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ABSTRACT 17 

Air-breathing fishes represent interesting organisms in terms of understanding the physiological 18 

changes associated with the terrestrialization of vertebrates, and are further of great socio-economic 19 

importance for aquaculture in South East Asia. In order to understand how environmental factors 20 

such as high temperature affect O2 transport in air-breathing fishes, this study assessed the effects of 21 

temperature on O2 binding of blood and hemoglobin (Hb) in the economically important air-22 

breathing fish Pangasianodon hypophthalmus. To determine blood O2 binding properties, blood 23 

was drawn from resting cannulated fishes and O2 binding curves made at 25 and 35oC. To 24 

determine the allosteric regulation and thermodynamics of Hb O2 binding, Hb was purified and O2 25 

equilibria recorded at 5 temperatures in the absence and presence of adenosine triphosphate (ATP) 26 

and Cl-. Whole blood had a high O2 affinity (O2 tension at half saturation P50= 4.6 mmHg at 27 

extracellular pH 7.6 and 25oC), a high temperature sensitivity of O2 binding (apparent heat of 28 

oxygenation ΔHapp=-28.3 kcal mol-1), and lacked a Root effect. Further, the data on Hb revealed 29 

weak ATP binding and a complete lack of Cl- binding to Hb, which in part explains the high O2 30 

affinity and high temperature sensitivity of blood O2 binding. This study demonstrates how a potent 31 

mechanism for increasing O2 affinity is linked to increased temperature sensitivity of O2 transport, 32 

and provides a basic framework for a better understanding of how hypoxia-adapted species will 33 

react to increasing temperatures.  34 

 35 

Keywords: pangasius, oxygen affinity, ATP, chloride, allostery 36 

 37 
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GLOSSARY 39 

ATP Adenosine triphosphate 40 

GTP Guanosine triphosphate 41 

Hb Hemoglobin 42 

[Hb] Blood tetrameric hemoglobin concentration 43 

[HbO2] Concentration of hemoglobin bound oxygen 44 

Hct Hematocrit 45 

IEF Isoelectrofocussing 46 

MCHC Mean corpuscular tetrameric hemoglobin concentration 47 

n50 Hill cooperativity coefficient at half saturation 48 

NTP Nucleotide triphosphate 49 

[O2] Blood oxygen concentration 50 

P50 Partial pressure of oxygen at half saturation 51 

PCO2 Partial pressure of carbon dioxide 52 

pHe Extracellular pH 53 

pHi Intracellular pH 54 

pI Isoelectric point 55 

PO2 Partial pressure of oxygen 56 

R Ideal gas constant 57 

RBC Red blood cell 58 

S Fractional oxygen saturation 59 

αO2 Solubility coefficient of oxygen 60 

βNHE  β-adrenergically stimulated Na+/H+ exchange 61 

ΔHapp Apparent enthalpy of oxygenation 62 

ΔHcc Enthalpy of oxygenation-linked conformational changes 63 

ΔHeffector Enthalpy of allosteric effector binding 64 

ΔHH2O  Enthalpy of O2 solvation 65 

ΔHO2 Intrinsic enthalpy of heme oxygen binding 66 

φ Bohr factor 67 

  68 
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INTRODUCTION 69 

The South East Asian striped catfish (Pangasianodon hypophthalmus) is an active, facultative air-70 

breathing teleost with a modified and highly vascularized swim bladder enabling efficient aerial gas 71 

exchange (33, 34). The respiratory physiology of air-breathing fishes has been less studied than in 72 

water breathers and knowledge concerning the effects of temperature on O2 uptake and transport in 73 

air-breathing fishes remains scarce. In addition, air-breathing fishes represent one of the fastest 74 

growing protein sources in the world (35) and P. hypophthalmus is of particular economic 75 

importance in South East Asian aquaculture. Therefore, it is of both academic and economic interest 76 

to gain insight into their respiratory physiology, and to understand the influence of key 77 

environmental factors, such as O2 availability and temperature. 78 

 The optimal O2 affinity of blood is a compromise between O2 uptake from the 79 

environment and O2 unloading at the tissues (6, 55). The O2 content in air is much higher than in 80 

water (12), and blood O2 saturation in air-breathers is therefore normally not considered limiting, 81 

which allows for a reduced O2 affinity promoting efficient O2 unloading at the tissues. However, 82 

fishes inhabiting hypoxic waters tend to have high blood O2 affinity to secure O2 uptake, despite 83 

unloading being potentially compromised. Air-breathing in fishes is believed to have evolved in 84 

response to ambient hypoxia (17), and the more ancestral air-breathing fishes with poorly developed 85 

air-breathing organs are therefore likely to have had high blood O2 affinity to increase branchial O2 86 

uptake. However, as the air-breathing organs became more efficient, it gradually became possible to 87 

reduce blood O2 affinity to facilitate unloading (10, 30). Other factors also act in opposing 88 

directions on blood O2 affinity, including cardiovascular arrangement (29), O2 carrying capacity 89 

