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ABSTRACT: Cable supported bridges may become aerodynamically unstable at low wind velocities if they are not designed 
properly. Increasing spans generally reduces the critical flutter wind velocity due to a reduction in the torsional-to-vertical 
frequency ratio of the bridge deck. Within flat plate aerodynamics it is though well known that classical flutter cannot occur if 
the torsional natural frequency is lower than the vertical. In this paper, free vibration tests of a section model composed of two 
boxes each with a depth-to-width ratio	�: � = 1: 12 is analyzed at torsional-to-vertical frequency ratios above and below unity. 
Classical flutter did not occur for the twin boxes having torsional-to-vertical frequency ratio below 1. These results support the 
non-flutter design principle. At a frequency ratio of approximately 1.20 the twin boxes and a reference flat plate model 
having	�: � = 1: 24 is compared. The twin boxes obtained a higher critical velocity than the reference flat plate model. 
Aerodynamic Derivatives identified from the tests are compared for the twin boxes and the flat plate. Negative aerodynamic 
torsional stiffness is less pronounced for the twin boxes compared with the flat plate while the aerodynamic torsional damping is 
positive and larger. Aerostatic moment coefficients of the twin boxes were identified from the free vibration tests at different 
angles of attack close to the critical torsional divergence velocity. The slope of the moment coefficients identified for the twin 
boxes at different angles of attack is considerable below that of a flat plate. Therefore the critical velocities for torsional 
divergence may be expected to be higher for twin boxes compared with flat plates. This may pave the way for aerodynamically 
and aerostatically stable twin bridge designs with low torsional frequencies in the future. 
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NOMENCLATURE 

	, ℎ   Torsional and vertical degrees of freedom.  

� , ��  Torsional and vertical angular frequency 

� , �� Torsional and vertical frequency 

� , �� Torsional and vertical damping ratios 

� , �� Torsional and vertical stiffness 

�� , �� Modal mass – and mass moment of inertia per unit length 

�, � Frequency in Hz and angular frequency in rad/s. 

�� Torsional-to-vertical frequency ratio 

� Density of air 

�, �,	L, Z Depth, width, length and gap of section model 

�� Spring eccentricity 
t Time 

���	�	  Coefficient for the aerodynamic moment 

��, � , �! Aerodynamic moment, drag and lift force 

��′ Slope of the aerodynamic moment coefficient curve at		 = 0. 

$%∗, '%∗	  Aerodynamic derivatives (AD’s) 

(, �) Wind velocity and along wind turbulence intensity 

(*  Critical wind velocity for torsional divergence 

(+  Reduced non-dimensional wind velocity 

(,!  Reduced critical wind velocity for classic flutter 

U./,0 Reduced critical wind velocity for torsional divergence 

(1, (2	 Highest observed reduced non-critical wind velocity and smallest observed reduced critical wind velocity 

(3+  Reduced critical wind velocity for either flutter or torsional divergence 



2 
 

 

14th International Conference on Wind Engineering – Porto Alegre, Brazil – June 21-26, 2015 
 

1 INTRODUCTION 

The design procedures implemented in bridge engineering after the dramatic collapse of the first Tacoma Narrows Bridge in 
1940, includes the investigation of various aeroelastic phenomena, e.g. flutter of the bridge deck in its final stage. Bridge deck 
flutter is a dynamic instability caused by the motion induced wind load of the bridge deck when it is subjected to cross winds. 
The displacements are characterized by harmonic angular displacements, which increase for each oscillation cycle and 
eventually lead to structural failure. 

The coupling of torsional and vertical modes of long span bridges with a single bridge deck has been known to cause dynamic 
instability in terms of classical flutter since the Tacoma Narrows investigations, see e.g. Bleich, McCullough, Rosecrans, and 
Vincent (1950). The torsional stiffness of the bridge deck girder does usually ensure that the torsional frequency is considerably 
higher than the vertical frequency and thus postpones the onset of flutter to higher wind velocities. The effect of the torsional 
deck stiffness decreases when the span increases. For very long bridges this means that the torsional and vertical modes become 
very closely spaced. As the aerodynamic stiffness tends to decrease the torsional frequency in wind, the aerodynamic coupling 
between vertical and torsional modes is unavoidable. However, if the torsional still air frequency is below the vertical still air 
frequency, the modes will be decoupled with increasing frequency separation at higher wind velocities. 

