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Abstract

Theoretical prediction of transport and optical properties of protein-pigment com-

plexes is of significant importance when aiming at understanding the structure versus

function relationship in such systems. Electronic energy transfer (EET) couplings

represent a key property in this respect since such couplings provide important insight

into the strength of interaction between photo-active pigments in protein-pigment com-

plexes. Recently, attention has been payed to how the environment modifies or even

controls the electronic couplings. To enable such theoretical predictions, a fully polar-

izable embedding model has been suggested (C. Curutchet, A. Muñoz-Losa, S. Monti,

J. Kongsted, G. D. Scholes, and B. Mennucci, J. Chem. Theory Comput., 2009 5 (7),

1838-1848). In this work, we further develop this computational model by extending

∗To whom correspondence should be addressed
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it with an ab initio derived polarizable force field including higher-order multipole mo-

ments. We use this extended model to systematically examine three different ways of

obtaining EET couplings in a heterogeneous medium ranging from use of the exact

transition density to a point-dipole approximation. Several interesting observations

are made including that explicit use of transition densities in the calculation of the

electronic couplings - also when including the explicit environment contribution - can

be replaced by a much simpler transition point charge description without comprising

the quality of the model predictions.

1 Introduction

Electronic energy transfer (EET) is the process by which an excitation of a pigment is trans-

ferred to another pigment. EET plays an important role in the light-harvesting process of

photosynthesis, where a multitude of photoactive antennae harvest sunlight and funnel it

to a reaction center to initiate an overall charge separation process.1,2 In order to enable

theoretical predictions of energy transfer pathways and optical spectra of protein-pigment

complexes (PPCs), one computational strategy is to construct the Frenkel exciton Hamilto-

nian for a set of interacting pigments.3 In this exciton model, the Hamiltonian includes two

quantities: site energies and electronic couplings between the excited states of the pigments

in the PPCs. In addition, more advanced models also take into account the explicit vibra-

tional states of the protein and the pigments and how they couple to the excited states of

the pigments (see for example references 4 and 5). Various strategies for obtaining accurate

site energies have been attempted by taking the protein environment into account ranging

from focused methods such as cluster models6, where part of the protein structure is explic-

itly included in the quantum mechanical calculation, over point-charge embedding schemes

to polarizable continuum methods.7–13 More elaborate all quantum mechanical approaches

have also recently been applied such as frozen density embedding.14 The importance of ac-

curate site energies have been studied extensively and each of the above approaches have
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their own merits.15 In this work, we will use a focused approach with the recently developed

polarizable embedding (PE) method16,17 which takes into account the explicit environmental

response, based on a linear response scheme, upon excitation through a classical polarizable

embedding potential.

The EET couplings, as first suggested by Förster18, describe the transfer of excitation

energy from one pigment to another in close proximity. The evaluation of the EET Coulomb

couplings can be done in different ways using approximations such as the point-dipole approx-

imation (PDA)18, also termed ideal dipole approximation, which is based directly on the work

by Förster and uses transition dipole moments to evaluate the Coulomb couplings.19 The

PDA model, however, breaks down when the inter-chromophoric distances become less than

the dimension of the chromophores.20 A more elaborate method is the transition density cube

method which provides a way of evaluating the Coulomb couplings using charge-distributions

evaluated on a large number of points around each pigment.21 The computational demand

of the transition density cube method, however, has led to the development of attractive

alternative approaches to evaluate the couplings through a Coulomb expression involving

only partial charges (technically transition monopoles) fitted to reproduce the electrostatic

potential of the transition densities (TrESP)22 and later extended to include higher order

multipole moments.23 Finally, the couplings can be evaluated using the transition densities

directly in a Coulomb expression.24,25

So far, the electronic couplings have here only been discussed in terms of vacuum calcu-

lations, i.e. a direct coupling without considering the environment in which the EET takes

place. To obtain reliable theoretical predictions in the condensed phase several approaches

have been attempted including determining an empirical scaling factor, rescaling the transi-

tion dipole (or monopole) moments, or estimation of such scaling factors based on treating

the protein environment as a dielectric continuum characterized by a dielectric constant

(ε = 2).10,11,26 Recently, a linear response (LR) approach within a density functional theory

framework was presented where the Coulomb exciton couplings are corrected by treating the
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environment as a perturbation to the vacuum couplings. This model was first introduced

within a very simplified continuum description of the solvent.24 Later, this LR approach was

formulated with the polarizable continuum model (PCM) for homogeneous solvents, which

allowed for a consistent treatment of solvent effects on both the excited states (site energies)

and the computed EET couplings.27–29 However, in heterogeneous systems such as light-

sensitive proteins, which is the focus of this work, the PCM is less adequate and an explicit

atomistic representation of the protein is preferred. Along the same lines as the PCM-LR

approach, a linear response formulation in a combined quantum mechanics and molecular

mechanics (QM/MM) framework was presented13,30. Here, the pigment of interest is treated

at a quantum mechanical level of theory and the protein (and other pigments) are described

by a classical polarizable force field.

