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We present here the coupling of a polarizable embedding (PE) model to the recently developed
multiconfiguration short-range density functional theory method (MC-srDFT), which can treat mul-
ticonfigurational systems with a simultaneous account for dynamical and static correlation effects.
PE-MC-srDFT is designed to combine efficient treatment of complicated electronic structures with
inclusion of effects from the surrounding environment. The environmental effects encompass classical
electrostatic interactions as well as polarization of both the quantum region and the environment.
Using response theory, molecular properties such as excitation energies and oscillator strengths can be
obtained. The PE-MC-srDFT method and the additional terms required for linear response have been
implemented in a development version of D. To benchmark the PE-MC-srDFT approach against
the literature data, we have investigated the low-lying electronic excitations of acetone and uracil, both
immersed in water solution. The PE-MC-srDFT results are consistent and accurate, both in terms
of the calculated solvent shift and, unlike regular PE-MCSCF, also with respect to the individual
absolute excitation energies. To demonstrate the capabilities of PE-MC-srDFT, we also investigated
the retinylidene Schiff base chromophore embedded in the channelrhodopsin protein. While using a
much more compact reference wave function in terms of active space, our PE-MC-srDFT approach
yields excitation energies comparable in quality to CASSCF/CASPT2 benchmarks. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4914922]

I. INTRODUCTION

Quantum mechanical methods have today a prominent
place in chemical science, also in many experimental studies.
Especially, the introduction of Kohn-Sham (KS) density
functional theory (DFT) has revolutionized the role of compu-
tational and theoretical chemistry1 due to its fast and often reli-
able performance for a large variety of properties.2,3 However,
for systems with a degenerate or near-degenerate electronic
ground state, the applicability of DFT is to some extent
questionable, since a correct description requires a genuine
multiconfigurational ansatz.4,5 Such systems are frequently
encountered in biologically relevant molecules, for example,
carotenoids6,7 and many transition metal enzymes.8 Another
type of shortcomings occurs for the description of electronic
excitations of doubly excited character (for exceptions, see
Refs. 9 and 10) as well as excitations of charge-transfer (CT)
type.11–15 Double excitations cannot be handled within the
adiabatic linear-response formalism of time-dependent DFT,
while CT excitations are severely underestimated due to the
wrong long-range asymptotic behavior in the approximate
DFT functional. For CT excitations, one strategy has been

a)Electronic mail: erik.hedegard@phys.chem.ethz.ch
b)Electronic mail: kongsted@sdu.dk
c)Electronic mail: hjj@sdu.dk

range separation where the amount of exact Hartree-Fock
exchange is varied with the inter-electronic distance, r12.16–20

The concept of range separation has also been ex-
ploited21–26 to develop hybrid theories between DFT and
wave function theories. The developments presented in the
following are based on the time-dependent formulation27 of the
multiconfiguration short-range DFT28 (MC-srDFT) approach.
This method capitalizes on the efficient treatment of the (short-
range) Coulomb correlation within DFT and the ability of the
multiconfiguration self-consistent field (MCSCF) method to
recover large parts of the static correlation. It furthermore
provides a wave function ansatz which can inherently handle
molecules with low-lying double excitations. For molecular
excitation energies, the aim of the MC-srDFT method is
thus to be applicable for systems that are problematic with
DFT, while still be at least of the same quality as DFT
when DFT works reliably. This was recently investigated
by some of us, and we verified that MC-srDFT is capable
of yielding excitation energies for CT excitations with an
accuracy competitive with CAM-B3LYP.29 Very pleasing,
excitations with extensive double excitation character were
obtained at an accuracy comparable to CASPT2 for the
retinylidene Schiff base chromophore, which is the active part
of rhodopsin proteins.29

However, these calculations were performed for mole-
cules in gas-phase. Typically, chemistry takes place in

0021-9606/2015/142(11)/114113/11/$30.00 142, 114113-1 © 2015 AIP Publishing LLC
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solution or inside a structured environment, e.g., a protein.
Effects from such environments could be taken partly into
account using continuum solvent models30 although protein
environments are problematic to describe by a structure-less
continuum model. Approaches that consider the surrounding
environment explicitly are more general. The most common
explicit methods are hybrid quantum mechanics and molecular
mechanics (QM/MM) methods.31,32 The standard molecular
mechanics force fields that are typically used in QM/MM
methods are nevertheless still crude, and energy contributions
such as environment polarization are often ignored. Even
standard polarizable force fields33,34 including an electrostatic
component to describe polarization are often not sufficiently
accurate to be applied in calculations of electronic properties.
A more accurate approach is to calculate the embedding
potential from first principles. This is done in the polar-
izable embedding (PE) model developed by Kongsted and
coworkers.35–41 Here, the environment is described through
distributed multipole moments and polarizabilities derived
from ab initio calculations. This is to some extent similar
in spirit to the effective fragment potential method.42–47

Further, the PE model considers not only the polarization
between the quantum region and the classical environment
but also the mutual polarization of the different sites within
the environment. In this paper, we present the coupling of the
PE model with the MC-srDFT method, to be denoted PE-MC-
srDFT. The method is also extended to molecular properties
through the corresponding linear response equations.

The paper is organized as follows: in Sec. II, we
summarize the working equations for the MC-srDFT method
and elaborate on the working equations for the new PE-
MC-srDFT method. Also the time-dependent formulation of
PE-MC-srDFT is discussed within the framework of linear
response. Computational details are briefly summarized in
Sec. III. In Sec. IV, we first present benchmark case studies
where we compare excitation energies of solvated acetone and
uracil to available literature data. Finally, we investigate the
performance of the PE-MC-srDFT approach for the two lowest
excited states of the retinylidene Schiff base chromophore
embedded in a channelrhodopsin. A similar system has been
investigated with the CASPT2 method.48 Concluding remarks
are then given in Sec. V.