At the same time aerostatic instability in terms of torsional divergence must be prevented by sufficient torsional stiffness and 
an aerodynamic design that seeks to decrease the slope of the static aerodynamic torsional moment coefficient	��′.  

 
 

 

Figure 1: Section model cross sectional properties 

 
Classical flutter was first observed in the aerospace industry, where the critical flutter wind velocity for a theoretical thin 

airfoil was derived by Theodorsen (1934). Bleich et al. (1950) adopted this approach to Bridge decks. Bridge deck flutter was 

later distinguished from airfoil flutter with the introduction of 6 bridge deck aerodynamic derivatives (AD’s), $%∗, '%∗ where	4 =
1 5 3 by Scanlan and Tomko (1971). The AD’s determine the change in stiffness and damping due to the motion induced wind 
load which may lead to flutter. In the last decades, much effort has been put into the identification of 8 �4 = 1 5 4� and 
eventually 18 AD’s. Several authors, e.g. and Chowdhury and Sarkar (2003), introduced techniques to identify the 18 AD’s for 
bridge decks, but also stressed the difficulties in doing so. System identification algorithms using least squares techniques have 
also been developed to identify the AD’s, see e.g. Ding, Zhou, Zhu, and Xiang (2010) and Gu, Zhang, and Xiang (2000). 

The effect of gap width for twin boxes has been studied by Qin, Kwok, Fok, Hitchcock, and Xu (2007). They found that the 
AD’s for twin boxes were sensitive to the gap width, especially torsional aerodynamic damping and stiffness,	'2∗  and	'7∗  
respectively. They reported that a gap width of 16% of the total section width increases the positive torsional aerodynamic 
damping compared to zero gap width. A gap width of 35% offered no further improvement. The effect of torsional-to-vertical 
frequency ratio for twin boxes was studied by (Qin, Kwok, Fok, & Hitchcock, 2006). Deviations were found for '2∗  and '7∗ . 
However, no experiments with torsional-to-vertical frequency ratios below 1 were reported. 

A mathematical description of the AD’s effect on the motion-induced wind load of a bridge deck is given in the literature; see 
e.g. Dyrbye and Hansen (1997). If the sign of '2∗  and '7∗  are identical with those of a flat plate, classical flutter is prevented if 
the frequency ratio is below a certain limit determined by the structural damping. For zero structural damping, this limit is unity 
when using the theoretical flat plate AD’s. In reality, i.e. with structural damping present, the limit will typically be 
approximately 1.1. Torsional flutter is prevented if the '2∗  values are all negative.  
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Richardson (1981) published the idea of twin suspension bridges with frequency ratios below unity. He indicated that twin-
deck configurations are the most favorable for long span bridges and proposed a twin bridge with four main cables and a 
frequency ratio below unity as an economical and aerodynamically stable alternative to the single box girder suspension bridges. 
A twin box suspension bridge may however also be obtainable with only two main cables. Bartoli et al. (2008) tested a twin box 
configuration with torsional-to-vertical frequency ratios below 1. Classical flutter was not observed in the reported section 
model tests and torsional divergence did not occur until very high wind velocities were reached. They made a finite element 
model of a twin bridge configuration having two main cables and the deck external to the cable planes. They reported that the 
torsional-to-vertical frequency ratio was below 1 for the first symmetric and antisymmetric pairs of torsional twisting and 
vertical bending mode shapes. A similar design of a twin bridge with decks external to the cables was illustrated in Walshe and 
Wyatt (1992), but they did not report results from finite element models or wind tunnel tests.  

Classical flutter can only occur between torsional and vertical modes of similar shape. Some of the present authors presented a 
detailed study of the mode shape similarity and the respective torsional-to-vertical frequency ratios between all possible 
combinations of the first 5 torsional and vertical modes of a twin bridge spanning 3700m in Andersen, Sahin, Laustsen, Lenius, 
and Røssel (2014). It was concluded that classical flutter is not likely to occur for modes of higher order if the torsional-to-
vertical frequency ratio between the first symmetric modes is below 1. 

Larsen and Larose (2015) wrote that a flutter-free design can be obtained for long span bridges if the torsional natural 
frequency is lower than the vertical bending natural frequency, but suggested that further insight is needed in relation to e.g. 
torsional divergence before this design principle can mature. 