This latter QM/MM approach is particularly interesting because it allows for a flexible

treatment of both the QM region and the heterogeneous environment. When EET couplings

are calculated using a QM/MM approach the embedding is usually based on a simple point

charge scheme taken from traditional all atom force fields and an isotropic dipole-dipole

polarizability is included to describe the polarization of the protein in response to the QM

region.25 In this work, the polarizable embedding method, formulated within the framework

of density functional theory (PE-DFT), is used to evaluate the EET couplings. The en-

vironment is here treated using an ab initio derived force field. Contrary to the previous

approach13,30, the electrostatic part is described using an atom centered distributed multi-

pole expansion up to and including quadrupoles. At the same expansion points, distributed

anisotropic electric dipole-dipole polarizabilities are placed which gives rise to induced dipole

moments. We have recently shown that the quality of the embedding potential has a pro-

found impact on obtaining, e.g. converged NMR shielding constants31. In light of this, we

here show the importance of utilizing an accurate embedding potential that is derived from

first principles and which can reproduce the true quantum mechanical embedding poten-

tial and is not taken from a traditional protein force field.32 Such a potential also accurately
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models the structural fluctuations in the embedding parameters. We note that the PE model

is formulated such that the environment is allowed to relax upon electronic excitation/de-

excitation of the QM region. For completeness we mention the recent work by König and

Neugebauer who presented spectra of the Fenna-Matthews-Olson (FMO) protein based on

the frozen density embedding approach14,33–35 but refer to several recent reviews for more

detailed discussions on both site-energies and couplings for the exciton Hamiltonian.5,36,37

In this paper we will use the FMO protein complex as a test system aiming to perform

a systematic investigation of different quantum chemical approaches for the calculation of

the electronic couplings as well as show the importance of using an accurate embedding

potential. The FMO protein complex was the first PPC to have its structure determined

using X-ray spectroscopy38,39 and has as such been the focus of many investigations regarding

EETs. Structurally, the FMO complex consists of three identical protein sub-units arranged

in C3 symmetry, each binding seven Bachteriochlorophyll-a (BChla) pigments internally in

the structure with an eighth pigment located between the different protein sub-units.40,41

In this work, we only consider the seven pigments arranged inside a single protein unit (see

Figure 1).

Figure 1: Schematic representation of the Fenna-Matthews-Olson protein complex used in
this study here shown with the 7 included pigments numbered 1 through 7.

This paper is organized as follows. In Section 2 we outline the theoretical background to

evaluate the electronic energy transfer couplings in a heterogeneous environment at different
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levels of theory. This is followed, in Section 3, by a brief discussion of the computational

methodologies involved. We then proceed to discuss our findings in Section 4 with emphasis

on the quality of the obtained EET couplings and how the EET couplings influence a sim-

ulated absorption spectrum. Finally, in Section 5 we summarize our findings and give an

outlook on possible future directions.

2 Theory

The collective excitation across multiple pigments in a photoactive system is beautifully

described in the framework of excitons as first suggested by Frenkel in the 1930’ies.3 Here,

the excited state of M pigments is described through Hartree products of the m’th pigment

in the p’th excited state, φpm, and the remaining M − 1 pigments in their ground states, i.e.

Φp
m = φpm

∏
n6=m

φ0
n = φ0

1φ
0
2 . . . φ

p
m . . . φ

0
M . (1)

The k’th exciton is a linear combination of all possible excited state product wave functions

Ψk =
M∑
m=1

∑
p

Ck
m,pΦ

p
m, (2)

where the sum over p is excitations. The excited states, φpm, are assumed to be known

and the task is to find the coefficients Ck
m,p by diagonalizing the Hamiltonian matrix of the

system. In this work, we will only consider the single-exciton manifold, i.e. only one pigment

is excited at any one time, in which case the exciton Hamiltonian takes the form

Ĥ =
M∑
m=1

∑
p

εm,pâ
†
m,pâm,p +

M∑
m=1

M∑
n6=m

∑
p,q

Jpqmn
(
â†m,pân,q + â†n,qâm,p

)
, (3)

where εm,p is the site-energy of the p’th excited state of pigment m, â†m,p and âm,p are second

quantization bosonic creation and annihilation operators, respectively which transfers an
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excited p state between pigments m and n. The site energy for pigment m will in most

models have an expression like42,43 εm,p = ∆Evac
m,p + Jm + δm, where ∆Evac

m,p is the vacuum

excitation energy, Jm is a displacement term and corrects the excitation energies because of

the environment in which the excitation takes place and δm is a fluctuation term that takes

into account the variation in excitation energies due to geometrical distortions of the pigment.

Instead of including the fluctuation term explicitly, the same effect can obtained by running

a molecular dynamics (MD) simulation and, based on structures extracted from such an MD

run, perform the requiblack calculations of the site energies. In this work we use a linear

response formalism in a polarizable embedded TDDFT framework, i.e. PE-TDDFT, such

that the displacement term is automatically included in the calculated excitation energies to

give the following site energies

εm,p = ∆Em,p, (4)

and we will therefore not consider the fluctuation term. The term Jpqmn in eq 3 is the coupling

of the excited states p and q on pigments m and n, respectively. As already stated, the

pigments are embedded in an explicit polarizable environment that represents the protein.

The EET couplings, when embedded in a polarizable environment, is written as24,30

Jmn = J (0)
mn + J (1)

mn, (5)

where we have removed the explicit reference to the excited states p and q for a simpler

notation. The zero’th order term in eq 5 governs the direct interaction between the pigments

and is given as

J (0)
mn =

∫∫
dr1dr2 ρ

T
m(r1)

(
1

|r1 − r2|
+ gXC(r1, r2)

)
ρTn (r2)− ω0

∫
dr1 ρ

T
m(r1)ρTn (r1). (6)

Here the first term of the above equation constitutes the Coulomb and exchange-correlation

interaction of the coupling and involves integrating over transition densities ρTm and ρTn of
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pigments m and n, respectively. The last term is the overlap and ω0 is the transition energy.