II. THEORY

Our starting point here is the time-independent, vacuum
electronic Hamiltonian, Ĥ0, which in second quantization49 is
defined as

Ĥ0 =

pq

hpqÊpq +

pqrs

gpqrsêpqrs, (1)

where Êpq =


σ â†pσâqσ is the singlet one-electron operator,
comprised of creation and annihilation operators, and êpqrs

= ÊpqÊrs − Êpsδqr. The one- and two-electron integrals are
contained in hpq and gpqrs,

hpq = ⟨φp | h(1) |φq⟩, (2)

gpqrs = ⟨φp(r1)φr(r2)| g(1,2) |φq(r1)φs(r2)⟩, (3)

where h(1) contains the one-electron terms for kinetic energy
and nuclear-electron repulsion, and g(1,2) is given as

g(1,2) = 1
|r1 − r2| . (4)

Although the MC-srDFT method has appeared in the
literature,24,27,28 it has not emerged in a form which allows
direct comparison to the second quantized DFT formalism.50,51

Thus, we summarize the second-quantized DFT and MC-
srDFT methods in a form that highlights the similarities of
the methods (Sec. II A). The equations that form the basis
for the PE-MC-srDFT wave function optimization will be
given in Sec. II B. In Sec. II C we present the corresponding
linear response equations and the specific equations used in
the implementation.

A. Multiconfiguration short-range DFT

The Kohn-Sham formulation of DFT uses a single
determinant, |0⟩, built from the Kohn-Sham orbitals {φi}.
These orbitals are used to construct the Kohn-Sham operator,
defined as

f̂0 =

pq

fpqÊpq,

fpq = hpq + Lpq + vxc,pq.
(5)

We are generally using a closed-shell formulation and fpq

contains the integrals in Eq. (2) and also the integrals

Lpq =


rs

gpqrsDrs −
cHF

2


rs

gpsrqDrs,

vxc,pq = ⟨φp |v̂xc(r)|φq⟩,
(6)

where gpqrs was defined in Eq. (3), cHF is the amount of exact
Hartree-Fock exchange (0 ≤ cHF ≤ 1), and Drs is a density
matrix element,

Drs = ⟨0|Êrs|0⟩. (7)

The vxc(r) term is the exchange-correlation potential and is
formally defined as51

vxc(r) = δExc[ρ]
δρ(r) , (8)

and the exchange-correlation energy, Exc[ρ], is usually split
into correlation and exchange parts,

Exc[ρ] = (1 − cHF)Ex[ρ] + Ec[ρ]. (9)

Following Refs. 50 and 51, the electron density, ρ, can be
written

ρ(r) = ⟨0| ρ̂(r)|0⟩ =

pq

Ωpq(r)Dpq, (10)

with Ωpq(r) = φ∗p(r)φq(r) and where ρ̂ is the electron density
operator,

ρ̂(r) =

pq

Ωpq(r)Êpq. (11)

With the basic Kohn-Sham operators defined, we can now
proceed to define the multi-configurational extension of DFT.
The MC-srDFT method considered in this work relies on the
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range separation of the regular two-electron repulsion22,24,27–29

term

g(1,2) → glr, µ(1,2) + gsr, µ(1,2). (12)

The long-range and short-range interactions are based on the
error function,

glr, µ(1,2) = erf(µ|r1 − r2|)
|r1 − r2| ,

gsr, µ(1,2) = 1 − erf(µ|r1 − r2|)
|r1 − r2| ,

(13)

and µ is the range separation parameter. The partitioning in
Eq. (13) gives rise to a new density-dependent long-range
Hamiltonian

Ĥµ
0 [ρµ] =


pq

(
hpq + v

µ
Hxc,pq

)
Êpq +


pqrs

g
lr, µ
pqrsêpqrs, (14)

with

v
µ
Hxc,pq = L

µ
pq + v

sr
xc,pq. (15)

The evaluation of Eq. (15) thus corresponds to Eqs. (6) and
(10) with the formal substitutions

gpqrs → g
sr, µ
pqrs,

vxc,pq → vsr
xc,pq,

Dpq → Dµ
pq = ⟨0µ |Êpq|0µ⟩.

(16)

The g
sr, µ
pqrs integrals are defined as Eq. (3), but with g(1,2)

→ gsr, µ(1,2). |0µ⟩ is a generalization of the Kohn-Sham
determinant to a multiconfigurational wave function. The wave
function ansatz, |0µ⟩, used in this work reads

|0̄µ⟩ = e−κ̂ *
,

|0µ⟩ + P |cµ⟩
1 + ⟨cµ |P |cµ⟩

+
-
. (17)

P̂ = 1 − |0µ⟩⟨0µ | is a projection operator and κ̂ is the usual
singlet orbital-rotation operator,

κ̂ =

pq

κpq
�
Êpq − Êqp

�
= κpqÊ−pq, (18)

while

|cµ⟩ =

j

cj | jµ⟩, (19)

is a configuration correction.
Finally, we can also define the MC-srDFT electron density

ρµ(r) = ⟨0µ | ρ̂(r)|0µ⟩, (20)

which equals the density of the physical fully interacting
system. The ρ̂(r) operator was defined in Eq. (11).

B. MC-srDFT with polarizable embedding

The PE model within a regular DFT framework has been
defined through the modified KS operator,35,36

f̂ = f̂0 + v̂pe, (21)

where f̂0 is the vacuum KS operator (see Eq. (5)). The effective
one-electron operator,

v̂pe = v̂es + v̂pol, (22)

includes electrostatic interactions and polarization from sites
in the environment through v̂es and v̂pol, respectively. The elec-
trostatic interactions are described using permanent multipole
moments (see, e.g., Ref. 40) while the polarization operator
becomes

v̂pol = −⟨0|F̂†|0⟩RF̂e = −(µind)TF̂e. (23)

Here, ⟨0|F̂†|0⟩ is a row vector which contains the total electric
field at all the polarizable sites, and F̂e is the electronic
electric field operator. The symmetric matrix R is the classical
response matrix,52

R =
*....
,

α−1
11 · · · −T(2)

1S
...

. . .
...

−T(2)
S1 · · · α−1

SS

+////
-

−1

, (24)

where α−1
ss are inverse anisotropic polarizabilities and T(2)

s′s are
dipole-dipole interaction tensors. The indices s and s′ refer
to different polarizable sites, and S is the total number of
polarizable sites.