For the theoretical flat plate AD’s, there is no solution to the critical flutter wind velocity for frequency ratios below unity. 
Some of the present authors investigated a single box �: � = 1: 10 with �� deliberately below unity in Johansson, Andersen, 
and Øvre (2013). In wind tunnel tests, the section model performed stable at frequency ratios	�� 	< 	1, while classical flutter 
was observed for frequency ratios above unity as expected.  

    The present study considers a geometrically very simple twin-deck configuration of two sharp edged rectangular boxes 
without railings, but with fairings at the outermost windward and leeward edges. The section model is illustrated in Figure 1.  

It is well known that flat plate sections with frequency ratios above, but close to one are prone to flutter at low wind velocities. 
In this paper we present the twin-deck section model behavior at a range of torsional-to-vertical frequency ratios above and 
below unity. A reference to flat plate aerodynamics is done by testing the twin boxes right beside each other, i.e. with no central 
gap. The cross section used in the test Series is illustrated in Figure 2 and Figure 3. 

 

 

Figure 2: Cross section for test Series 1a and 1b. Dimensions are in 10-3 m. 

 

 
Figure 3: Cross section for test Series 2a, 2b and 2c. Dimensions are in 10-3 m. 

 
The methods used to calculate the critical torsional divergence and classical flutter wind velocities are briefly introduced in 

Section 2.1 and 2.2 respectively. The wind tunnel and the test rig are present in Section 3 together with the methods used in the 
data processing. Time histories at the critical wind velocities, spectra of the model response at different wind velocities, 
aerostatic moment coefficients and the AD’s for the flat plate and the twin boxes are presented in Section 4.  

2 THEORY 

Wind loading of bridges is distinguished in the static wind load and the motion induced wind load. The former may cause 
torsional divergence while the latter may cause flutter. Torsional flutter is known to occur for bluff rectangular section while 
classical flutter is feared because it also occurs for more streamlined sections. Multi-mode flutter may occur for deep sections 
prone to lateral wind forces. 
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 Aerostatic stability 2.1

The static force equilibrium of the aerodynamic moment and the section model is given by Equation (1), where � is the 
torsional stiffness of the section model, � is the density of air, ( is the mean wind velocity, � is the section model width and 
���	� is the aerodynamic torsional moment coefficient at the angle of attack		. 

 

�	 = 12 �(
2�2���	� (1) 

 
In the wind tunnel tests conducted, the torsional stiffness and the torsional displacement was measured. The torsional 

displacement was assumed to be equal to the angle of attack. One twin box section with low torsional stiffness rotated linearly 
with the mean wind velocity. The aerodynamic moment coefficient was identified from these tests according to Equation (2). 
 

���	� = 2�	
�	�2(2 (2) 

The critical torsional divergence velocity occurs due to second order effects of the rotation of the section model. The torsional 
stiffness and the slope of the static aerodynamic torsional moment coefficient,	��′ is determining for the critical divergence 

velocity	(* . A theoretical flat plate has C:′ = ;
2 according to Dyrbye & Hansen (1997). 

 

(* = < 2�
�	�2��′=

1
2
 (3) 

 
As the span of cable supported bridges increases, the torsional stiffness of the girder decreases as these parameters are inverse 

proportional. Therefore, very long span bridges must minimize ��′ and obtain high torsional stiffness by having sufficient 
spacing between the main cables as the torsional stiffness contribution from the girder decreases.  

 Aerodynamic stability 2.2

Cable supported bridges are flexible structures that responds to the wind in a dynamic manner. The motion induced forces 
determines the wind load on the bridge deck due to the displacements and velocity of the bridge deck itself. These loads are 
determined by the AD’s. 

The modal still air mass, damping and stiffness properties facilitate an equation of equilibrium with the motion-induced wind 
loads that are functions of the mean wind velocity, the frequency of oscillation and the section width. The mathematical 
description of this is given in e.g. Dyrbye & Hansen (1997) together with a solution procedure. An alternative solution 
procedure is to formulate the motion induced forces as aerodynamic damping and aerodynamic stiffness respectively. The wind 
velocity is conveniently described by the non-dimensional reduced wind velocity (+ = (/���� where � is the angular 
frequency of the bridge deck at the wind velocity	(. The aerodynamic damping and stiffness described by the AD’s and the 
reduced wind velocity on the right-hand side of the equation of motion is subtracted from the structural damping and structural 
stiffness on the left-hand side. The complex eigenvalues of the characteristic equation may now be evaluated at increasing 
reduced wind velocities until the real part becomes zero. This reduced velocity is the reduced critical flutter wind velocity where 
the absolute value of the damping is zero. At higher wind velocities the damping is expected to become negative and diverging 
oscillations will occur until structural collapse. A MATLAB routine of the latter approach has been implemented to 
calculate	(,! . 