The first order term, which is the interaction mediated by the polarizable environment, is30

J (1)
mn = −

npol∑
k

(∫
dr1 ρ

T
m(r1)

rk − r1

|rk − r1|3
)
µind
k (ρTn ). (7)

Here, the electric field caused by the transition density of pigment m interacts with npol

induced dipoles at polarizable sites k in the environment due to the transition density of pig-

ment n. Formally, the induced dipoles are determined from a set of coupled linear equations

which in matrix form can be expressed as

µind(ρTn ) = AF
(
ρTn
)

(8)

where A is the classical response matrix and F is the electric field (transition field), at the

polarizable sites, from the electronic transition density of pigment n, ρTn . Both µind and F

are super vectors of size 3 ·npol. Likewise, the integral over the transition density of pigment

m (eq 7) is the transition electric field at polarizable sites k. Using the same super vector

notation, the first order coupling term J
(1)
mn becomes

J (1)
mn = −F

(
ρTm
)
AF

(
ρTn
)
. (9)

If the pigments are well separated, the approximation to include only the Coulomb coupling

in the zero-order term (eq 6) is can be invoked

J (0)
mn ≈

∫∫
dr1dr2 ρ

T
m(r1)

(
1

|r1 − r2|

)
ρTn (r2). (10)

We note that applying this Coulomb-approximation to J
(0)
mn leaves the embedding term, J

(1)
mn,

unchanged. In the remaining part of this paper we will use eq 10 as a reference when

calculating J
(0)
mn.
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When the Coulomb-approximation (eq 10) holds, a popular and less expensive method to

evaluate the couplings is to represent the transition densities of each pigment
(
ρTn
)

as a set

of atomic partial charges {qTn }. In principle, any set of partial charges which reproduces the

transition density potential can be used and here we use charges that are fitted to reproduce

the electrostatic potential of the transition density. The approach is discussed in detail in

the Appendix and is similar to that of TrESP first pioneeblack by Madjet and Renger.22

The coupling, in terms of sets of atomic partial charges {qTm} and {qTn } for pigments m and

n, respectively, is thus given as

J (0)
mn ≈

∑
i∈m

∑
j∈n

qTi q
T
j

|Ri −Rj|
. (11)

Describing the transition densities with the fitted charges also changes the first order cou-

plings (eq 7) to

J (1)
mn ≈ −F

({
qTm
})

AF
({
qTn
})
. (12)

That is, the transition electric field, F, at the npol polarizable points are evaluated from the

transition density charges located on the atoms of each pigment.

A final expression for the calculation of the couplings is through the point-dipole approx-

imation by using the transition dipoles directly. Here, the transition dipoles are assumed to

be located at the center of mass, Rcm, of each pigment which gives the following expression

for the coupling

J (0)
mn ≈ µT

mT
(2)
mnµ

T
n . (13)

Here, the interaction tensor T
(2)
mn is defined as

T (2)
mn = ∇2

m

1

|Rcm
m −Rcm

n |
. (14)
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In this scheme, the expression for the first order coupling is changed accordingly

J (1)
mn ≈ −F

(
µT
m

)
AF

(
µT
n

)
. (15)

Here, the transition electric field, F, at the polarizable sites are evaluated from the transition

dipole moments located at the center of mass for each pigment. In the following we will use

the three strategies presented above for computing the electronic couplings and inspect their

performances.

2.1 Exciton Properties

Having obtained both the site energies and EET couplings, the exciton Hamiltonian (eq 3)

is constructed and diagonalized to find the collective eigenvectors and eigenvalues (excitonic

transition energies) from which the k’th exciton wavefunction (eq 2) is readily constructed.

Similarly, the excitonic electric transition dipole moment, µT
k , for the k’th exciton is given

as

µT
k =

M∑
m=1

∑
p

Ck
m,pµ

T
m,p, (16)

from which it is possible to construct the linear absorption stick spectrum from the oscillator

strengths of the k’th excited state

fk =
2

3
∆Ek

m,p

∣∣µT
k

∣∣2 . (17)

3 Computational details

3.1 Computational Strategy

To evaluate the EET couplings in the exciton Hamiltonian for the FMO protein, we used

the following computational strategy: (i) From the molecular structure of the FMO protein
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a classical potential, represented by distributed multipole moments and polarizabilities, is

evaluated for all pigments and the protein (see embedding potential details below). (ii) A

single pigment is then chosen to be treated by PE-TDDFT. The classical potentials of the

other pigments and the protein are combined to generate the corresponding embedding po-

tential. (iii) From the embedded excited state PE-TDDFT calculation, extract one or more

of the following properties: site energies, transition densities, transition moments, transi-

tion density fitted charges and (transition) electric fields at the polarizable sites from the

transition density. Steps (ii) and (iii) are repeated each pigment. (iv) Evaluate the direct

couplings, J
(0)
mn, by either the transition densities directly (eq 10), the transition density fitted

charges (eq 11) or the transition dipole moments (eq 13). (v) Evaluate the screening of the

couplings, J
(1)
mn, by either the transition densities directly (eq 9), the transition density fitted

charges (eq 12) or the transition moments (eq 15). (vi) Finally, construct the exciton Hamil-

tonian matrix using the quantities calculated above, diagonalize it to obtain the coupling

coefficients and evaluate coupled properties of interest; e.g. the coupled transition moments

or spectra.

