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Mikkel Tang Thomsen*, Dirk Kraft, and Norbert Krüger

Identifying relevant feature-action associations
for grasping unknown objects
Abstract: Action affordance learning based on visual
sensory information is a crucial problem within the de-
velopment of cognitive agents. In this paper, we present
a method for learning action affordances based on basic
visual features, which can vary in their granularity, or-
der of combination and semantic content. The method
is provided with a large and structured set of visual fea-
tures, motivated by the visual hierarchy in primates and
finds relevant feature action associations automatically.
We apply our method in a simulated environment on
three different object sets for the case of grasp affor-
dance learning. For box objects, we achieve a 0.90 suc-
cess probability, 0.80 for round objects and up to 0.75
for open objects, when presented with novel objects. In
this work, we in particular demonstrate the effect of
choosing appropriate feature representations. We could
demonstrate a significant performance improvement by
increasing the complexity of the perceptual represen-
tation. By that, we could present important insights in
how the design of the feature space influences the actual
learning problem.
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1 Introduction
Identifying sensory features indicating action affor-
dances is a crucial problem to be solved by cognitive
agents since it allows for the identification of “action op-
portunities”. A fundamental problem is the design of the
perceptual feature space in which affordences emerge.
This space can make the problem rather trivial (e.g., in
case features that have a strong link to specific affor-
dances are already provided). It can be also very dif-
ficult, when the link between affordances and actions
can only be established by a high order combination of
simple features (e.g., on the pixel level as in [1]).

It is in general acknowledged that for humans, vi-
sion is a strong cue for affordance generation. More than
half of the primate’s cortex is connected to visual tasks.
As already pointed out in [2], the primate visual space
is fundamentally of higher complexity compared to the
action space. This in the first place concerns the dimen-
sionality of visual information compared to a still rather
low dimensionality of action parametrisation connected
to the limited number of joints to be actuated.

The human visual system constitutes a deep hier-
archy, covering a large number of complementary fea-
ture descriptors at different levels of granularity, dif-
ferent order and semantic abstraction (see Fig. 1 and
[3] for a review of today’s knowledge about the hu-
man visual system). More than 2/3 of the visual cortex
(the so called “occipital cortex”) is associated to task-
independent feature processing displayed as yellow areas
in Fig. 1. In these areas, a rich set of visual feature de-
scriptors covering different aspects of visual information
such as colour, 2D and 3D shape as well as motion are
extracted. At least at early stages of processing, this is
done in largely separated processing streams [3].

As shown in Fig. 1, the level of abstraction of feature
representation as well as the receptive field size increases
(and by that the granularity of the features decreases)
in this hierarchical process. Moreover, it is not only the
features themselves but their combination that provide
relevant affordance cues (see Fig. 2b). From search tasks
it is known, that feature combinations up to third order
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Fig. 1. The primate’s visual cortex: The figure shows the deep hierarchical organization of the human visual system with the occipital
cortex, the ventral and the dorsal pathway at the top right. For selected visual areas, the receptive field size of neurons are shown de-
pending on where in the visual field their receptive field is positioned (right part of sub-figures) as well as some of the features that are
assumed to be processed at the specific levels (left part of the subfigures). This figure uses material from [3] which we also refer to for
further details.

are computed in parallel in the human visual system,
which results in so called “pop-out effects” in visual
search tasks [5]. Hence, finding structures relevant for
affordance programming in this high dimensional space
at appropriate levels of granularity, order and semantic
abstraction poses one of the major problems for affor-
dance learning.

In this paper, we investigate grasp affordances
which are triggered by visual features of different or-
der (see Fig. 3b), different granularity (see Fig. 3c) and
semantic abstraction (see Fig. 3d). We are aware that
the feature space we span is still of much lower com-
plexity than what the human visual system provides in
the occipital cortex. However, we investigate variation
along three important dimensions of this feature space.
Fig. 1 shows some of the mentioned aspects in the pri-
mate’s brain. It shows how the granularity of receptive
fields varies with the level of the hierarchy (in general
neurons have smaller receptive fields at lower levels of
the hierarchy). In general there also occurs an increase
of semantic abstraction as well as order of processed fea-

tures (e.g., absolute depth is coded at the level of V1
while relative depth — i.e., second order depth — is
coded at the level of V2).