(29, 42) and environmental O2 availability (46), resulting in the continuum of blood O2 affinities 90 

reported in air-breathing fishes.  91 

Blood O2 affinity is a function of the various expressed hemoglobin (Hb) isoforms 92 

combined intrinsic O2 affinities, and their responses to red blood cell (RBC) allosteric effectors 93 

(63). Hb-O2 affinity is modulated by temperature and by interactions with protons and CO2 94 

(facilitating O2 unloading at the tissues via the Bohr effect), which aid unloading of O2 in the tissues 95 

by stabilizing Hb in its low affinity tense (T) state conformation. In some fish Hbs, proton binding 96 

completely stabilizes the T state at low pH, resulting in loss of cooperative O2 binding and 97 

incomplete O2 saturation at high partial pressure of oxygen (PO2) (Root effect) (24). This property 98 

enables O2 off-loading to a very high PO2 and hence swimbladder filling at depth and oxygenation 99 

of ocular and other tissues (4, 47, 48). Further, fish Hbs normally bind RBC Cl- and adenosine 100 
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triphosphate (ATP) (44) providing allosteric regulation of O2 binding (63). Hypoxia-induced 101 

decreases in RBC [ATP] normally induce increased blood O2 affinity (51, 68), while [Cl-] is 102 

relatively constant in erythrocytes and tend to decrease Hb-O2 affinity. Moreover, many fishes 103 

possess a multitude of α- and β-globin genes (43), and their polypeptide products are incorporated 104 

into functionally distinct Hb tetramers (α2β2) (5, 13, 14, 45, 64), whose relative expression further 105 

influences blood O2 affinity.  106 

Binding of O2 to Hb is exothermic, hence Hb-O2 affinity decreases with increasing 107 

temperature. The apparent enthalpy of oxygenation (ΔHapp) is a sum of the intrinsic enthalpies of 108 

heme O2 binding (ΔHO2), of oxygenation-linked conformational changes (ΔHcc), of O2 solvation 109 

(ΔHH2O) and of allosteric effector binding (ΔHeffector) (62). ΔHO2 and ΔHH2O are rather invariable 110 

across species, hence the temperature sensitivity of O2 binding is largely dependent on ΔHcc and 111 

oxygenation-linked endothermic release of allosteric effectors (61). Therefore, a relationship exists 112 

between the number of binding sites for allosteric effectors and the temperature sensitivity of O2 113 

binding (8, 60, 62), where Hbs with multiple binding sites have a low temperature sensitivity, and 114 

vice versa. It has been suggested that the higher number of effector binding sites, and thus low 115 

temperature sensitivity of O2 binding, is beneficial in regionally heterothermic animals, where O2 116 

unloading can for example, be safeguarded to the extremities of arctic mammals (7, 8, 15), and 117 

where O2 delivery can be regulated to warm brains and swimming muscles of tuna, shark and 118 

billfishes (9, 31, 62). The thermodynamic consequences of reduced effector binding on Hb-O2 119 

affinity has received little attention in the literature but would analogously increase the temperature 120 

sensitivity of Hb and blood O2 binding.  121 

To establish a better understanding of the effect of temperature on O2 transport in the 122 

air-breathing fish P. hypophthalmus, we measured the O2 binding properties of blood and the effect 123 

of temperature and pH, and then focused on describing the thermodynamics and allosteric 124 

regulation of Hb O2 binding by RBC allosteric effectors. Finally, we investigated how temperature 125 

acclimation was associated with changes in the expression patterns of electrophoretically distinct 126 

Hb isoforms. 127 

 128 

MATERIALS AND METHODS 129 

Animal handling 130 

Pangasianodon hypophthalmus (Sauvage, 1878) were purchased from local aquaculture suppliers, 131 

transferred to Can Tho University (Vietnam) and held for several months before experimentation. 132 
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The fishes were kept in large tanks with normoxic water at 27oC. The fishes were fed daily to 133 

satiation with commercial purchased dry pellets and water was exchanged every third day. A 134 

second group of fishes was acclimated under similar conditions but at 33oC to assess whether 135 

temperature acclimation was associated with changes in the expression pattern of 136 

electrophoretically distinct Hb isoforms.  137 

 138 

Surgical procedures 139 

14 fishes were anaesthetized by immersion in water containing 0.1 g benzocaine l-1. When 140 

immobile, the fishes were transferred to a surgical table where anesthesia was maintained by 141 

flushing the gills with water containing 0.05 g benzocaine l-1. A PE50 catheter was inserted into the 142 

dorsal aorta through the roof of the mouth and extended through a hole in the rostrum (50). The 143 