3.2 Embedding Potential

The structure of the FMO protein from Prosthecochloris aestuarii (PDB: 3EOJ40, here,

a geometry optimized structure from previous work by List et al. is used44) consists of

two chains (A and B) and was alteblack in the following ways with the Maestro45 suite

in preparation for the QM derived force field described below: An N209G mutation was

introduced in the B chain in order to remove a steric clash reported by the software. The

clash was most likely an artifact from the optimization procedure from the previous work.

The termini on both the A and the B chains were rebuilt into their charged states. The

overall charge of the system is unchanged by these modifications.

The embedding potential for the protein (the potentials for the pigments are discussed be-

low) is generated using a fragmentation procedure, explained in detail below, that is similar
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to that of Söderhjelm and Ryde46 which in turn builds on ideas from the molecular frac-

tionation with conjugate caps47 (MFCC) to build the potential. The protein is fragmented

between the amide and the carboxyl carbon such that each residue is assigned a fragment.

Each fragment that is covalently bound to a neighboring fragment is appropriately capped

with capping groups built from the neighboring fragments in accordance with the MFCC

principle. This satisfies the valency of the broken bonds between fragments. In this work,

we have exclusively used capping groups of N -methyl and acetyl. In addition to the capped

fragments, the caps are also joined to form conjugate cap fragments. An illustration of the

capping procedure can be seen in Figure 2. Atoms marked with Hc are heavier atoms con-

verted to hydrogen atoms where the bond are scaled to an appropriate distance based on

the bond type, i.e. 1.09 Å for CH bonds, 1.01 Å for NH bonds and 1.35 Å for SH bonds.

Although the MFCC method was originally envisioned to be used for interaction energies,

Söderhjelm and Ryde applied this method to derive potentials constructed from overlapping

fragments in the following way. A property P on atom A, PA, is calculated as46

PA =

Nf∑
f=1

PA
f −

Nc∑
f=c

PA
c . (18)

Here, PA
f is the property of interest on atom A in the fth fragment and PA

c is the property

of interest on the cth conjugate cap fragments. Nf and Nc are the number of fragments

and conjugate cap fragments that contain atom A, respectively. Terminating hydrogens

(Hc atoms in Figure 2) are consideblack equivalent to the atoms that they replace in terms

of properties when using eq 18. The embedding potential, i.e. the protein and the inactive

H3N

R1

H
N

O R2

O

O

H3N

R1

H
N

O

Hc

Hc
H

+ Hc

Hc

H
N

O R2

O

O
H

- Hc

Hc

H
N

O

Hc

Hc

H

H

Figure 2: The molecular fractionation with conjugate caps (MFCC) here shown for the
cutting (far left), capping (middle) and conjugate cap (far right) of a peptide bond. Figure
taken from reference 48.
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pigments are described using distributed multipole moments up to and including quadrupoles

as well as distributed anisotropic electric-dipole polarizabilities located at the atomic centers.

The classical parameters were evaluated at the B3LYP49–51/6-31+G*52–54 level of theory

using the LoProp55 procedure in MOLCAS56,57.

In a similar way, the pigments were also subjected to fragmentation in the phytyl chain.

This was done in order to increase computational efficiency when deriving the classical

parameters. Each pigment was fragmented at atoms C1, C6 and C54, C55 using FragIt58

(see Figure S1 in the supporting information) and subject to the same methodology as for

the protein above to obtain the classical parameters.

3.3 Electronic Structure Calculations

In order to increase computational efficiency, only the chromophore part of the BChl pig-

ments were included in the quantum mechanical calculations and the phytyl chain is always

treated classically (see the section above). The BChl were cut at the C1 atom and capped

appropriately with a hydrogen atom. In order to avoid a polarization catastrophe, any atom

in the MM region within 2.3 Å of the pigment treated by QM had its atomic properties

blackistributed in such a way that static dipoles, quadrupoles and dipole polarizabilities

were removed and any partial charge was divided equally among the three closest neighbors

outside the 2.3 Å border.

For all excited state calculations we used a linear response time-dependent density func-

tional theory (TDDFT) description.16,17 Based on the work by List and co-workers44 we

employed the PBE059 and CAM-B3LYP60 density functionals for the evaluation of the ex-

cited state energies, transition densities and transition dipole moments. The site energies

are obtained through TDDFT as the energy of the excited state. Thus, we include elec-

trostatic (and polarization) contributions from the environment to the site energies. These

calculations were performed using DALTON.61,62 The evaluation of the exact Coulomb cou-

pling (eq 10) has been implemented in DALTON through the polarizable embedding library
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(PElib).63 Transition density fitted charges were also evaluated in DALTON through the

QFITLIB module64 and fitted charges were constrained to sum to zero and to reproduce the

transition dipole moment upon excitation. We used the 6-31+G* basis set in all calculations.