In this paper, we introduce a method for finding
feature-action associations in a complex visual feature
space. The method for affordance learning described in
the paper is not specific for a certain type of affordances,
it can be in principal applied to any parameterizable ac-
tion affordance. In this paper we however choose grasp-
ing as an example problem because of three reasons.
First, due to the general importance of grasping. Sec-
ond, we can simplify the learning problem by neglecting
certain feature dimensions provided by the human vi-
sual system. For example colour can be ignored as a
relevant dimension for grasping. In this paper, we also
neglect 2D shape information, which however might al-
ready be a more questionable design decision. A third
reason for addressing grasping is that there exists al-
ready relevant related prior work: In [4] (see Fig. 2),
grasp affordances have been manually designed as first
and second order relations of visual entities (local sur-
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Fig. 2. Simple manually defined grasps: (A) Grasp affordances
defined with respect to a single 3D surface feature (hence defined
in respect to a first order feature relation), (B) Grasp affordances
defined with respect to two 3D contours (hence defined in respect
to second order feature relation). Source [4].

faces and 3D edges/contours). By that, we could already
reach grasp performance of around 30% success. In [4],
the grasp affordances however were defined “by hand”
but in this paper, we aim at — besides improving per-
formance — replacing such a manual design step by
learning.

For this we want to explore the cross space of surface
features and their combination, as shown in Figs. 3b–3d,
and grasping actions. Fig. 4 shows how the variation of
complexity of the input feature relates to the learning
task. In Fig. 4a, left, we see a surface patch being related
to a grasp. Learning grasp affordances with high success
from this kind of weak feature is impossible, since ac-
tual successes would occur for the grasp at the right but
not for the other two grasps shown in figure 4a. These
cases are however indistinguishable when only one sur-
face patch as a feature is used. When we extend the
feature space to second order combinations of surface
patches (see Fig. 4b), the grasp on the left would be
also distinguishable as a non-successful one. However,
it is impossible to learn that the middle grasp cannot
be successful. However, when we also add the concept
of a boundary and its direction to the surface patch (see
figure 4c), the system is able to distinguish that only the
right grasp can be successful. Similarly in this paper, we
investigate the consequences for learning when we vary
important dimensions of the feature space.

The algorithm we apply for that is a rather sim-
ple clustering method combined with a voting approach
and part of the investigations is to explore the poten-
tial but also the limitations of such an approach. The
complexities associated to our approach primarily stem
from two sources:
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Fig. 3. Overview of different aspects of the perceptual and action
space that are investigated throughout this paper. (a) shows an
illustration of how we define different kinds of bias for grasping
actions for a two or three finger hand. In (b), it is shown how
we can increase complexity to the perceptual representation by
means of combining multiple features into more elaborated struc-
tures. In (c), it is shown how we can increase/decrease the com-
plexity of the perception side by changing the size of the features.
In (d) it is shown how the level of abstraction of the feature rep-
resentation can be raised by means of semantic (here adding a
boundary label and a boundary direction to a surface patch).

Appropriate action bias: Non-successful actions are
of limited usefulness for action affordance computation
— although these can be used for sorting out non-
interesting areas — and hence the system needs to be
able to initially perform actions with a certain percent-
age of success likelihood. This can be achieved by in-
troducing action bias (see Fig. 3a), e.g., by designing
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(a)

(b)

(c)

Fig. 4. Illustration of how different perceptual spaces can be used
to limit the amount of grasp options. (a) shows a single feature
grasp association which would not be able to distinguish between
the three grasping situations on the left from which only the
very left one leads to a success. (b) shows a second order-feature
grasp association being rich enough to distinguish the left grasp
situation as non successful. (c) shows a two-feature grasp associ-
ation for which also the boundary direction (red line) is taken into
account. This enriched features allows for distinguishing that only
the very right situation leads to a success.

simple feature based heuristics that trigger actions with
sufficient success likelihood (as in, e.g., [4]). In our case,
we define rather weak biases that already lead to rea-
sonable success likelihoods between 10–50% depending
on the object class.
Feature space design: A further problem is to pro-
vide a feature space which covers features that are suf-
ficiently correlated to successful actions. The feature
space applied in this work does not provide feature coef-
ficients that are independent. On the contrary, the fea-
ture space is highly structured: It provides geometric re-
lations between surface patches which require appropri-
ate parametrisations, careful choices of metrics as well
as proper association of semantics.

Which features actually are relevant might depend
significantly on the actual task and as we show most fea-
tures will are highly uncorrelated to action successes and
therefore insignificant. The richer the visual space we
provide, the more complex the learning problem will be,
since then feature actions need to be found in a larger
space. This holds in particular when feature relations of
high order are computed since this will very quickly lead

to a dimensionality which cannot be explored exhaus-
tively anymore (dimensionality explosion). As a way to
reduce the learning problem, the semantic content of
features can be increased (as indicated in Fig. 3d). This
however usually requires the introduction of additional
heuristics and by that would jeopardize the genericness
of the approach. In our work, we show how the differ-
ent design choices change the statistical distributions of
particles in the feature space and by that the actual
learning problem.

In this paper, we will describe how we approach
the above mentioned complexities. We demonstrate how
the affordance learning problem constitutes itself when
important parameters such as the order of features, their
granularity and their semantic complexity are varied.