catheter was secured to the dorsal roof of the mouth and at the dorsal side of the fish by sutures and 144 

the fish was allowed to recover for 24-72 h in normoxic water at 27oC, while the catheters were 145 

flushed daily with heparinized saline. For blood measurements, a sample of up to 10 ml was taken 146 

to determine arterial blood gas tensions and to construct blood O2 equilibrium curves in vitro. All 147 

experiments were performed in accordance with national guidelines for the protection of animal 148 

welfare in Vietnam.  149 

 150 

Arterial blood parameters 151 

Arterial partial pressure of carbon dioxide (PCO2) and extracellular pH (pHe) were measured in 152 

each fish using a GEM Premier 3500 automated blood gas analyzer (Instrumentation Laboratory, 153 

Bedford, MA, USA) (40). At PCO2 of 115 and 230 mmHg (16 and 32% ), pHe was extrapolated 154 

from a logPCO2 vs. pHe plot due to the inability of the blood analyzer to measure pHe below 6.8. 155 

Arterial PO2 was measured in 4 fishes using a Radiometer oxygen electrode thermostatted at 27oC 156 

and connected to a PHM 71 (Radiometer, Copenhagen, Denmark). Hematocrit (Hct) was found as 157 

the fractional RBC volume after centrifugation at 12,000 rpm for 3 min, and blood tetrameric Hb 158 

concentration ([Hb]) was determined spectrophotometrically after conversion to cyanometHb using 159 

Drabkin’s reagent. Erythrocyte nucleoside triphosphates ([NTP]=[ATP]+[GTP]) were measured 160 

spectrophotometrically (Cecil CE2041, Cambridge, UK) via enzyme-coupled reactions (Sigma 161 

Bulletin no. 366-UV), using neutralized supernatants from blood deproteinized in 12% 162 

trichloroacetic acid. Whole blood [NTP] was converted to erythrocyte [NTP] via the corresponding 163 

Hct.  164 
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 165 

Blood Tonometry for determination of whole blood oxygen binding properties 166 

Freshly drawn blood was divided into two Eschweiler (Kiel, Germany) tonometers and equilibrated 167 

with humidified gas mixtures delivered from serially linked Wösthoff (Bochum, Germany) gas 168 

mixing pumps. For blood O2 equilibrium curves each tonometer was equilibrated with 3.8 or 22.8 169 

mmHg  CO2 (0.5 or 3%) at either 25 or 35oC. Blood was equilibrated with 30% O2 to determine the 170 

O2 carrying capacity, whereupon PO2 was lowered to achieve O2 saturations between 10 and 90%. 171 

At each equilibration step the blood was allowed to equilibrate with the gas for ~ 30 min and blood 172 

[O2] was measured in duplicate with the Tucker method (52). To quantify the Root effect, blood O2 173 

saturation was measured at 25oC while equilibrated with air during progressive increases in PCO2 174 

from 3.8 to 243 mmHg (0.5% to 32%). In some fish with a smaller blood volume, it was only 175 

possible to perform one O2 equilibrium curve on whole blood, leading to different sample numbers 176 

in the 25 and 35oC data sets. 177 

 178 

Hemoglobin purification and hemoglobin heterogeneity 179 

RBC were shipped on dry ice from Can Tho University to Aarhus University for in vitro studies. 180 

Water was added and lysed RBC were centrifuged at 8,100 g for 10 min to separate Hb from 181 

cellular debris. To strip Hb from allosteric effectors, the hemolysate was dialyzed in a dialysis bag 182 

with a 15 kDa cutoff membrane (Spectrum Laboratories, Inc., Roncho Dominguez, Canada) against 183 

a 200 times larger volume of 10 mmol l-1 Hepes buffer (pH=7.4) at 4oC. The dialysis buffer was 184 

changed 3 times over 24 h. Subsequently, Hb was concentrated by ultrafiltration in Amicon 4 ml-185 

ultrafiltration tubes fitted with a 10 kDa cutoff membrane (Millipore, Tullagren, Ireland) at 4,000 g 186 

and stored at -80oC in aliquots at a heme concentration of 7.7 mmol l-1. To evaluate Hb 187 

heterogeneity, individual blood samples were prepared as previously described (11) and analyzed 188 

by isoelectric focusing (IEF) on thin polyacrylamide gels using a PhastSystem apparatus (GE 189 

Healthcare, Uppsala, Sweden) at 15oC. To observe whether temperature acclimation induced 190 

expression of alternative Hb isoforms, IEF was conducted on blood from fishes reared at 27 and 191 

33oC on long-range polyacrylamide gels (pH-range 3-9). To evaluate the relative expression of the 192 

individual isoforms, IEF was conducted on short range polyacrylamide gels (pH-range 5-8) on 193 

blood from 27oC acclimated fishes, and the relative expression of the individual Hb bands 194 

quantified by densitometric analysis using Image J.  195 

 196 
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Hemoglobin O2 equilibria 197 