4 Results and discussion

The main focus of this work is on the evaluation of the EET couplings between pigments in

the FMO protein using various strategies as presented in the theory section. The analysis

of the EET couplings will begin from Section 4.2. However, Section 4.1 is devoted to the

evaluation of the site energies and transition dipole moments of the individual pigments upon

embedding in the protein based upon earlier work by List et al.44 We finish by presenting a

computed absorption spectrum in Section 4.3.

4.1 Site energies

Compared to the previous study by List et al., which used an OPLS-2005 point charge

embedding scheme65, we here use an embedding potential derived by quantum mechanical

calculations. This embedding potential is represented by a distributed multipole expansion

up to and including quadrupoles placed on each nuclei of the protein and electric dipole-dipole

polarizabilities, also located on atoms. Figure 3 shows computed Qy excitation energies of

the seven BChl pigments in the FMO protein obtained both in vacuum and embedded in the

protein. We observe, in general, a red-shift of approximately 0.10 eV (see Table S2 in the

supporting information) in the excitation energy of all pigments except pigment 6 which is

only red-shifted 0.06 eV and blue-shifted 0.04 eV for PBE0 and CAM-B3LYP, respectively.

The blue-shift of pigment 6 has been observed before and it is speculated that the positively

charged R95 acts as a hydrogen bond donor which destabilizes the excited state of this

pigment.66 However, in a recent study by Jurinovich et al.25 the blue-shift for pigment 6

is not observed, but instead the excitation energies of all the pigments are red-shifted by

14
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Figure 3: Computed Qy excitation energies of the seven BChl pigments in vacuum (solid
lines) and embedded in the fully polarizable protein (dashed lines).

0.10 eV. Their results are based on a molecular dynamics simulation which suggests that the

optimized structure, at least around pigment 6, is not representative of a situation where

the protein is flexible and might be due to optimizing only the pigments using quantum

mechanics while the protein is given as a simple point charge description. Interestingly, the

blue-shift is here only observed for the CAM-B3LYP functional whereas it was previously

also reported for the PBE0 functional on the same optimized structure.44 By including only

the static part of the embedding potential, represented by a distributed multipole expansion

up to and including quadrupoles, we observe that both PBE0 and CAM-B3LYP predict a

blueshift for pigment 6 of 0.001 eV and 0.09 eV, respectively, and the excitation energies

are shifted significantly less than when polarization is included. Interestingly, for pigment

6, by keeping the ground state polarization frozen upon excitation, CAM-B3LYP yields

a blue-shift of 0.11 eV which suggests that the polarization response of the environment

upon excitation is the most important factor for the stabilization of the excited state. A

similar observation is made for PBE0. Figure 4 shows transition dipole moments of the Qy

electronic excitation. As was observed for the excitation energies, a noticeable change in the

transition dipole moments is observed when including the protein environment. In general,

the magnitude of the transition dipole moments are increased by 1.4 Debye for both the PBE0
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Figure 4: Computed Qy transition dipole moments of the seven BChl pigments in vacuum
(solid lines) and embedded in the fully polarizable protein (dashed lines).

and CAM-B3LYP density functionals. This is in contrast to the static embedded case where

the average change is well below 0.1 Debye (see Table S3 in the supporting information).

Focusing on pigment 6 again, the change in magnitude of the transition dipole moment is

1.2 Debye for PBE0 (1.0 Debye for CAM-B3LYP) which again suggests that this specific

pigment is perhaps not in a representative environment. Finally we note, that even though

the magnitude of the transition dipoles are much larger with polarization than without, the

PBE0 functional shows less variation in the obtained transition dipole moments compared

to CAM-B3LYP, in agreement with previous work44. Based on the above analysis, the

computed EET couplings will only be discussed at the PE-PBE0/6-31+G* level of theory.

Couplings based on other levels of theory are presented in the supporting information.

4.2 Couplings

We now continue to present computed electronic couplings. We will initially be focused

on the direct couplings, J
(0)
mn, followed by the screening J

(1)
mn. Finally we discuss the total

couplings and contrast our results to other recent studies.
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In Figure 5, unsigned electronic couplings, J
(0)
mn, calculated using the exact Coulomb

expression (eq 10) are presented and correlated with the two approximate methods for eval-

uating the electronic energy transfer couplings: The transition dipole moment expression

(eq 13) and the expression with transition density fitted charges (eq 11). We observe from
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Figure 5: Correlation between exact Coulomb couplings and couplings obtained with either
the point-dipole approximation (gray triangles) or charges fitted to reproduce the electro-
static potential of the transition density (black squares).

Figure 5 that the couplings obtained with the transition density fitted charges correlates

very nicely with the exact Coulomb couplings without significant outliners (discussed be-

low). In the same figure, we observe that there are significant outliers when comparing the

exact Coulomb couplings with couplings obtained by the point dipole approximation which

can all be related to short separation distances (see Figure S3 in the supporting information

for a plot of the couplings plotted as a function of the distance). For the shortest separa-

tions, the J
(0)
34 , J

(0)
37 and J

(0)
56 couplings with center of mass distances of 12.1 Å, 11.8 Å and

11.2 Å, respectively, gives different results depending on which level of theory is applied.