Analogously to Eq. (21), the PE operator can be added
to the vacuum MC-srDFT Hamiltonian ansatz. The PE-MC-
srDFT Hamiltonian thus becomes

Ĥµ[ρµ] = Ĥµ
0 [ρµ] + v̂ µpe. (25)

The PE potential, v̂pe, will be modified in a MC-srDFT scheme
through its dependence on the wave function. Formally, this
modification is obtained by substituting |0⟩ → |0µ⟩ in Eq. (23).
The introduction of v̂ µpe in Eq. (25) gives rise to additional terms
in the electronic gradient and direct-Hessian vectors

gµ = gµ
0 + gµ

pe, (26)

σµ = σµ
0 + σ

µ
pe, (27)

where gµ
0 and σµ

0 are the vacuum contributions (see Ap-
pendix A). The simple form as a sum of vacuum and PE
contributions is result of that there is no direct coupling
between the vacuum and PE terms in Eq. (25). Both vacuum
and PE contributions bear great resemblance to the original
MCSCF and PE-MCSCF methods, which are explained in
detail in the literature.40,53–56 Thus, Eqs. (26) and (27) can
be derived explicitly by following the derivation outlined in
Ref. 40, using the MC-srDFT wave function |0µ⟩ instead of
the regular MCSCF wave function. Here, we only give the
relevant contributions from the environment. For the gradient,
the contributions from a polarizable environment are

g
c, µ
pe, j = 2

�⟨0µ |v̂ µpe| jµ⟩ − cj⟨0µ |v̂ µpe|0µ⟩� ,
g
o, µ
pe,pq = 2⟨0µ |[Êpq, v̂

µ
pe]|0µ⟩, (28)

for the CI and orbital parts, respectively. The cj coefficients
are given in Eq. (19).

The σpe vector splits according to

σµ
pe = σc, µ

pe + σ
o, µ
pe =

*
,

Hcc, µ
pe

Hoc, µ
pe

+
-

bc + *
,

Hco, µ
pe

Hoo, µ
pe

+
-

bo, (29)

where bc and bo are configuration- and orbital trial-vectors,
respectively. Following the derivation in Ref. 40, the direct
evaluation of the Hessian is described through a set of effective
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operators. To define these, the |Bµ⟩ state from Ref. 40 is first
given in its MC-srDFT form,

|Bµ⟩ =

j

bcj | jµ⟩, (30)

and the effective PE operators thus become

F̂c(bc) = −⟨0µ | F̂e |Bµ⟩R F̂e,

F̂o(bo) = −⟨0µ | F̃e(bo) |0µ⟩R F̂e,

ṽ
µ
pe(bo) = ṽes(bo) − ⟨0µ | F̂ |0µ⟩R F̃e(bo),

(31)

where ṽes(bo) and F̃e(bo) are one-index transformed operators
(see Ref. 40). The effective operators in Eq. (31) are now used
to describe the components of the σ-vector in Eq. (29) as
follows:

(Hcc, µ
pe bc) j = 4

(⟨ jµ |F̂c(bc)|0µ⟩ − ⟨0µ |F̂c(bc)|0µ⟩cj

)
− 2
(⟨ jµ |v̂ µpe|Bµ⟩ − ⟨0µ |v̂ µpe|0µ⟩bcj

)
,

(Hco, µ
pe bo) j = 2

�⟨0µ |F̂o(bo) + ṽ µpe(bo)| jµ⟩�
− 2⟨0µ |F̂o(bo)|0µ⟩cj,

(32)

and

(Hoc, µ
pe bc)pq = 2⟨0µ |[Ê−pq, F̂

c(bc) + v̂ µpe]|0µ⟩,
(Hoo, µ

pe bo)pq = ⟨0µ |[Ê−pq, F̂
o(bo) + ṽ µpe(bo)]|0µ⟩

+
1
2


t

(
g
o, µ
pe, t pbo

qt − g
o, µ
pe, tqbo

pt

)
,

(33)

where g
o, µ
pe, i j are matrix elements from the orbital part of

gradient (Eq. (28)) and Ê−pq is defined in Eq. (18). The
Eqs. (32) and (33) comprise along with the gradient in Eq. (28),
all ingredients necessary for optimizing a MC-srDFT wave
function with contributions from a polarizable environment.
In Sec. II C, such an optimized wave function will be assumed
available.

C. Linear response PE-MC-srDFT equations

In this section, the effect of a time-dependent perturbation
is considered through response theory; the time-evolution of
the expectation value of a given operator, Â, is given as57

⟨0̃µ(t)| Â|0̃µ(t)⟩ = ⟨0µ | Â|0µ⟩
+

 ∞

−∞
⟨⟨Â; V̂ω⟩⟩ exp(−iωt)dω + · · ·, (34)

where ⟨⟨Â; V̂ω⟩⟩ is the linear response function. The time-
dependent reference state, | 0̃µ(t)⟩, is determined from the
time-dependent Schrödinger equation

⟨0̃µ(t)|(Ĥ[ρµ(t)] + V̂ (t)) | 0̃µ(t)⟩ = ⟨0µ(t)|i ∂
∂t

|0µ(t)⟩, (35)

where Ĥ[ρµ(t)] is the time-dependent extension of Eq. (25),

Ĥ[ρµ(t)] = Ĥµ
0 [ρµ(t)] + v̂ µpe(t) (36)

and V̂ (t) is a time-dependent, periodic perturbation.
The long-range MCSCF wave function in its time-

dependent form is defined as

|0̃µ(t)⟩ = eiκ̂(t)ei Ŝ(t)| 0µ⟩, (37)

with the κ̂(t) and Ŝ(t) operators in Eq. (37) defined as

κ̂(t) =

i

κi(t)q̂†i + κ∗i(t)q̂i,
Ŝ(t) =


i

Si(t)R̂†i + S∗i (t)R̂i,
(38)

where the R̂†i = |i⟩⟨0µ | is a state-transfer operator, and we have
followed the notation given by Olsen and Jørgensen57 for the
orbital rotation operators, q̂†i = Êpq (p > q). In the following,
the summation in Eq. (38) will be implicit.

