
< 0, (4.14)

where the inequality is evident from graphing a1(R) in (3.6) since, for 3Nc < Nf < ∞, the

R-charge R(Q) = 1 − Nc

Nf
is in the range 2

3
< R(Q) < 1, and a1 in that range is below its

local maximum a1(R = 2/3). Given the wrong sign (4.14), we conclude that there cannot

be an interacting, UV safe fixed point. Instead, IR-free electric SQCD theory can be UV-

completed to an asymptotically free magnetic dual. For SQCD in the conformal window, the

identification of the endpoints is opposite from that in (4.14) (free in the UV and interacting

in the IR). Both those RG flows of course do satisfy the a-theorem [24, 25].

V. SUSY THEORIES WITH GENERAL GAUGE GROUP AND MATTER

We first consider susy gauge theories without superpotential terms, Wtree = 0. The exact

beta function for the gauge coupling is as in (3.7), and the condition β(g) = 0 is equivalent

to the condition that the superconformal RSCFT(Qi) ≡ RSCFT,i is anomaly free:

β(αg) = 0 ↔ T (G)+
∑
i

T (ri)(Ri−1) = 0 ↔ 3T (G)−
∑
i

T (ri)(1−γQi
) = 0. (5.1)

So not asymptotically free has: 3T (G)−
∑
i

T (ri) < 0. (5.2)

It is then impossible to satisfy (5.1) perturbatively, since all perturbative γQi
are negative.

Generalizing the argument of the previous section, we can moreover rule out UV-safe

SCFTs in the range (5.2), without relying on perturbation theory. The RG flow from the

hypothetical, asymptotically safe SCFT in the UV, to the free αg = 0 theory in the IR,

would violate the a-theorem. Using (3.5), the hypothetical flow has

∆a = aUV−safe − aIR−free =
∑

all matter Qi

|ri| (a1(RSCFT,i)− a1(Ri = 2/3)) . (5.3)

The general expression for RSCFT,i follows from a-maximization [26], i.e. maximizing

a1(RSCFT,i) over the Ri, subject to the constraint in (5.1). This gives [27],

RSCFT,i = 1− 1

3

(
1 +

λT (ri)

|ri|

)1/2

, (5.4)

where the Lagrange multiplier is determined via (5.1). In the asymptotically free case, this

yields λ = (g2∗/2π
2) +O(g4∗) (the higher order terms are scheme dependent) [27, 30, 31]. In

9



the non-asymptotically free case (5.2), on the other hand, the constraint leads to λ < 0, and

all RSCFT,i would be in the range 2/3 < Ri < 1. It is then clear from the graph of a1(R)

that, since Ri < 5/3, every term in (5.3) is negative, a1(RSCFT,i) − a1(Ri = 2/3) < 0, the

flow from the hypothetical, UV-safe fixed point would violate the a-theorem. So susy gauge

theories with W = 0 cannot be interacting UV-safe, and IR free, without some new element

(for example, some accidental symmetry in the interacting UV theory).

We now consider adding superpotential terms. The upshot of a-maximization is that the

microscopic fields have superconformal R-charges given by [30]

R(Qi) = 1− εi
3

√
1− 2γ

(1)
i (λ), (5.5)

where εi = ±1 (see [30, 49] for curiosities related to εi sign changes in RG flows) and

γ
(1)
i are linear in the λ and related to the one-loop anomalous dimensions. The values

of RSCFT (Qi) are obtained from (5.5) by solving for the λSCFT such that all R-charge

conservation constraints are satisfied, i.e. all gauge groups G have TrG2U(1)R = 0 and

all Wy have R(Wy) = 2, i.e. all beta functions (3.7) and (3.9) vanish. Note that all (5.5)

yield RSCFT,i < 4/3, and thus all a1(R = RSCFT,i) < a1(R = 2/3). The RG flow from a

hypothetical UV-safe SCFT, to the IR-free theory, would have ∆a given by (5.3), which

again would violate the a-theorem because every term in the sum has the wrong sign.