Here, the couplings evaluated using the transition dipole moments deviate from the exact
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Coulomb couplings by 74 cm−1, 18 cm−1 and 27 cm−1, respectively. At these distances, the

point-dipole approximation breaks down as expected.20 This breakdown is not observed for

the couplings based on the transition density fitted charges which only deviate by 2 cm−1,

1 cm−1 and 2 cm−1 from the exact Coulomb couplings, respectively. For the signed couplings

(Tables S4 to S15 in the supporting information) we have chosen the following sign conven-

tion to deal with the arbitrariness of the sign of the transition moments stemming from the

phase factor on the wave function: The sign is determined from the dot product of the tran-

sition dipole moment and positional vector between atoms C1 and C20 in the pigments (see

Figure S2 in the supporting information). Furthermore, we have chosen the sign in such a

way that the largest direct coupling, J
(0)
12 , is always positive. Using this sign convention, the

J
(0)
57 coupling is of particular interest because the exact Coulomb coupling and the couplings

calculated using the transition density charges both pblackict the coupling to be −2 cm−1

but this coupling calculated using the transition dipole scheme pblackicts it to be +11 cm−1.

This particular case shows that the transition dipole moment approach cannot adequately

describe the complexity of the transition density whereas the transition density fitted charge

approach performs much better. The discrepancy between using either the transition density

fitted charges or transition dipole moments is also observed when inspecting the mean signed

error (MSE), the mean absolute error (MAE) and the root mean square error (RMSE) refer-

enced to couplings obtained using the exact Coulomb expression. For the transition charges,

these errors are −0.2 cm−1, 0.5 cm−1 and 0.8 cm−1, respectively. Using the corresponding

transition dipole moment to evaluate the couplings gives MSE, MAE and RMSE values of

5.2 cm−1, 10.3 cm−1 and 18.6 cm−1, respectively.

Having observed that the EET couplings calculated based on transition density fitted

charges are in excellent agreement with the exact Coulomb couplings, we now test the per-

formance of the transition charge approach when blackucing the seven unique sets of charges

into an average set of charges,
{
q̄T
}

. Using this average set of charges to evaluate the cou-

plings, the mean signed error is −0.0 cm−1 which for all practical purposes is unchanged
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from the individual sets of charges. However, the mean absolute error increases to 4.7 cm−1

and the root mean square error increases to 7.7 cm−1. This is perhaps not surprising be-

cause the local environment of each pigment is different from each other and the average

charges cannot describe such complexity. From the average set of charges, it is possible to

calculate an average transition dipole moment, µ̄T , for each pigment. Using this average

transition dipole we obtain errors of 6.1 cm−1, 11.6 cm−1 and 18.6 cm−1 for MSE, MAE

and RMSE, respectively. In conclusion we observe that the transition density charge model

can very accurately reproduce the exact Coulomb couplings in all tested cases. Computing

an average set of charges from the transition density charges yields appreciable accuracy,

however, the heterogeneous environment lowers the accuracy of the obtained couplings. The

transition dipole (and average transition dipole) moments both yield results which are of

acceptable accuracy provided that there is some separation between the pigments. For close

pairs of pigments this latter model causes significant errors in line with previous observa-

tions.20 Overall, the computed J
(0)
mn couplings using either the exact Coulomb expression or

the transition density fitted charges is recommended for accuracy, but the latter is consider-

ably cheaper than the former with only a very minor deviation in the computed couplings.

Similarly to the direct couplings discussed above, the screenings, J
(1)
mn, again shows a large

consistency when evaluated by either the exact transition density fields (eq 9) or the fields

from the fitted charges (eq 12) which is exemplified in Figure 6 where the correlation be-

tween the total coupling (eq 5) and the exact Coulomb couplings are found to be very similar

results for both approaches. To quantify the screening effect, we use an effective dielectric

constant of the heterogeneous environment defined as13,15,25

εeff =
J

(0)
mn

J
(0)
mn + J

(1)
mn

. (19)

From the slope of the correlation plots in Figure 6 we evaluate the average effective dielectric

constant, 〈εeff〉, which we calculate to be 1.68 in excellent agreement with previous results
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for the FMO protein (〈εeff〉 = 1.70)25. The effect of the screening is to dampen the direct

coupling due to the presence of the heterogeneous environment, through the electric dipole

polarizabilites. The larger couplings are screened more heavily than the smaller ones, which

is expected since the field strength, at the polarizable sites, just as the couplings, are directly

dependent on the values of the transition charges (or transition density). The discrepancy is
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Figure 6: Total coupling, evaluated both exactly using a Coulomb expression and using par-
tial charges fitted to reproduce the electrostatic potential of the transition density correlated
with the direct coupling evaluated based on partial charges.

more noticeable when using transition dipole moments with MSE, MAE and RMSE values of

1.0 cm−1, 7.1 cm−1, 11.7 cm−1 when compablack to J (1) from the exact Coulomb expression.

The effect of the screening between the pigments can be quite remarkable. For instance, the

computed screening can, for small direct couplings, be larger in magnitude than the direct

couplings (J
(1)
35 and J

(1)
37 ) leading to an total negative coupling. This is, in a perturbation

description, not unreasonable and has been suggested before.24 Furthermore, the screening

can also enhance the coupling by having the same sign as the direct coupling. This is observed

for J
(1)
25 which has a value of−3 cm−1 where the direct coupling is valued at−8 cm−1 obtained

using a charge description. As was observed for the direct coupling, there is a sign difference
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of the J
(1)
57 screening dependent on whether it is evaluated with transition dipole moments or

the transition density (or charges). However, the obtained signs of the screening is, despite

this sign difference, consistent with the sign on the direct term and both effectively screens

the total signed coupling except for the J
(1)
57 screening discussed above.