Equilibrium between Hb and O2 was monitored using a modified diffusion chamber. Two serially-198 

coupled Wösthoff gas mixing pumps (Bochum, Germany) delivered humidified gas mixtures at 199 

varying PO2 by mixing atmospheric air with pure N2 (>99.998%). Absorbance was monitored at 200 

426 nm while gas mixtures equilibrated an ultrathin 4 µl Hb sample with heme concentration 0.6 201 

mmol l-1 (57, 59). Absorbance was also measured during equilibration with pure O2 and N2 to 202 

obtain the full saturation range. Different fractional saturations (S) were obtained by stepwise 203 

increases in the gas mixture PO2. pH was adjusted with 0.1 mol l-1 Hepes buffer to obtain Hb-O2 204 

binding curves at 6 different pH values between 6.5-8.5. pH was measured at the experimental 205 

temperature with a Mettler Toledo pH/ion meter S220 (Schwerzenbach, Switzerland). To evaluate 206 

the influence of ATP and Cl- on Hb oxygenation, and their effects on pH- and temperature 207 

sensitivity, O2 equilibria were measured with and without 100 mmol l-1 KCl and 0.3 mmol l-1 ATP 208 

(ATP/Hb4 = 2 corresponding to the approximate intraerythroid ratio; Table 1) at 15, 20, 25, 30 and 209 

35oC (±0.2oC) and at 6 pH-values. 210 

 211 

Data analysis 212 

Concentration of Hb bound O2 in blood ([HbO2]) was calculated by subtracting the physically 213 

dissolved O2 from [O2].  214 HbO = O − O  

Where αO2 is O2 solubility (12), and PO2 is the PO2 delivered by the Wösthoff pumps.  215 

Fractional O2 saturation (S) for blood was found as [HbO2] relative to [HbO2] during 216 

equilibration with 30% O2: 217 = HbOHbO %  

O2-affinity (P50: partial pressure of oxygen at half saturation) and cooperativity of O2 218 

binding (n50: the Hill cooperativity coefficient at half saturation) for blood and stripped Hb were 219 

determined as the zero intercept and slope of the Hill plot (log(S/(1-S)) vs. logPO2), respectively.  220 

The Bohr factor, φ, was determined from the slope of Bohr plots (logP50 vs. pH) for both blood and 221 

stripped Hb.  222 = ∂log∂pH  

ΔHapp was calculated from the van’t Hoff equation for both blood and stripped Hb.  223 

 224 
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∆ = 2.303  ∂log∂T  

 225 

Where the used logP50 values were interpolated from the Bohr plots (Fig.1) at 0.1 pH-value 226 

intervals. ΔHapp-values are reported in kcal mol-1 (1 kcal mol-1 = 4.184 kJ mol-1). For Hb, ΔHapp was 227 

calculated based on logP50 values at 15, 20, 25, 30 and 35oC, whereas blood ΔHapp was calculated 228 

using logP50 values at 25 and 35oC.  229 

Mean corpuscular tetrameric Hb concentration (MCHC) was found from the Hct: 230 MCHC = HbHct  

 P50 and ΔHapp values for Hb solutions and blood are plotted on intracellular pH (pHi) 231 

and pHe axes respectively. The pHi axis is shifted 0.3 pH units in Fig. 4, to account for the lower 232 

pHi compared to pHe, as measured previously in P. hypophthalmus (Phuong unpublished). ΔHapp is 233 

the sum ΔHO2, ΔHcc, ΔHH2O and ΔHeffector, where ΔHH2O is -3.0 kcal mol-1 (1). All values are 234 

expressed as means ± standard error of mean unless otherwise indicated.  235 

 236 

 237 

 238 

RESULTS 239 

Arterial blood gases 240 

P. hypophthalmus had a high Hct (30±1.4%) and a correspondingly high O2 carrying capacity of 241 

5.8±1.3 mmol l-1 (Table 1). PCO2 and PO2 values were 4.7±0.7 mmHg and 31.8±8.7 mmHg, 242 

respectively, and pHe was 7.62±0.02 (Table 1) at 27oC.  243 

 244 

Blood tonometry 245 

P. hypophthalmus blood bound O2 cooperatively (n50~1-3) and with a high O2 affinity at 25oC 246 

(P50=4.61 mmHg at pHe 7.6), but with a lower O2 affinity at 35oC (P50=21.7 mmHg at pHe 7.6) 247 