In particular we show:
– that we can learn grasp affordances (as compared

to manually defined affordances as in [4]).
– that the complexity of the feature space we span

is of significant importance for the ability to learn
affordances with a high rate of success.

– that we can improve the quality of affordance pre-
diction by combining multiple features and adding
semantic information.

– that the feature representations can also carry insuf-
ficient information to be considered as a good basis
for grasp affordance learning.

– that we are able to identify grasp affordances for a
set of different object types with a high likelihood
of a success.

The paper is structured as follows: We relate our work
to the state of the art in grasp affordance learning and
other relevant work in section 2. The problem formula-
tion our approach is based on is outlined and formalised
in section 3. The approach to address the problem do-
main is presented in section 4. In section 5, the experi-
mental settings are explained, whereas the experimental
results are presented in section 6. Finally the paper is
concluded in section 7.

2 State of the art
Visual triggered action affordance learning is impor-
tant for the development of cognitive agents. Within
the grasping community typically an object is grasped
to be further manipulated. However affordance work like
[6–8] take a more generic approach towards affordance
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learning, with the aim of finding what visual features
afford actions.

In [8], visual triggered affordance learning was in-
vestigated, with the purpose of finding what visual 2D
feature cues of an object afford graspability. A super-
vised learning approach was employed, where a robot
interacts with an object to discover graspability and
link it to extracted feature cues. A different approach is
adopted in [7], were affordance cue’s are extracted from
inspection of human interaction. By identifying which
areas of an object are occluded by the human during a
grasp/action, it is learned what local areas of an object
afford grasping, e.g., a handle.

In our work, we take a similar generic approach
towards affordance learning, but while in the authors
of[7] learn object properties, e.g., graspability, we learn
the coupling of visual features and actions, that en-
able a specific action. In that sense our work is more
in line with the work in [6], where grasping points are
learned from local visual descriptors, resulting in par-
ticular grasping points with associated probabilities.

Given the grasping application in our work, also ap-
proaches towards learning of grasping unknown objects
are of interest. This topic has been extensively investi-
gated due to its importance for robotic applications. For
the problem of grasping unknown objects, two different
strategies have generally been adopted, either feature
based methods or shape based method. Examples of
feature based approached are [4, 9–12], where a hand
designed grasp hypothesis is proposed given a certain
situation. These works stretch from grasp hypothesis
based on a single or a combination of two simple fea-
tures in [4] to grasp hypothesis based on a circle-fitting
approach for cylindrical objects [12].

In contrast to feature based approaches, shape
driven approaches like [1, 13–15], the agent has a shape
model in its database with associated grasps. Then the
shape is matched to new scene and in case a good
match to a shape primitive is found, the grasps asso-
ciated to this shape are performed. In [15], a set of
prototypical object instances are captured with associ-
ated grasps from human demonstration and afterwards
used for matching in novel situations. Other approaches
like [14] and [13] approximates the object in terms of a
oriented bounding box [14] or multiple bounding boxes
[13] and then suggest grasps hypothesis based on the
configuration of the bounding box. In a similar sense
[16] decomposes an object into super quadratics to get
an approximated object on which grasping can be per-
formed. Another example of a model based approach
is [17], where object shape, based on height maps ex-

tracted from 3D data and human demonstrated grasps,
are learned and matched against new scene context.

For a broader overview of the grasping domain see
[18], where data driven grasp synthesis of known, fa-
miliar and unknown objects are surveyed extensively,
including some of the work mentioned here.

Our work is very much in line with the feature based
approaches, as we introduce simple feature constellation
with associated actions, to be used for action predic-
tion. Our work can be seen as an extension to the work
performed in [4], but with the advantage that we learn
feature to action constellation by exploring different vi-
sual representations. In a recent work [19], deep learning
techniques were used to learn a feature representation
suitable for learning grasp affordances. The approach
shows improved performance when compared to a pre-
vious work [20] utilising the same fundamental idea, but
where the available feature representation was designed
by hand. In contrast to [19], in our work we provide
some kind of hierarchy to the learning algorithm which
can than pick out promising candidates from this hier-
archy. However, as discussed in the next paragraph, our
approach can be seen as a step toward the learning of a
deep hierarchy.