The linear response equations can be obtained from the
generalized Ehrenfest theorem. This is done explicitly for PE-
MCSCF in Ref. 40, and for DFT and MCSCF in Refs. 51 and
58, and 57 and 59, respectively. As for the electronic gradient
and Hessian, the PE-MC-srDFT linear response equations can
be derived by following the derivation in Ref. 40, using the
PE-MC-srDFT Hamiltonian in Eq. (25). The final response
equations become (here, given in the frequency domain)(

E[2]µ − ωS[2]µ)
Λ(ω) = iV[1]ωµ. (39)

Since there is no direct coupling between the vacuum and PE
terms in Eq. (25), the Hessian is a sum of vacuum and PE
contributions

E[2]µ = E[2]µ
vac + E[2]µ

pe . (40)

The expression for the metric, S[2]µ, and the vacuum terms,
E[2]µ

vac , can be found in the literature27,29 and are also given in
Appendix B.

The E[2]µ
pe term in Eq. (40) is the new term needed for this

work,

E[2], µ
pe =



Aµ
pe Bµ

pe

(Bµ
pe)∗ (Aµ

pe)∗

+ R(D[1]µ

aux.E
[1]µ
e ). (41)

The first term on the right-hand side contains the electrostatic
contribution (static) and the contribution from the ground-state
polarization, both included in the v̂pe operator

Aµ
pe =



⟨0µ |[q̂i, [v̂ µpe, q̂
†
j ]]|0µ⟩ ⟨0µ |[[q̂i, v̂ µpe], R̂†j]|0µ⟩

⟨0µ |[R̂i, [v̂ µpe, q̂
†
j ]]|0µ⟩ ⟨0µ |[R̂i, [v̂ µpe, R̂

†
j]]|0µ⟩


, (42)

Bµ
pe =



⟨0µ |[q̂i, [v̂ µpe, q̂j]]|0µ⟩ ⟨0µ |[[v̂ µpe, q̂i], R̂j]|0µ⟩
⟨0µ |[R̂i, [v̂ µpe, q̂j]]|0µ⟩ ⟨0µ |[R̂i, [v̂ µpe, R̂j]]|0µ⟩


. (43)

The second term on the right-hand side in Eq. (41) accounts for
the change in polarization in the environment upon excitation
through the auxiliary density matrix

D[1]µ
aux. =

�⟨0µ |[q̂i, F̂e]|0µ⟩ + ⟨0µ |[R̂i, F̂e]|0µ⟩�, (44)

and the gradient-like term

E[1]µ
e =



⟨0µ |[q̂j, F̂e]|0µ⟩
⟨0µ |[R̂j, F̂e]|0µ⟩
⟨0µ |[q̂†j , F̂e]|0µ⟩
⟨0µ |[R̂†j , F̂e]|0µ⟩



. (45)

The linear response function thus equals

⟨⟨Â,V̂ ⟩⟩ω = −A[1]µ†E[2]µ − ωS[2]µ−1
V[1]µ , (46)
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where the gradient property vector has elements given as

V[1]µ =


v(r)ρ[1]µ(r)dr. (47)

The density gradient, ρ[1]µ, is defined through the density
operator in Eq. (11),

ρ[1]µ =
*.....
,

⟨0µ |[q̂i, ρ̂(r)]|0µ⟩
⟨0µ |[R̂i, ρ̂(r)]|0µ⟩
⟨0µ |[q̂†i , ρ̂(r)]|0µ⟩
⟨0µ |[R̂†i , ρ̂(r)]|0µ⟩

+/////
-

. (48)

Excitation energies can now be calculated at the PE-MC-
srDFT level by solving iteratively,(

E[2]µ − ωS[2]µ)
Λ(ω) = 0, (49)

and oscillator strengths are determined by using the iteratively
obtained Λ(ω) on to the property gradient vectors V[1]µ (cf.
Eq. (47)).

As for the wave function optimization, the E[2]µ
pe matrix is

not constructed explicitly, as this would limit the implemen-
tation to very small systems. Following the original D 60

linear response implementation, the current implementation

rather constructs the vector E[2]
pe N(ω) through trial vectors

N(ω),
N(ω) = (κ,S,κ∗,S∗) . (50)

The required operators are the ṽ
µ
pe operator in Eq. (31) along

with the effective operators

F̂[1] = F̂c(S) + F̂o(κ), (51)

which is defined similar to the F̂c(bc) and F̂o(bo) operators in
Eq. (31),

F̂c(S) = −(⟨0L | F̂e |0µ⟩ + ⟨0µ | F̂e |0R⟩)R F̂e,

F̂o(κ) = −⟨0µ | F̃e(κ) |0µ⟩R F̂e.
(52)

We have in Eq. (52) defined the states

|0R⟩ =

n,0

SnR̂†n|0µ⟩,
⟨0L | =


n,0

⟨0µ |R̂nS∗n,
(53)

by means of state-transfer operators. An explicit derivation of
the form of the operators in Eq. (52) and E[2]µ

pe N(ω) is given
in Ref. 40. Here, we only summarize the final expression

E[2]µ
pe N(ω) =



⟨0L |[q̂j, v̂pe]|0µ⟩ + ⟨0µ |[q̂j, v̂pe]|0R⟩
⟨0L |v̂pe| jµ⟩

⟨0L |[q̂†j , v̂pe]|0µ⟩ + ⟨0µ |[q̂†j , v̂pe]|0R⟩
−⟨ jµ |v̂pe|0R⟩



−



⟨0µ |[q̂j, ṽ
µ
pe(κ) + F̂[1]]|0µ⟩

⟨0µ |ṽ µpe(κ) + F̂[1]| jµ⟩
⟨0µ |[q̂†j , ṽ µpe(κ) + F̂[1]]|0µ⟩
⟨ jµ |ṽ µpe(κ) + F̂[1]|0µ⟩



−



0
Sj

0
S∗j



⟨0µ |v̂pe|0µ⟩. (54)

The construction of E[2]
pe N(ω) in Eq. (54) relies on the

existing implementation of PE-MCSCF.40 With its exten-
sion to MC-srDFT, it is thus possible to calculate (static)
spectroscopic constants of systems with significant static
correlation in complex environments. The dynamic correlation
is included efficiently through a short-range DFT functional,
and the spectroscopic constants are obtained through linear
response theory. For the case of a molecular excitation, double
excitations are accessible, unlike in regular Kohn-Sham DFT.
The interaction of the molecule and polarizable environment
is taken into account for the ground-state and also for excited
states through the second term in Eq. (41).