(Fig. 1, lower right panel). Blood logP50 values superimposed those of Hb with ATP at 25oC (taking 248 

into account that pHi is 0.3 pH units lower than pHe), but were slightly higher at 35oC. The Bohr 249 

factors for blood were -0.70 and -0.39 at 25 and 35oC, respectively (Fig. 2). Decreases in pHe down 250 

to 6.7 failed to cause a change in blood saturation, showing the absence of a Root effect in  251 

wholeblood (Fig. 3). Blood showed a high temperature sensitivity with ∂P50 ∂T-1=1.71 mmHg oC-1 252 

(ΔHapp=-28.3 kcal mol-1 at pHe 7.6), which was greater than for stripped Hb (Fig. 4). RBC [NTP] 253 
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remained constant during the 3 hour equilibration period in the tonometer and was unaffected by 254 

heating or cooling the blood sample to temperatures between 25 and 35oC (data not shown).  255 

 256 

Hemoglobin heterogeneity  257 

Long-range IEF showed one Hb band in both the 27oC and 33oC acclimated groups (not shown). 258 

Short-range IEF of the blood of the 27oC acclimated fishes revealed 6 distinct electrophoretic 259 

bands, revealing anodic Hb isoforms with closely similar isoelectric points (pI) (7.44-7.67) (Fig. 5).  260 

  261 

Hemoglobin oxygen equilibria 262 

Evaluation of O2 binding in stripped P. hypophthalmus Hb revealed high cooperativity (n50 ~ 2.5) 263 

and high affinity (P50 = 5.9 mmHg at pHi 7.3 and 25oC, Fig. 1). Cooperativity remained high over 264 

the whole experimental pHi-range (from above pHi 8 to below pHi 6.5 (Fig. 1), supporting the 265 

absence of a Root effect for the Hb. Addition of 100 mmol l-1 KCl did not affect Hb oxygenation, 266 

whereas addition of ATP decreased Hb-O2 affinity slightly at lowered pHi (Fig. 1, 4).  267 

The Bohr factors of Hb and blood, decreased at higher temperatures (Fig. 2). Addition 268 

of ATP increased the Bohr factor markedly, whereas addition of Cl- had little effect (Fig. 2). The 269 

Bohr factor for blood at 35oC was similar to Hb with ATP, but was slightly higher at 25oC. To 270 

evaluate the temperature and pH sensitivities of ATP and Cl- binding, O2 equilibrium curves were 271 

measured at 5 temperatures to determine ΔHapp. ΔHapp for stripped Hb was -16.18 kcal mol-1 272 

corresponding to -13.18 kcal mol-1 for ΔHO2 and ΔHcc (by subtracting -3.0 kcal mol-1 for ΔHH2O 273 

(1)), which is similar to that of human Hb (2). In agreement with Fig. 1, Cl- did not bind to 274 

oxygenation-linked binding sites on Hb, producing a near zero ΔHCl- (Fig. 4). In the presence of 275 

ATP, Hb showed a consistently lower temperature sensitivity of oxygenation, revealing 276 

endothermic release of bound ATP (and associated extra Bohr protons) amounting to 3.1 kcal mol-1.  277 

 278 

DISCUSSION 279 

Blood oxygen binding 280 

P. hypophthalmus blood bound O2 with an unusually high affinity at 25oC, when compared to most 281 

other air-breathing fishes studied to date (Table 2). Most of these species have an inactive lifestyle, 282 

whereas P. hypophthalmus is a fast swimmer with high maximal rates of O2 uptake (34). Hence, the 283 

high O2 affinity appears unfavorable in terms of O2 unloading to the tissues. The high O2 affinity 284 

seems beneficial in relation to branchial O2 uptake during mild environmental hypoxia (55) and in 285 
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terms of limiting branchial O2 loss during severe hypoxia/anoxia, where P. hypophthalmus becomes 286 

more reliant on aerial O2 uptake (33). While a high O2 affinity aids in O2 uptake, the constrained O2 287 

unloading in tissue capillaries may require a high capillary density to reduce the diffusive distance 288 

from capillaries to cells (10, 55). A high O2 flux to the tissues concurrent with high O2 affinity can 289 

be achieved through a large Bohr/Root effect (47, 48), high O2 carrying capacity of blood, high 290 

perfusion and/or a high O2 diffusive capacity of the tissues (21). The magnitude of the Bohr effect 291 

of P. hypophthalmus blood is similar to other air-breathing fishes (Table 2) and thus contributes 292 

small increases in blood PO2 as RBCs passes tissue capillaries, and a relatively high O2 carrying 293 

capacity of the blood may serve as a trait to increase systemic O2 delivery, as observed in the 294 

swamp eel, Monopterus albus (10). It would be interesting to devote future studies to capillary 295 

density measurements in this species. 296 

n50 values were generally higher in Hb solutions compared to blood. The Hb solutions 297 

were highly buffered, whereas oxygenation linked H+ dissociation decreases pHi during 298 

oxygenation in whole blood, resulting in lower apparent n50 values in blood compared to Hb (23), as 299 

has been observed previously (10, 41). 300 

The absence of a Root effect in P. hypophthalmus was demonstrated in whole blood 301 