3 EXPERIMENTAL SETUP AND DATAPROCESSING 

The experiments have been performed in the wind tunnel at Svend Ole Hansen ApS in Copenhagen. The wind tunnel is a 
boundary layer tunnel of the open return flow type having a 1.7�	A	1.5� test section and a maximum tunnel velocity 
approximately equal to 12 m/s. The longitudinal turbulence intensity �)  measured was between 1% and 2% in the tests 
conducted. 

Figure 4 shows the experimental model-rig system. Two identical section models with depth-to-width ratios	�:B = 1:12 and 
adjustable gap-to-width ratios spans across the wind tunnel. Outside the wind tunnel, a horizontal bar connected to the model via 
a central rod, is suspended from springs at configurable positions. The spring eccentricity can be adjusted to the desired torsional 
rigidity. Dummy masses at the horizontal bar allows configuration of the mass moment of inertia through their eccentricity to 
the centre of gravity. Hence, the spring and dummy mass configuration determines the torsional natural frequency, and the 
torsional-to-vertical frequency ratio.  

The transient vibration tests were executed with a combined vertical and torsional initial displacement at approximately 

ℎ = 5 ∗ 10D7� and 	 = 0.5 5 1.2° through all the tests. In order to avoid rolling motion, the natural frequency of the rolling 

mode was separated from the vertical and torsional natural frequencies. Furthermore, the initial displacements of the section 
model were carefully adjusted prior to the execution in order to avoid initiating rolling motion. An electromagnetic release 
mechanism was used to release the model simultaneously at the same initial conditions on both side of the tunnel through all 
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tests. Only the torsional and vertical degrees of freedom were of interest. Therefore drag wires prevented the section model from 
lateral motion. 

Four of the performed Test Series are presented here. Table 1 summarizes the physical properties along with the experimental 
results. Test Series 1a is the reference flat plate with a frequency ratio of 1.2. In Test Series 2a a gap width, F, of 13.64% of the 
total section model width, �, was introduced. The model had a torsional-to-vertical frequency ratio almost identical to test Series 
1a. Special end brackets were used which allowed the adjustment of the gap width. Test Series 2b was similar to 2a except that 
the spring eccentricity was reduced in order to obtain a frequency ratio of 0.91. In Test Series 2c the spring eccentricity was 
equal to 2a. The frequency ratio of 0.99 was obtained by increasing the mass and mass moment of inertia using dummy masses.   

 
 

 

 

  

Figure 4: Experimental rig: 1 Wind ward drag wire; 2 Horizontal extension rod; 3 Load cells LC.1 to LC.6; 4 Leeward drag wire 
with horizontal spring; 5 Section model; 6 Vertical spring; 7 Horizontal bar to connect section model with vertical springs. 

 
The dynamic response of the model was recorded through 6 load cells at a sampling rate	�G = 500	$H for 70 seconds. Prior to 
the tests, the load cells were calibrated, using static weights. A linear least squares approximation was used to determine the 
voltage-to-force ratio. A total of 8 parallel connected springs was used to suspend the section model. The spring constant of each 
spring was determined by single degree of freedom tests. The vertical modal stiffness of the section model was the sum of all 

vertical springs. It was determined to	�� = 2016.7	J/�. The corresponding torsional modal stiffness is	� = �� ∗ ��2. The 
modal still air frequencies and damping ratios was determined by free decaying vibration tests in still air. An implementation of 
Prony’s method (de Prony, 1795) in the Abravibe Toolbox for Noise & Vibration Analysis (Brandt, 2011a) was used to 
determine the frequency and damping from the recorded time signals. The Toolbox was slightly modified to allow determination 
of poles with negative damping at the higher wind velocities. The modal mass and modal mass moment of inertia was 
determined from the still air modal stiffness and frequencies.  
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4 RESULTS 

The Test Series are presented in Table 1. All wind velocities are reduced non-dimensional velocities defined by (+ =(/����� where �� is the still air vertical frequency. The highest stable wind velocity observed is denoted (1 while the lowest 
instable velocity observed is denoted	(2. Hence, the reduced critical wind velocity (3+  is in between (1	and (2.  
 