III. COMPUTATIONAL DETAILS

All calculations were performed using a development
version of the D program.60,61 Contributions from
the environment are provided by the PE library62 which
acquires one-electron integrals from the Gen1Int library.63,64

MC-srDFT and the corresponding response calculations are
performed with the spin-independent Goll-Werner-Stoll short-
range functional26 (srPBE). The long-range interacting refer-
ence wave functions for the PE-MC-srDFT calculations are of
the Complete Active Space Self-Consistent Field (CASSCF)
type which implies a full configuration interaction expansion
for n electrons in m orbitals denoted as CAS(n,m).

For acetone, a CAS(2,2) wave function was used, while
for uracil, we used a CAS(6,6) wave function. These CAS
spaces include the valence π-electrons. The aug-cc-pVDZ65

basis set was used for both molecules. The acetone and
uracil geometries, MD snapshots, and embedding potentials
were taken from previous studies,35,66,67 and comprised 120
snapshots for each system. All reported values from the
condensed phase are averages over a series of snapshots. The
retinylidene Schiff base chromophore and protein structure are
taken from Ref. 68. It is originally based on a crystal structure
of the channelrhodopsin chimera C1C269 which was resolved
at 2.3 Å (PDB ID: 3UG9). Note that we discovered some dis-
torted methyl groups in the structure taken from Ref. 68 which
were corrected in the present case. However, the irregularities
were located very far from the active chromophore and had
no effect on the excitation energies within the given accuracy.
New embedding potentials were created using a Python script
that automates and parallelizes the generation of potentials for
polarizable embedding calculations and will be released in the
near future. The script uses the molecular fractionation with
conjugate caps (MFCC) scheme70 to fragment the protein and
the procedure reported by Söderhjelm and Ryde48 to derive
the embedding potential parameters. For each fragment, a
MOLCAS71 calculation is performed to obtain atom-centered
permanent multipole moments and polarizabilities. The prop-
erties are subsequently localized using the LoProp method.72
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FIG. 1. Solvent shifts for the n→ π∗ excitation in acetone calculated with
various methods. Data have been compiled from Refs. 35, 40, 66, and 74–81.

The fragment calculations were performed at the B3LYP
level of theory using ANO-type recontractions of the aug-cc-
pVDZ basis set. We used a potential including multipoles up
to quadrupoles and anisotropic dipole-dipole polarizabilities
(“M2P2”). In addition, we also use a M2 potential which does
not include polarizabilities. The retinylidene Schiff base was
modeled using MC-srPBE with a CAS(6,6) active space and a
6-31G∗ basis set. The active space was chosen in accordance
with previous studies.29,73

IV. RESULTS AND DISCUSSION

In this section, we discuss the performance of the
linear response PE-MC-srDFT method for the description
of excitation energies and excited state properties in three
representative molecular systems, namely, acetone in water
(Sec. IV A), uracil in water (Sec. IV B), and the retinylidene
Schiff base of a channelrhodopsin (Sec. IV C). Both the
acetone and uracil solutions were recently investigated with
regular MCSCF wave functions utilizing the same classical
MD and potentials for the water environment.40

A. Acetone

As the first test case for the new PE-MC-srDFT approach,
we computed the low-lying excitation energies for acetone
both in gas-phase and immersed in water. Acetone is a
widely accepted guinea pig system for calculations on solute-
solvent systems as reflected by the large amount of reference
data available for this molecule. For acetone in aqueous
solution, we recently found that the MCSCF/CASSCF ansatz
performed remarkably well for the solvent shifts. We therefore
start by discussing the solvent shift obtained with linear
response PE-CAS(2,2)-srPBE. A comparison between exci-
tation energies obtained with PE-CAS(6,6) and PE-CAS(2,2)-
srPBE has been compiled in Figure 1, including also a
selected series of the literature results. For acetone, all the
polarizable embedding methods describe the solvent shift for
the n → π∗ excitation quite accurately. The most obvious
outlier in Figure 2 is the CASPT2 method.76 However, it
should be emphasized that this is mainly due to the crude
solvent description used in Ref. 76 and not due shortcomings
of the CASPT2 method itself. This will become evident
from the quite accurate result for the gas-phase calculation
obtained using CASPT2 discussed below. Although the first
applications of the PE-MCSCF method have shown that
it is able to yield good solvent shifts, it still significantly
overestimates the absolute excitations. In Figure 2, the
calculated solvent shifts for the n → π∗ excitation in Figure 1
have been broken down to the absolute values of the gas-
phase and condensed phase, respectively. From Figure 2, it
can be seen that HF significantly underestimates the n → π∗

excitation energy, while CASSCF significantly overestimates
it. In both cases, it is thus a systematic error cancellation
that eventually leads to reasonable solvent shifts. (PE)-
CAS(2,2)-srPBE, on the other hand, gives consistent and
accurate results, both in terms of the calculated solvent
shift and for the individual (gas- and condensed phase)
absolute excitation energies. Further comparison with the
reference data in Figure 2 reveals that PE-CAS(2,2)-srPBE
is comparable to PE-CCSD and PE-CAM-B3LYP, and thus
a considerable improvement compared to regular PE-CAS.
For the gas-phase results, we also note that CASPT2(4,6) and

FIG. 2. n→ π∗ excitation for acetone calculated with various methods. Data have been compiled from Refs. 35, 40, 66, and 74–81 (the gas-phase results on
the left-hand side are from the same references as the condensed phase data). CCSD(1) and CCSD(2) have slightly different computational setups, including the
treatment of the water environment.
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TABLE I. Vertical excitation energies (in eV) for uracil. CAS is short-
hand for CAS(10,10), CB3 denotes CAM-B3LYP, and CAS-srPBE denotes
CAS(6,6)-srPBE.