(Fig. 3) and was supported in Hb solutions by the complete lack of any loss of cooperativity at low 302 

pH (Fig. 1). The absence of Root effect in P. hypophthalmus, and its apparent lack of β-303 

adrenergically stimulated Na+/H+ exchange (βNHE) (Phuong, unpublished), is in line with the 304 

reduction in the Root effect in the ancestor of Siluriformes, as well as the reduction in βNHE activity 305 

in the ancestor of Siluriformes/Gymnotiformes fishes after the divergence from Characiformes 306 

fishes (4). P. hypophthalmus inhabits tropical freshwater environments that may become severely 307 

hypercapnic, and a lack of Root effect may serve to maintain a high O2 carrying capacity during 308 

hypercapnia. In contrast, a Root effect is a requirement for O2 secretion from a choroid rete to 309 

generate the high PO2 necessary to drive oxygen across the long diffusion distance of the avascular 310 

retina of most fishes (56). However, in contrast to other fishes with secondary reductions in the 311 

magnitude of the Root effect (4), P. hypophthalmus responds strongly to visual stimuli and is 312 

clearly capable of matching O2 supply with O2 demands of the retina. Thus, future studies must 313 

examine the anatomical arrangements and function of the ocular vasculature, and identify eventual 314 

vascularization of the retina, as observed e.g. in eel (56).  315 

 Blood O2-binding in P. hypophthalmus was strongly temperature dependent, such that 316 

O2 affinity falls markedly more with increased temperature than in other air-breathing fishes (Table 317 
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2). Unexpectedly, the temperature effect for blood is higher than for Hb (Fig. 4), which cannot be 318 

explained by this dataset, as this would require oxygenation-linked association of allosteric 319 

effectors in the order of 16 kcal mol-1. The higher temperature sensitivity seems to be a sum of two 320 

factors. First, the apparently lower O2 affinity for blood compared to Hb at 35oC translates into a 321 

higher ΔHapp for blood compared to Hb. Second, blood P50 values show higher variation compared 322 

to Hb P50 values, which translates into a broad ΔHapp confidence interval for blood, which overlaps 323 

with the Hb ΔHapp plot (not shown). Therefore, the absolute ΔHapp-value for blood should be taken 324 

with caution. However, both approaches in our dataset confirm the overall conclusion that O2 325 

binding in P. hypophthalmus is unusually high and results from reduced interactions between 326 

allosteric effectors and Hb.  327 

The adaptive significance of a high temperature sensitivity of blood O2 binding is 328 

unknown. P. hypothphalmus is distributed throughout the Mekong River in water with little 329 

variation in temperatures (38), as is also the case in aquatic habitats of the African lungfish, which 330 

also has blood with a high temperature sensitivity (36). The Australian lungfish, in contrast, 331 

experiences large temperature fluctuations and has less temperature sensitive blood (37). Following 332 

this analogy, a high temperature sensitivity might be a tolerable trait in fishes living in stenothermal 333 

environments. While the adaptive significance (if any) of a high temperature sensitivity remains 334 

unclear, it might be simply a thermodynamic consequence of the reduced allosteric effector binding.  335 

 336 

Molecular interpretation of temperature effect and high affinity 337 

We demonstrated that the Hb has low sensitivity to ATP above pHi 7.4 and to Cl- ions over the 338 

whole physiological pH-range (Fig. 1, 4). Both anions would normally stabilize Hb in its low O2-339 

affinity tense state conformation and thus lower the Hb-O2 affinity (44). The weak oxygenation-340 

linked anion binding thus only decreases O2 affinity slightly below the intrinsic Hb-O2 affinity, and 341 

thereby provides a potent mechanism for increasing blood O2 affinity above normal. A similar 342 

adaptation has been observed in two other hypoxia adapted aquatic vertebrates. Hb of the Andean 343 

frog Telmatobius peruvianus, inhabiting mountain lakes above 3,800 m is insensitive to Cl- (60, 66) 344 

as is Hb of the hypoxia tolerant swamp eel (10) resulting in a high blood O2 affinity in both cases. 345 

Evolution of Hb with reduced Cl- insensitivity thus seems to be a common mechanism for 346 

efficiently increasing blood O2 affinity in response to hypoxia.  347 

ATP binds to Hb in the physiological pHi-range, but only decreases Hb-O2 affinity 348 

below approximately pHi 7.4 (Fig. 1, 4). This contrasts to the normal trend, where ATP decreases 349 
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O2 affinity over a larger pHi-range (11, 15, 66). During environmental hypoxia intra-erythroid ATP 350 

concentration decreases in many ectothermic vertebrates, and this is associated with decreased 351 

inhibitory interactions of ATP on Hb, which increases the blood O2 affinity during environmental 352 

hypoxia (51, 54, 65, 68). The reduced ability for ATP to decrease O2 affinity in P. hypophthalmus 353 