Table 1. Test arrangement for the section model tests 

Series 1a 2a 2b 2c 

KL 1.20 1.22 0.92 0.99 
MN[m] 0.155 0.200 0.125 0.200 
O	PQR 0 0.091 0.091 0.091 
ST [Hz] 1.52 1.52 1.52 1.36 

U [m] 0.576 0.667 0.667 0.667 

V:U 1:24 1:27.8 1:27.8 1:27.8 

WM [kg/m] 13.10 13.08 13.07 16.18 

XM [kg m
2
/m] 0.2184 0.3514 0.2457 0.6638 

YT [%] 0.51 0.22 0.18 1.12 

YZ [%] 1.21 0.74 0.36 1.46 

[ [kg/m
3
] 1.17 1.17 1.17 1.17 

\W′ ]/2	 0.935 0.935 0.935 

_\` 7.94 (7.42) - - 

_aV,b 11.07 17.97 11.23 17.97 

_c 8.09 8.84 10.69 12.03 

_d 8.10 8.92 - - 

 

 Time histories 4.1

Series 1a and Series 2a failed due to classical flutter. The twin boxes in Section 2b rotated at the higher wind velocities. The 
static torsional displacements were used to calculate the moment coefficients. In Series 2c, the twin boxes were neither prone to 
flutter nor large static rotations. The vertical and torsional displacement time histories at the critical or at the highest reached 
wind velocities are presented in Figure 5. 

 Aerostatic moment coefficients 4.2

The torsional displacement of the section model in Series 2b increased from 0.34° at (+ = 8.85 to 1.76° at	(+ = 10.69. The 
increasing angle of attack is illustrated in Figure 6 where 	 is the mean value of the rotation from t=2s to the end of the signal. 
The marks on the graph passed the runs test of stationarity and the reverse arrangement test based on 33 segments of 1s each at a 
0.05 level of significance. The runs and reverse arrangement test is described in e.g. Brandt (2011b). The slope of the fitted line 
is	��′ = 0.935.  

 Spectral Analysis  4.3

In Series 1a and 2a aerodynamic coupling between vertical and torsional modes are clearly observed. In still air, two distinct 
peaks for vertical and torsional motion appear. Between the still air and the critical wind velocities, the peaks come closer 
together. The spectra become noisy due to signature turbulence. At the critical wind velocity, the former distinct peaks are 
merged together in a large peak at a common frequency in-between their still air natural frequencies. In Series 2c the initially 
decoupled still air modes were further separated by the motion-induced wind load. This might be because of the negative 
aerodynamic torsional stiffness associated with	'7∗ . Series 2b has no distinct torsional frequency above	(+ = 8.8. Selected 
transient spectra are presented in Figure 7. 
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Figure 5: Vertical (heave) and torsional (pitch) time histories 

 
 

 

                                     

Figure 6: (Left) Moment coefficients for Series 2b at different angles of attack based on the elastic suspended section model at 
higher wind velocities (6.88 f (+ f 10.69�.	(Right) Examples of recorded torsional time signals at (+ = 9.8 (lower curve) and 

(+ = 10.69 (upper curve) respectively for Series 2b.  
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Figure 7: Selected transient spectra. The solid black line is the transient spectrum of the torsional signal and the solid grey line is 
the transient spectrum of the vertical signal. The units of the ordinate are ghi	j and �	j  for the torsional and vertical signal 

respectively. The axes are scaled equally in all plots. 
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 Aerodynamic Derivatives 4.4

Aerodynamic Derivatives were identified by the Unifying Least Squares method, described by e.g. Ding et al. (2010) and Gu et 
al. (2000). In order to reduce the impact of noise on the signals, a 5 Hz low-pass filter was applied. An initial displacement as 
described in Section 3 was applied to all tests. The signals were cut off when the transient motion of the torsional or vertical 
signal had died out. The torsional signal was amplified by the weighting constant	kl = �2/4. The AD’s are presented in Figure 
8 as functions of the reduced wind velocity (+ = (/����� for the vertical AD’s $1∗, '1∗ , $m∗, 'm∗  and (+ = (/���� for the 
torsional AD’s $2∗, '2∗ , $7∗, '7∗  where �� and �	are the vertical and torsional frequencies at the wind velocity	(.  