In light of the significant change in both excitation energies, the increase in transition

dipole moments and the magnitude of the computed couplings when including a polarizable

environment described using an accurate embedding potential, we finish the discussion of

the computed couplings by comparing (and contrasting) the obtained total couplings in this

study (eq 5) with results from recent work in the literature. We have selected three recent

studies which are based on the same initial structure of the FMO complex, but where the

couplings have been calculated differently on both the theoretical and computational level.

Table 1 lists our obtained total couplings calculated using the exact Coulomb expression

for J
(0)
mn (eq 10) and the corresponding J

(1)
mn obtained at the PBE0/6-31+G* level of theory.

This table also includes computed couplings evaluated through the exact Coulomb expres-

sion averaged over several snapshots extracted from a molecular dynamics simulation by

Jurinovich et al.25 We also include computed couplings obtained using the frozen density

embedding33–35 approach from König et al.14 where we note that the computed couplings in-

clude some polarization in calculations through a series of ”freeze and thaw” cycles. Finally,

we include a study from Schmidt am Busch et al.67 in which the couplings are evaluated

using the point-dipole approximation with empirically scaled transition dipole moments. We

observe that our computed couplings Jmn in general are comparable to both those obtained

by Jurinovich et al. and König et al. with notable exceptions such as the J12, J35 and J37

couplings which we will discuss in detail below. We note that the couplings obtained by

Schmidt am Busch et al. are generally smaller than ours, which is to be expected, since the

transition moments are empirically scaled to have a certain transition dipole moment length.

The most startling difference from our results compablack to literature data is the magnitude

of the J12 coupling which is increased by 33 cm−1 compablack to what is observed in ref 14,
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Table 1: Absolute values of calculated electronic couplings, Jmn in cm−1. Note that the
obtained J35 and J37 couplings are negative (see text for discussion).

n m This Ref 25 Ref 14 Ref 67
1 2 194 137 161 95
1 3 12 6 8 6
1 4 8 8 8 6
1 5 10 9 8 7
1 6 19 27 32 15
1 7 8 5 8 12
2 3 62 47 48 30
2 4 11 10 16 8
2 5 11 7 0 2
2 6 20 11 24 13
2 7 10 6 8 6
3 4 87 60 73 59
3 5 -4 2 0 1
3 6 18 16 8 9
3 7 0 15 32 3
4 5 91 91 81 64
4 6 23 18 32 17
4 7 79 67 89 62
5 6 94 73 121 90
5 7 2 8 16 5
6 7 52 36 32 35

22



which also uses a geometry optimized structure. In our case, this coupling is comprised of

a direct contribution J
(0)
12 = 313 cm−1, which we believe is quite large due to the inclusion

of differential polarization based on our advanced polarizable force field which, as we have

already discussed, yields a larger transition dipole moment. Furthermore, the screening of

this coupling is J
(1)
12 = −119 cm−1, which is also quite large when compablack to the average

value from the Jurinovich et al. study where they obtained only J
(1)
12 ≈ −3.5 cm−1. It has

been suggested24 that for small direct couplings, i.e. couplings below 10 cm−1, the screening

term J
(1)
mn can enhance, rather than screen, the total coupling. Indeed this is what we ob-

serve for the J35 coupling. Here, the direct coupling is 1 cm−1 and the screening is −5 cm−1

yielding a negative total coupling.

4.3 Absorption Spectrum

Finally, we present and discuss in this section a simulated absorption spectrum of the FMO

protein comprised of the seven BChla pigments. In Figure 7 we have shown the calculated

coupled spectrum (solid blue) using the explicitly calculated total coupling, Jmn, calculated

coupled (solid orange) spectrum using the effective dielectric constant determined above and

the uncoupled (dashed blue) spectrum together with the experimental absorption spectrum

recorded at 4K (solid black).68 In this work, focus has been on the Qy EET couplings and

thus the simulated absorption spectra are shifted such that the major peaks are centered

on the major peak from the experimental spectrum for easier comparison. The computed

spectra are broadened with Gaussian line shapes having a constant variance (σ) of 5 meV.

We note that comparison to experiment is difficult in our case due to neglect of dynamical

and vibrational effects.25 However, here we focus on the effects of including / excluding the

EET couplings in the computed spectrum and are thus less concerned with reproducing the

experimental spectrum perfectly. We will discuss the obtained spectrum with special detail

to the solid blue spectrum in Figure 7 evaluated from the total coupling but note that the

spectrum obtained using the effective dielectric constant from the previous section (solid
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Figure 7: Simulated (blue and orange) absorption spectrum for the FMO protein calculated
from uncoupled (dashed) and coupled (solid) transition moments from the exciton model.
The experimental (4K) absorption spectrum obtained from ref 68 is shown in black. The
simulated coupled and uncoupled absorption spectra were shifted 96 nm and 106 nm, re-
spectively, to align the major peaks for easier comparison. Annotated peaks include only
contributions larger than 10 %.

orange) is in overall agreement with the solud blue spectrum and will be a subject of future

studies. Figure 7 is annotated with two outlying peaks centered around 781 nm and 793

nm and a peak that coincides with a peak on the experimental spectrum centered around