Hb consequently only allows for a small degree of hypoxia-induced increase in blood O2 affinity. 354 

GTP is present in RBC of many fishes, including some siluriform fishes and can exert an effect on 355 

Hb O2 affinity in some species (3, 22, 53, 65). Given the weak binding of ATP to Hb as well as 356 

comparable O2 affinities for blood and Hb at 25oC, we can assume that GTP does not exert 357 

significant effects on Hb-O2 affinity.  358 

Hb O2 binding is exothermic, and normally in vertebrate Hbs, oxygenation is linked to 359 

an endothermic release of Cl-, organic phosphates and protons, off-setting the exothermy of 360 

oxygenation (63) and thereby reducing the temperature sensitivity of O2 binding. Oxygenation-361 

linked ATP-binding is much weaker in P. hypophthalmus compared to other species as evident in 362 

the low ΔHATP (3.08 kcal mol-1 versus 9.9 - 21 kcal mol-1 reported in other species) and the low 363 

reduction in O2 affinity upon ATP addition (25, 62). Thus, the lack of oxygen binding modulation 364 

by both ATP and Cl- combine in P. hypophthalmus blood leaving the exothermy of O2 binding in 365 

Hb intact and imparting a high temperature effect on blood O2 affinity. 366 

Temperature acclimation to 27oC and 33oC revealed no changes in Hb isoforms, as 367 

only one Hb band was found on the long-range IEF gels. Short-range IEF of blood at 27oC revealed 368 

expression of six anodic Hb isoform components in P. hypophthalmus with very similar pI. The 369 

functional significance of co-expression of multiple Hb isoforms with distinct functional properties 370 

has been hypothesized to provide functional division of labor in gas transport between the Hb 371 

isoform components, so O2 uptake and delivery can function over broader ranges of environmental 372 

factors (e.g. PO2, pH, temperature) (19, 58, 63, 65, 67). However, no studies have documented its 373 

direct physiological benefits.  374 

 375 

Perspectives and significance 376 

This study documents how a lack of Cl- binding and weak ATP binding to Hb is associated with a 377 

high blood O2 affinity related to inhabiting freshwater environments that are frequently very 378 

hypoxic. The weak anion sensitivity of Hb is found in other hypoxia-adapted aquatic vertebrates 379 

and allows for high blood O2 affinity. Weak anion sensitivity of Hb limits the modulation of O2 380 

affinity through changes in RBC organic phosphate concentration, and is associated with chronic 381 
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high O2 affinity. An inevitable consequence is a high temperature sensitivity of blood due to this 382 

lack of oxygenation-linked endothermic release of anionic effectors, and this study documents the 383 

highest temperature sensitivity of O2 binding measured in blood of an air-breathing fish. This 384 

suggests that at low temperatures, O2 unloading may be compromised by a high O2 affinity, limiting 385 

O2 transport, whereas higher temperatures may constrain O2 uptake. It will therefore be of interest 386 

to conduct future studies on the aerobic performance across temperatures in this species to clarify if 387 

this common hypoxia-adaptation is associated with a narrow optimal temperature range as well as a 388 

high optimal temperature for aerobic scope.  389 
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 585 

 586 

FIGURE CAPTIONS 587 

Fig. 1. pH-dependencies of n50 and P50 of P. hypophthalmus Hb and blood at the 5 experimental 588 

temperatures (for blood only 25oC and 35oC) in the absence of allosteric effectors (black symbols) 589 

and in the presence of 100 mmol l-1 KCl (blue symbols) or 3 mmol l-1 ATP (ATP/Hb = 2) (green 590 

symbols) and in blood (red symbols).  591 

 592 

Fig. 2. pH-dependency of O2 binding (Bohr factor (φ)) at the 5 experimental temperatures in the 593 

absence (black bars) and presence of 100 mmol l-1 KCl (blue bars) and 3 mmol l-1 ATP (green bars) 594 
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as well as in blood (red bars). Bars with error bars indicate slope of the Bohr plots + standard error 595 

of estimated slope.  596 

 597 

Fig. 3. Blood O2 saturation during progressive increases in PCO2 (3-230 mmHg) during 598 

equilibration with air. The lack of a reduction in blood O2 saturation at lowered pH documents the 599 

absence of a Root effect.  600 

  601 

Fig. 4. Temperature sensitivity of O2 binding presented as the apparent heat of oxygenation (ΔHapp) 602 

in the absence (black line) and presence of 100 mmol l-1 KCl (blue line) and 0.3 mmol l-1 ATP 603 