Increased scatter were observed at higher wind velocities close to the critical flutter wind velocity. This may be caused by 
non-linear effects due to larger amplitudes and the few cycles of oscillation available at these wind velocities. Increased noise 
levels were seen in Figure 7 at the higher wind velocities. This may be caused by signature turbulence, which also increase the 
uncertainties of the AD’s. 

 

 

Figure 8: AD’s for the reference flat plate and the twin boxes compared with the theoretical flat plate AD’s. 

 Flat plate AD’s (Series 1b),  Twin boxes AD’s (Series 2a),  Fitted polynomial to Flat plate AD’s,   Fitted polynomial 
to Twin boxes AD’s,  Theoretical flat plate AD’s 

 
A least squares polynomial fit, of order n=2, for the AD’s as a function of (+  are presented in Table 2. Several synthetic points 
were inserted in (0; 0) in order to force the curves through that point. Deviations from zero for the coefficients n=0 is considered 
a systematic error because the motion-induced wind load must be equal to zero in still air. Only AD’s below (+ = 7.01 and 
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(+ = 7.45 for the vertical and torsional AD’s in Series 2a and (+ = 7.45 and (+ = 7.73 for the vertical and torsional AD’s in 
Series 1b was used in the curve fitting. Extrapolation was used to predict the AD’s at higher wind velocities.  

Table 2: Polynomial coefficients for the aerodynamic derivatives as a function of the reduced wind velocity 

 Flat plate, Series 1b Twin boxes, Series 2a 

 n=2 n=1 n=0 n=2 n=1 n=0 
$1∗�(+� -0.0313 -0.3884 0.0095 0.0055 -0.3456 -0.1103 

$2∗�(+� -0.0491 0.6304 -0.0077 0.0075 0.1082 -0.0392 

$7∗�(+� 0.0834 -0.0378 0.0037 0.0665 0.1672 -0.0017 

$m∗�(+� 0.0086 -0.2666 0.0018 0.1289 0.3426 -0.0183 

'1∗�(+� 0 -0.1873 0.0009 -0.0128 -0.1005 0.0119 

'2∗�(+� -0.0023 -0.0159 0.0007 -0.008 -0.0356 0.0065 

'7∗�(+� 0.0098 0.0488 -0.0022 0.0118 -0.0259 -0.0014 
'm∗�(+� -0.0041 0.0196 0.0008 0.0056 -0.0747 -0.0056 

 
Determining the critical flutter velocity from the fitted curves was done as a measure of quality assurance. Series 1a has a 

critical wind velocity (,! = 8.08 based on the coefficients given in Table 2. The observed critical flutter wind velocity was 
(2 = 8.10. In Series 2a the same accuracy was not obtained. The calculated flutter wind velocity with the AD’s identified 
was	(,! = 16.22. This result is a large overestimation compared to the observed critical flutter velocity	(2 = 8.92. Probably the 
estimation of the vertical stiffness AD’s 'm∗  and $m∗	is biased. Setting them equal to zero reduces the flutter wind velocity 
to	(,! = 10.06. The estimation of the AD’s in Series 2a is based on 15 tests in wind while Series 1b is based on 40. Therefore 
the accuracy is also expected to be better in Series 1b.   

5 CONCLUSIONS 

Aerodynamic Derivatives (AD’s) for the twin boxes and the flat plate was determined by a Unifying Least Squares method. 
The general trend of the flat plate AD’s follows the theoretical thin airfoil AD’s according to Theodorsen (1934). The beneficial 
effect of a central gap was evident as the critical wind velocity observed compared to the theoretical thin airfoil critical velocity 
was higher for Series 2a compared with 1a. The values '7∗  and	'2∗  were smaller for Series 2a than for Series 1b. This means that 
the negative torsional aerodynamic stiffness were smaller for the twin boxes while the positive aerodynamic torsional damping 
were larger. This may be the explanation of the higher critical flutter wind velocities for twin boxes. However, scatter of the 
AD’s at wind velocities close to flutter must be carefully considered when predicting full scale flutter wind velocities. 

If the twin boxes have a torsional-to-vertical frequency ratio below unity flutter is prevented, but if the torsional stiffness is 
reduced in order to obtain low torsional frequencies, static rotations may be expected at high wind velocities. Instead, the mass 
moment of inertia should be increased and the aerostatic moment coefficients ���	� reduced. Such a design would eliminate 
classic flutter and torsional divergence. 
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