Environment CASa CB3a CAS-srPBE Expt.b

π→ π∗

Gas phase 6.50 5.39 5.54 5.08
Water 6.24 5.27 5.38 4.77
Shift −0.26 −0.12 −0.16 −0.31

n→ π∗

Gas phase 6.14 5.05 5.12 4.38
Water 6.47 5.65 5.78 n.r.
Shift 0.32 0.60 0.66 . . .

aFrom Ref. 40.
bExperimental values from Refs. 82–84. The n→ π∗ cannot be resolved in water.

CAS(2,2)-srPBE are roughly equally close to the experimental
value, while the excitation energy in the condensed phase
is significantly underestimated by CASPT2 with the applied
dielectric continuum method (as also noted by the authors in
Ref. 76).

B. Uracil

Our second test case is the nucleoside base uracil in
aqueous solution. Uracil displays two low-lying excitations,
which are closely spaced in energy. In gas-phase, the lowest
lying excitation is of n → π∗ type, followed by a π → π∗

excitation. Theoretical data suggest that the two excitations
interchange in aqueous solution (see discussion below). The
absolute values for the excitation energies of the two electronic
excitations calculated both in gas-phase and condensed phase
are compiled in Table I along with the corresponding solvent
shift. Table I summarizes in addition a few recent result
obtained with PE in combination with other electronic
structure methods. Starting with the π → π∗ excitation, which
has been experimentally resolved, the PE-MCSCF method
(using a CAS(10,10) space40) yields seemingly the most
accurate solvent shift, while the shifts obtained for PE-
CAS(6,6)-srPBE and PE-CAM-B3LYP are still reasonable.
The results listed in Table I indicate the same pattern as
seen as for acetone in Sec. IV A: Although (PE)-CAS gives
quite accurate solvent shifts, the absolute excitations are off,
both for the gas- and condensed phase, and the CASSCF
approach greatly benefits from a favorable error cancellation.
The improvements in the absolute π → π∗ excitation energies
are significant with the PE-CAS(6,6)-srPBE method. Turning
next to the n → π∗ excitation, PE-CAM-B3LYP and PE-
CAS(6,6)-srPBE provide very similar results. No experimental
data exist for this excitation in aqueous solution, but if we
assume a similar accuracy to what is seen in the gas-phase,
we can expect that the CASSCF results are also significantly
off since CAS(6,6)-srPBE in the gas-phase is already much
closer to the experimental result. However, with respect to the
solvent shift, it is evident from the preceding discussion of
the π → π∗ excitation that this might still be obtained quite
accurately by regular PE-CAS.

TABLE II. (PE-)CAS(6,6)-srPBE vertical excitation energies in eV (with
oscillator strengths in parentheses) for the retinylidene Schiff base chro-
mophore. The protein is included without (M2) or with explicit polarization
(M2P2). All results are with 6-31G∗ basis set.

Environment S0→ S1 (1Bu) S0→ S2 (1Ag)
Gas-phase29 2.29 (1.60) 3.63 (0.52)
Protein (M2) 3.15 (1.98) 3.99 (0.25)
Protein (M2P2) 2.98 (2.06) 4.01 (0.25)
Expt.85 2.70 . . .

C. Channelrhodopsin

In order to test the PE-MC-srDFT method for a chro-
mophore embedded within a protein, we selected channel-
rhodopsin, which has previously been studied with PE-CAM-
B3LYP and PE-CC2.68 Its active site is the retinylidene Schiff
base chromophore which has recently also been subject to
gas-phase MC-srDFT calculations29 (using the structure from
Ref. 68 that is optimized inside the protein). Here, we use the
same structure that was employed in the previous studies.29,68

Results are compiled in Table II. The PE-CAS(6,6)-srPBE
results obtained for the first transition S0 → S1 (the bright state
characterized by its considerably larger oscillator strength)
are in good agreement with the PE-CAM-B3LYP and PE-
CC2 values. Generally, looking at the results in Table II it
becomes evident that the effect of the protein is crucial and
that the effect from polarization from the environment is rather
large and should not be neglected. The MC-srPBE method
in combination with polarizable embedding is capable of
describing the first (S0 → S1) excitation with good accuracy
compared to experiment. Although the basis set used is rather
moderate, previous investigations have shown that this is not
a major source of error. Thus, if higher accuracy is aimed
for, one should also consider the quality of the underlying
molecular structure or finite temperature effects. As discussed
previously,29 the dark state (S0 → S2) originates from a
double excitation that present-day TD-DFT approaches cannot
describe. In contrast, this class of states can be described with
MC-srPBE, and here, we have also probed the protein effect
on the S0 → S2 excitation. The effect of the protein is also for
this transition, a rather large blue shift. However, polarization
has a much smaller effect here than for the S0 → S1 transition,
in agreement with the fact that the second transition has much
less CT character. It is evident from our results in Table II
that to obtain the relative position of two excited states of a
chromophore embedded in a protein, it is crucial to describe
the environment accurately. We observe that the effect of the
environment cannot only be very different but also depends on
the nature of the excited states.

V. CONCLUSIONS

In this paper, we have presented the PE-MC-srDFT model
in which the polarizable embedding model has been coupled to
a hybrid scheme, namely, the multiconfiguration short-range
DFT method. The PE-MC-srDFT method combines three
elements in order to achieve our goal of efficient, yet
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accurate description of large complex structures: “PE” for
efficient description of the environment, “MC” for efficient
description of static correlation, non-singlet spin states, and
double excitations; and “srDFT” for efficient description
of short-range dynamical correlation. The first part of the
paper summarized the original vacuum MC-srDFT model.
Following this subsection, the definition of the PE-MC-
srDFT method was elaborated, and the working equations
were derived. We then considered the generalization to time-
dependent properties, giving the response equations and
functions for the PE-MC-srDFT method. Although the linear
response code is more general, the focus here is on excitation
energies, and we have calculated solvent shifts and absolute
excitation energies for two (explicitly) solvated systems and
for a chromophore in a protein.