(green line) as well as in blood (red line). Solid and dotted lines indicate mean and standard error of 604 

estimated ΔHapp-values, respectively. Data for Hb and blood are plotted on intracellular- and 605 

extracellular pH axes, respectively.  606 

 607 

Fig. 5. Relative abundance and isolectric points of the six Hb isoforms in Pangasianodon 608 

hypophthalmus red blood cells. Data are mean ± s.e.m. (n=10).  609 

 610 

 611 

TABLES 612 

Table 1. Arterial values for hematocrit (Hct), mean corpuscular tetrameric hemoglobin 613 

concentration (MCHC), red blood cell nucleotide triphosphate concentration 614 

([NPT]=[ATP]+[GTP]), partial pressure of CO2 and O2 (PCO2 and PO2) and extracellular pH 615 

(pHe) in Pangasianodon hypophthalmus at 27oC.  616 

Hct [%] 30±1.4 (12) 

O2 carrying capacity [mmol l-1] 5.8±1.3 (11) 

MCHC [mmol l-1] 5.46±1.4 (11) 

NTP [mmol lRBC
-1] 7.04±0.25 (11)  

[NTP]/MCHC 1.44±0.23 (9) 

PCO2 [mmHg] 4.65±0.7 (12) 

PO2 [mmHg] 31.8±8.7 (4) 

pHe  7.62±0.02 (12) 

Values are mean ± standard error of mean. Values in parenthesis indicate number of replicates. 617 

 618 
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Table 2. Comparison of oxygen affinities (P50), Bohr effects (φ) and apparent heat of oxygenation (ΔHapp) in blood of air-breathing fishes.  619 

 620 

Species Air-breathing structure Blood P50 
[mmHg] 

φ ΔHapp 
[kcal mol-1] 

Conditions Reference 

Class: Actinopterygii       
   Order: Ammiformes       
      Family: Amiidae       
         Amia calva Air-bladder 24.0 ND -16.5 27oC, pH 7.6 (26) 
   Order: Lepisosteiformes       
      Family: Lepisosteidae       
         Lepisosteus oculatus Lung 24.1 -0.5 ND 20oC, PCO2 7 mmHg (49) 
   Order: Osteoglossiformes       
      Family: Arapaimidae       
         Arapaima gigas Swim-bladder 21.0 -0.30 ND 28oC, pH 7.4 (30) 
   Order: Gymnotiformes       
      Family: Gymnotidae       
         Electrophorus electricus Buccopharyngeal cavity 10.7 -0.78 ND 28oC, pH 7.6 (28) 
   Order: Characiformes       
      Family: Erythrinidae       
         Hoplerythrinus unitaeniatus Swim-bladder 11.4 -0.75 -21.4 30oC (46) 
   Order: Siluriformes       
      Family: Loricariidae       
         Pterygoplichthys multiradiatus Stomach 4.41 -0.13 ND 25oC, pH 7.6 (54) 
         Ancisstrus chagresi Stomach 19.8 ND ND 25oC, pH 7.4 (16) 
      Family: Callichthyidae       
         Hoplosternum littorale Intestine 9.5 -0.33 ND 30oC (46) 
      Family: Pangasiidae       
         Pangasianodon hypophthalmus Swim-bladder 4.6 -0.70 -28.3 25oC, pH 7.6 This study 
      Family: Ictaluridae       
         Ictalurus nebulosus Swim-bladder 10.2 -0.45 -12.8 24oC, pH 7.6 (18) 
   Order: Esociformes       
      Family: Umbridae       
         Dallia pectoralis* Oesophagus 10.5 ND -11.3 15oC, pH 7.4 (32) 
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   Order: Synbranchiformes       
      Family: Symbranchidae       
         Monopterus albus Buccopharyngeal cavity 4.1 -0.79 ND 27oC, pH 7.5 (10) 
         Monopterus cuchia  Buccopharyngeal cavity 7.9 -0.57 -13.1 30oC, pH 7.6 (39) 
         Synbranchus marmoratus Buccopharyngeal cavity 7.0 -0.69 ND 30oC, pH 7.8 (20) 
   Order: Perciformes       
      Family: Channidae       
         Channa maculate Suprabranchial organ 7.6 -0.70 ND 25oC, pH 7.6 (69) 
Class: Sarcopterygii       
   Order: Lepidosireniformes       
      Family: Protopteridae       
         Protopterus aethiopicus  Lung 10.0 -0.47 ND 25oC, PCO2 6 mmHg (36) 
      Family: Lepidosirenidae       
         Lepidosiren paradora  Lung 7.1 -0.24 ND 23oC, PCO2 6 mmHg (27) 
   Order: Caratodontiformes       
      Family: Caratodontidae       
         Neoceratodus fosteri Lung 11 -0.62 ND 18oC, PCO2 3.5 mmHg (37) 
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