801 nm. The first peak of the coupled spectrum, centered around 781 nm, is comprised

almost completely (95 %) of the Qy excited state of pigment 6. As already discussed in

the section on excitation energies and transition dipole moments, the location of this peak

confirms that the environment surrounding pigment 6 is probably not representative for an

experimental setup. Indeed, it has been reported previously that the site energies, contrary

to the couplings, are very sensitive to both structural and environmental effects.14 The other

noticeable peak, centered around 793 nm, is comprised in almost equal parts of the Qy

excitation of pigment 1 and 2 and is a result of the strong coupling (≈ 200 cm−1) between

the two. The third peak, centered around 800 nm is mainly comprised of the Qy excited

states of pigments 5 and 4 which accounts for almost 90 % of that state. We note that the

uncoupled spectrum does not have a peak around 800 nm. The major peak of the coupled
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spectrum is redshifted 10 nm compared the major peak in the uncoupled spectrum.

5 Summary and outlook

We have presented an analysis of three common computational approaches when evaluat-

ing electronic energy transfer couplings in an heterogeneous environment: Exact Coulomb,

charges fitted to reproduce the electrostatic potential of the transition density and the point-

dipole approximation based on transition dipoles. We used a perturbation expression for the

total couplings which is comprised of a direct term and a screening term that takes into ac-

count the environmental response. We have used an advanced polarizable force field which

has been derived from separate ab initio calculations which, compared to employing a stan-

dard protein force fields, takes into account structural effects in the embedding parameters.

In terms of direct electronic couplings we conclude that using either the exact Coulomb ap-

proach or transition density fitted charges is preferable for accuracy but the latter is clearly

preferable in terms of computational speed which is on par with the point-dipole approx-

imation. In one case, the point-dipole approximation yields the wrong sign compared to

the other two tested approaches emphasizing that this approach cannot always describe the

complex nature of the transition density. We showed, in the perturbation formulation of the

electronic couplings, that the screening may be written in terms of electric transition fields

arising from either the transition density directly, fitted charges placed on the atoms of each

pigment or transition dipole moments placed at the center of mass of the pigments. Again

we found that the exact Coulomb approach and the fitted charges fitted yields very similar

results while the point-dipole approximation shows some shortcomings. Even though the

presented absorption spectrum for FMO is not representative of an experimental situation,

the possibility to elucidate structural problems from a computed spectrum is of importance

in for example the field of protein structure simulations where simulated structures are aug-

mented with experimental data.69 The use of the Frenkel exciton model allows for straight
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forward computation of other coupled optical properties such as circular dichroism. This

will be explored in future studies.
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Appendix

Electrostatic Potential Fitted Charges

A molecule with M nuclei and N electrons exhibits the following molecular electrostatic

potential, V ref(Ra), at a point Ra:

V ref(Ra) =
M∑
m

Zm
|Rm −Ra|

−
∑
µν

Pµν

∫
drχµ(r)

1

|r−Ra|
χν(r), (20)

where Zm is the nuclear charge of the m’th nuclei at position Rm. The last term consists

of the electron density in the atomic orbital (AO) basis, Pµν , multiplied by the one-electron

potential integrals. We wish to find a set of M partial atomic charges, {qm} giving rise to

an electrostatic potential at Ra according to

V q(Ra) =
M∑
m

qm
|Ra −Rm|

. (21)

The charges are defined so as to minimize the difference between the electrostatic potential

through eq 20 and the electrostatic potential produced by the M partial atomic charges

through eq 21. The potential is evaluated in K points around the molecule. We use a

Connolly surface70 but in practice any surface can be used. To minimize the difference in

electrostatic potentials, we use the following object function which is to be minimized

γ({qm}) =
K∑
k

(V ref(Rk)− V q(Rk))
2. (22)

Constraints to restrict the sum of the partial charges to the total charge of the molecule,

Qtot, is included through a Lagrange multiplier

0 = g1({qm}) =
M∑
m

qm −Qtot. (23)
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Likewise, the charges are constrained in such a way that the molecular dipole constructed

from the partial charges must reproduce the permanent dipole moment of the molecule

through three additional Lagrange multipliers: one for each Cartesian component of the

dipole moment ~µ = (µx, µy, µz), i.e. for the µx-component

0 = g2({qm}) =
M∑
m

qm(xm −Rcm,x)− µx. (24)

Here, xm is the x-coordinate of the m’th charge, qm, and Rcm is the center of mass of the

molecule under investigation. There are similar expressions for the y and z directions of the

dipole moment. Combined, this gives the final object function to minimize

z({qm}) = γ({qm}) + λ1 · g1({qm}) + λ2 · g2({qm}) + λ3 · g3({qm}) + λ4 · g4({qm}). (25)

To minimize this function, derivatives with respect to the charges {qm} and each of the

constraints λi are taken. This gives rise to a set of linear equations which can be solved

by traditional linear algebra manipulations71,72. To avoid numerical problems we use the

singular value decomposition approach. In this work, the EET couplings are determined from

transition densities. By evaluating eq 20 using a transition density, one obtains transition

density fitted charges provided that the nuclear charges are set to zero, the overall charge

is set to zero (no charge is generated or removed, only moved around) and that the dipole

moment is constrained to reproduce the transition dipole moment of the excitation. This

procedure is similar to that of TrESP22. The above has been implemented in a separate

charge fitting module called QFIT64 in the DALTON61 program package.
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