For both acetone and uracil, the absolute excitation ener-
gies show considerable improvement, both when compared to
reference data from experiment and to high-level correlated
wave function data.

As a final test case, we have considered a retinylidene
chromophore in its Schiff base form surrounded by the
native channelrhodopsin protein. The PE-MC-srPBE method
describes the first (S0 → S1) excitation accurately compared
with experiment. We have also probed the effect of the protein
on the dark state (S0 → S2) that cannot be described with
regular TD-DFT because it has significant double excitation
character. For this excitation, the effect of the protein is
also large and blue-shifts the excitation energy although
polarization has a much smaller effect. The description of
the environment is thus crucial to obtain a reasonable relative
energy of two excited states for chromophores within proteins.
A next obvious class of target systems is transition metals
which are often found embedded in protein matrices. Also
solvated transition metals are currently being studied with the
PE-MC-srDFT method. Before closing, we note that the (PE)-
MC-srDFT linear response code can also be used to calculate
(frequency-dependent) polarizabilities, NMR shielding and
spin-spin constants, and many other spectroscopic properties.
This will be pursued in future work.
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APPENDIX A: MC-SRDFT ELECTRONIC GRADIENT
AND HESSIAN

This appendix recapitulates the equations required for
MC-srDFT wave function optimization. The theoretical basis
for the method has appeared in the literature before24,28 but

without explicit reference to the structure of the electronic
gradient and Hessian.

The use of a multiconfigurational ansatz for the wave
function |0µ⟩ (see Eq. (17)) obviously necessitates a MCSCF
optimization protocol. We utilize for this purpose the restricted
step algorithm53 implemented in D. The restricted step
algorithm is based on a second order Taylor expansion of the
electronic energy, thus making use of both the gradient, gµ,
and the electronic Hessian, Hµ. The gradient,

gµ
0 =

*
,

gc, µ
0

go, µ
0

+
-
, (A1)

is comprised of configuration (gc
0) and orbital (go

0 ) parts,
respectively. The individual terms can be obtained as their
MCSCF equivalents (e.g., taken from Refs. 53 and 54), using
the Ĥµ

0 [ρµ] operator in Eq. (14).
Turning to the Hessian, it is calculated in a direct

manner,54 utilizing a set of trial vectors {bi} (σ = H0b). The
σµ

0 vector can as the gradient be split into configuration and
orbital parts,

σµ
0 =

*
,

Hcc, µ
0 Hco, µ

0

Hoc, µ
0 Hoo, µ

0

+
-
*
,

bc

bo
+
-
, (A2)

or

σµ
0 = σc, µ

0 + σo, µ
0 = *

,

Hcc, µ
0

Hoc, µ
0

+
-

bc + *
,

Hco, µ
0

Hoo, µ
0

+
-

bo, (A3)

as in Eq. (29). The individual expressions have the same
structure as the PE contributions in Eqs. (32) and (33)

(Hcc, µ
0 bc) j = 4

(⟨ jµ |v̂eff,c
Hxc (bc)|0µ⟩ − ⟨0µ |v̂eff,c

Hxc (bc)|0µ⟩cj

)
− 2
(⟨ jµ |Ĥµ

0 [ρµ]|Bµ⟩
− ⟨0µ |Ĥµ

0 [ρµ]|0µ⟩bcj
)
,

(Hco, µ
0 bo) j = 2⟨0µ |v̂eff,o

Hxc + H̃µ
0 [ρµ](bo)| jµ⟩

− 2⟨0µ |v̂eff,o
Hxc (bo)|0µ⟩cj

(A4)

and

(Hoc, µ
0 bc)pq = 2⟨0µ |[Ê−pq, v̂

eff,c
Hxc (bc) + Ĥµ

0 [ρµ] ]|0µ⟩,
(Hoo, µ

0 bo)pq = ⟨0µ |[Ê−pq, v̂
eff,o
Hxc (bo) + H̃µ

0 [ρµ](bo)]|0µ⟩
+

1
2


t

(
g
o, µ
0, t pbo

qt − g
o, µ
0, tqbo

pt

)
,

(A5)

where H̃µ
0 [ρµ](bo) is the one-index transformed form of

Ĥµ
0 [ρµ] (see Eq. (14)). The operators v̂eff,c

Hxc (bc) and v̂eff,o
Hxc (bo)

are effective operators with slightly different forms, depending
on whether they have origin in configuration (v̂eff,c

Hxc ) or orbital
(v̂eff,o

Hxc ) parameters. Their forms are similar to the F̂c(bc) and
F̂o(bo) operators in Eq. (31), but with origin in the DFT
term. Explicit expressions have been given elsewhere.56 The
reason for the similarity between the PE and MC-srDFT
effective operators is the underlying operator structure; for
both PE-MCSCF and MC-srDFT, the additional operators that
are introduced relative to standard MCSCF are one-electron
operators of non-linear type.
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APPENDIX B: LINEAR RESPONSE MC-SRDFT
EQUATIONS

The linear response equations derived previously27 are
further recast in a form that enables the direct extension of
the second quantized DFT formalism as given by Saue and
Salek50,51 to a multiconfigurational formalism.

As done in previous papers on response theory,51,57,59 we
use a perturbation expansions of Eq. (38),

κ̂(t) = κ̂(1)(t) + κ̂(2)(t) + · · ·,
Ŝ(t) = Ŝ(1)(t) + Ŝ(2)(t) + · · ·. (B1)

Along the same lines as in Ref. 51, we expand the Hamiltonian
in a perturbation series, which for the vacuum part (Eq. (14))
becomes

Ĥµ
0 [ρµ(t)] = Ĥ (0)µ

0 [ρµ] + Ĥ (1)µ[ρµ(t)] + · · ·. (B2)

The auxiliary Hamiltonian, Ĥ (0)µ
0 [ρµ], is calculated for the

unperturbed MC-srDFT density, ρµ(r), while the first order
correction, Ĥ (1)µ[ρµ(t)], depends on the MC-srDFT density
gradient, ρ(1)µ(r, t), that is obtained from51