Also, as in the examples (4.1), gauge singlets H coupled to composite operators O, of

classical dimension Dcl(O) = 2, leads to a unitarity bound problem for hypothetical UV-

safe SCFTs. Because the theories are not asymptotically free, the condition (5.1) leads to

RSCFT(O) > Rfree(O), and then R(W ) = 2 requires R(H) < 2/3; then DUV−safe = 3
2
R(H) <

1, violating the unitarity bound. The H fields must instead remain free; this fits with the

fact that there is no interacting, UV-safe SCFT after all.

Note that N = 4 supersymmetric theories, deformed to N = 1 by making the cubic

superpotential coupling, y, differ from the gauge coupling, g, have RG flows somewhat

similar to, but crucially different from, asymptotic safety. Setting either y = 0 or g = 0, the

other coupling is marginally irrelevant. With both y 6= 0 and g 6= 0, there are RG flows with

an IR-attractive line of interacting SCFTs for all g = y; the UV limit of the flows for g 6= y

has Landau poles. The adjoint chiral superfields Φi=1,2,3 have R(Φi) = 2/3 for all g = y

SCFTs (the Φi are not free, because they are not gauge invariant). These examples do not

contradict our general arguments. Their one-loop beta function in (5.2) are zero, and that

there is a line of fixed points, rather than a RG flow, between the interacting (g = y 6= 0)

and free (g = y = 0) theories, all with equal value of a. And there is no UV SCFT, only IR

SCFTs. There are many similar N = 1 SCFT examples, along the lines of [47].

Another example of a non-asymptotically free theory is N = 1 gauge theory with the

three adjoints of N = 4, plus Nf flavors of matter in the fundamental (as is sometimes

considered in the context of AdS/CFT, via added D7 branes). By our general argument,

such theories cannot1 have a UV-safe SCFT without violating the a-theorem.

1 This fits with the dual gravity analysis in [50]. KI thanks David Mateos for pointing out this reference.
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VI. CONCLUSIONS

We investigated the nonperturbative gauge dynamics of N = 1 super QCD both with,

and without, gauge singlet (dual meson) fields H, in the Nf , Nc regime where asymptotic

freedom is lost. Unlike the non-supersymmetric case [1], the H fields do not help to achieve

asymptotic safety. Instead, the H fields would necessarily violate a unitarity bound in a

hypothetical, asymptotically safe SCFT unless their Yukawa coupling is zero and they are

decoupled. We showed that the theory without the H fields also cannot have a UV-safe

SCFT, because it would violate the a-theorem. We used a-maximization to show that the

same issues arise for general gauge groups and matter content.

We arrive at the interesting conclusion that there is a fundamental obstacle to supersym-

metric asymptotic safety. Any sensible, UV completion of unsafe IR theories must include

many additional degrees of freedom, e.g. those of an unknown, asymptotically free dual.

Note added in revised version: We would like to thank Steven Martin and James

Wells for bringing their relevant paper [51] to our attention. Although there is considerable

overlap, our paper contains additional methods – for example, using a-maximization, which

had not yet been developed at the time [51] was written. Intriguingly, [51] suggested a

possible way to construct superconformal UV fixed point theories via superpotential terms.

To quote an example from [51], consider SU(Nc) gauge theory with Nf fundamental flavor

chiral superfields Q, Q̃, two adjoints chiral superfields A1 and A2, and a superpotential

W = A1QQ̃ + A3
1. The theory is IR free for Nf > Nc. A hypothetical UV interacting fixed

point would have R(A1) = R(Q) = R(Q̃) = 2/3, and R(A2) = (Nf +Nc)/3Nc, which would

satisfy aUV > aIR if R(A2) > 5/3, i.e. if Nf > 4Nc. We subjected this example to a few

additional consistency conditions, including those in this paper and also e.g. verifying that

a/c satisfies the inequalities of [52]. We have not yet found any inconsistency to definitively

rule out the hypothetical UV-safe SCFT for Nf > 4Nc. We note however that replacing the

adjoint A1 with a gauge singlet S1 would not give an interacting SCFT: in that case, since

S1 is a gauge invariant chiral operator, R(S1) = 2/3 would imply ∆(S1) = 1 and then S1

would necessarily be a free-field, incompatible with the superpotential coupling having an

interacting fixed point of its beta function.
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