ρµ(r, t) = ⟨ 0̃µ(t)| ρ̂(r) | 0̃µ(t) ⟩
= ⟨0µ | e−i Ŝ(t)e−iκ̂(t) ρ̂(r)eiκ̂(t)ei Ŝ(t) |0µ⟩. (B3)

A Baker-Campbell-Hausedorff expansion of Eq. (B3) yields
to first order

ρ(1)µ(r, t) =

pq

Ωpq(r)D(1)µ
pq (t), (B4)

where the time-dependence to first order is obtained through
the time-dependent density matrix

D(1)µ
pq (t) = ⟨0µ |[κ̂(1)(t) + Ŝ(1)(t), Êpq]|0µ⟩. (B5)

Ĥ (1)µ[ρµ(t)] thus becomes

Ĥ (1)µ[ρµ(t)] =

pq

v
(1)µ
Hxc,pq(t)Êpq,

v
(1)µ
Hxc,pq(t) = L(1)µ

pq (t) + v (1)sr
xc,pq(t),

(B6)

where v̂
(1)sr
Hxc,pq(t) is the first-order time-dependent extension of

Eq. (15),

L(1)µ
pq (t) =


rs

g
sr, µ
pqrsD(1)µ

rs (t) − cHF

2


rs

g
sr, µ
psrqD(1)µ

rs (t),
v
(1)sr
xc,pq(t) = ⟨φp |v (1)sr

xc (r, t)|φq⟩.
(B7)

The exchange-correlation kernel is calculated using the
adiabatic approximation

v̂
(1)sr
xc (r, t) =


dr′

δv̂sr
xc(r, t)
δρ(r′) ρ(1)µ(r′, t)

≈


dr′
δ2Esr

xc[ρµ]
δρ(r)δρ(r′) ρ

(1)µ(r′, t). (B8)

Since the final response equations will be calculated in the
frequency domain rather than the time-domain, the wave
function coefficients are Fourier transformed,

κ̂
(1)
i (t) =

 (
κi(ω)q̂†i e−iωt + κ∗i(−ω)q̂ieiωt

)
dω,

Ŝ(1)
i (t) =

 (
Si(ω)R̂†i e−iωt + S∗i (−ω)R̂†i eiωt

)
dω.

(B9)

In the frequency domain, the first-order density matrix in
Eq. (B5) becomes

Dωµ
pq =

(
κ j(ω) Sj(ω) κ∗j(−ω) S∗j(−ω)

) *.....
,

⟨0µ |[q̂j, Êpq]|0µ⟩
⟨0µ |[R̂j, Êpq]|0µ⟩
⟨0µ |[q̂†j , Êpq]|0µ⟩
⟨0µ |[R̂†j , Êpq]|0µ⟩

+/////
-

= Λ(ω) D[1]µ
pq , (B10)

and the density gradient is thus transformed into

ρωµ = Λ(ω) ρ[1]µ, (B11)

where ρ[1]µ was given in Eq. (48). With Eqs. (B10) and
(B11), it is now possible to define the Fourier transformed
H (1)µ[ρµ(t)] of Eq. (B6),

Ĥωµ = H [1]µ
Λ(ω),

Ĥ [1]µ =

pq

v
[1]µ
Hxc,pqÊpq =


pq

(
L[1]µ

pq + v
[1]sr
xc,pq

)
Êpq,

(B12)

where the integrals L[1]µ
pq and v

[1]sr
xc,pq are defined as in

Eqs. (B7), with the replacements D(1)
pq → D[1]

pq and ρ(1) → ρ[1],
i.e., Eqs. (B10) and (B11) are used instead of (B4) and (B5),
respectively. The kernel is calculated using the unperturbed

MC-srDFT density,

v
[1]µ
xc (r) =


dr′

δ2Esr
xc[ρµ]

δρ(r)δρ(r′) ρ
[1]µ(r′). (B13)

With all wave function parameters and perturbation expan-
sions defined, the response equations can now be obtained
from the generalized Ehrenfest theorem (as done in Refs. 57
and 59). To obtain the first order corrections, the expansion
in Eqs. (B1) and (B6) is used and the resulting equation is
transformed to the frequency domain, leading to Eq. (39) with

E[2]µ
vac = E[2]µ

0 + E[2]µ
Hxc . (B14)

E[2]µ
0 and also the µ-dependent metric, S[2]µ, in Eq. (39),

E[2]µ
0 =



Aµ Bµ

Bµ∗ Aµ∗


, S[2]µ =



Σµ ∆µ

−∆µ∗ −Σµ∗


, (B15)
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are obtained as their regular MCSCF counterparts (see,
e.g., Refs. 57 and 59), with Ĥ0 → Ĥ [0]µ

0 [ρµ] and |0⟩ → |0µ⟩.
The full form of these two matrices are given in recent
MC-srDFT papers.27,29 The contribution from the srDFT part
becomes

E[2]µ
Hxc =



Aµ
Hxc Bµ

Hxc

Bµ∗
Hxc Aµ∗

Hxc


, (B16)

where

Aµ
Hxc =



⟨0µ |[q̂i, (Ĥ [1]µ
j )†]|0µ⟩ ⟨0µ |[R̂i, (Ĥ [1]µ

j )†]|0µ⟩
⟨0µ |[q̂†i , (Ĥ [1]µ

j )]|0µ⟩ ⟨0µ |[R̂†i , (Ĥ [1]µ
j )]|0µ⟩


,

(B17)

Bµ
Hxc =



⟨0µ |[q̂†i , (Ĥ [1]µ
j )†]|0µ⟩ ⟨0µ |[R̂†i , (Ĥ [1]µ

j )†]|0µ⟩
⟨0µ |[q̂†i , (Ĥ [1]µ

j )]|0µ⟩ ⟨0µ |[R̂†i , (Ĥ [1]µ
j )]|0µ⟩


.

(B18)

The Ĥ [1]µ
j term is given in Eq. (B12) and the j-index refers

to the state-transfer or orbital-rotation operators used in
evaluation of D[1] or ρ[1]. The actual evaluation of E[2]µ

vac uses
a direct Hessian formulation similar to the electronic Hessian
in Eqs. (A4) and (A5), also relying on effective operators.
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