The focus on the underlying visual representation
also links to work in non action domains, namely the
work by the group of Ales Leonardis on learning hierar-
chical representations [21]. In this work, visual hierar-
chies are built up layer by layer. Each element of higher
level entity is a combination of usually three elements
of a lower level, where such combination represents a
certain spatial arrangement of simpler features. The se-
lection of such combinations is done unsupervised for
lower levels of the hierarchy based on, e.g., the criterion
of frequency of occurrence and in an supervised fashion
at higher levels. Our work can be understood as a step
towards such hierarchy building, since relevant particles
derived in this paper (see equation 4) are also spatial
constellations of simpler entities which could be used
as input of a higher level of a deep hierarchical struc-
ture. Different from Leonardis’ work, we however apply
3D entities instead of 2D entities and we also have task
specific evaluation criteria already on rather early levels
of processing.
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3 Problem description and
formalisation

The main topic we investigate throughout this paper is
the cross-space between perceptual features and actions.
We explore how different aspects of the visual represen-
tation can provide relevant information for predicting
action affordances in a reliable way.

3.1 Formalisation

To be able to perform these investigations, we ini-
tially formalise the building blocks, that we will utilise
throughout the paper. The general space we are working
in is a cross-space of perception and (grasping) action.
We represent the perception side using 3D surfling fea-
tures. 3D surfling features describe small surface patches
in terms of a pose. In addition, we introduce a granular-
ity measure that depicts the size of the features. Based
on the previous description, we formalise 3D surfling
features as Πσ = {SE(3)} (see Fig. 5b). σ depicts the
granularity level for the feature. The granularity is mea-
sured in the number of sub-features that a 3D surfling
feature rely on and hence is a measure of the surface
area it covers.

(a)
Normal

Boundary direction

Normal

(b)

Normal

Boundary direction

Normal

(c)

Fig. 5. Visualisation of the two basic building block. (b) a 3D
surfling, Πσ , where a principal component analysis is performed
on the sub-features (black ones) to decide the orientation. (c)
a boundary corrected 3D surfling, Πσ,β , where the orientation
is decided by the direction of a boundary. In (a), we see both
boundary 3D surflings, blue with a red arrow, and standard 3D
surflings.

With the description of the basis 3D surfling feature
on the perception side, we introduce the concept of fea-
ture relations. Feature relations are essentially a com-
bination of multiple features (3D surflings) described
through their spatial and/or perceptual relationship,
that allows for a set of higher level features.

One motivation for introducing the concept of fea-
ture relations is to compensate for the ambiguity in the
3D surfling feature pose, because the pose is derived
from a principal component analysis of the underlying
sub features (see Figs. 5b and 5c). The result is an un-
ambiguous surface normal, but the other components in
the pose are ill defined. Hence we need other means to
define a stable orientation of a 3D surfling feature.

By introducing feature relations, we add informa-
tion through the spatial relationships between features,
which theoretically will compensate for the uncertain-
ties in the original pose. Moreover, we gain local struc-
ture information when we combine multiple features and
hence achieve a more expressive visual representation.
By means of feature relations, we create a representa-
tion where we can derive robust structures for predict-
ing action affordances despite the simplicity of the basic
building blocks. A complementary approach to tackle
the issue of pose ambiguity in the basic building block
is to introduce a more elaborated or expressive feature
by additional levels of semantic. A boundary feature
is introduced, where the pose is decided by the direc-
tion towards a given boundary. The boundary surfling
is described by Πσ,β = {SE(3)}, where β denotes it is
a boundary surfling and by definition, the first axis of
the pose-frame is directed towards the boundary, see
Figs. 5a and 5c.

Based on these basic 3D surfling features, we intro-
duce a notation used for feature relations in equation 1,

Υσ
N = f(Πσ

0 ,Πσ
1 , ...,Πσ

N−1) (1)
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d1

α2
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α1

d1

Boundary direction

α4

n2

n1

n1

n2

Normal

Boundary direction

Normal

α2

α3

n1

n2

n1

n2

Π1
σ,β

Π2
σ

Π1
σ,βΠ1

σ

Π1
σ Π2

σ

Fig. 6. Example of a feature relations of order two. It should
be noted how the angles α2 and α3 describe the normal of the
second feature Πσ2 in terms of the coordinate system of the first
feature, Πσ1 .

where N denotes the number of combined features,
also referred to as the order of the relation, and σ de-
notes the granularity of the features it relies on. The
function f transfers a combination of features into a
parametrisation depending on the order and abstrac-
tion. To exemplify the transfer, we will describe a fea-
ture relations of second order based on generic 3D sur-
flings (an illustration of such feature relations is shown
in Fig. 6) which is parametrised as described in equation
2. The angles α1 to α3 and distance d1 are defined as de-
picted in Fig. 6, whereas the feature relation coordinate
system is described in world coordinates.

Υσ
2 = f(Πσ

0 ,Πσ
1} = {SE(3)PW , α1, α2, α3, d1} (2)

3.2 Action representation

Until now, we have not covered the action side of the
perception × action space that we want to investigate.
For this, we introduce grasping actions as an example.
We define a minimalistic grasping action as follows:

ActionGrasp = {SE(3)AW ,E} (3)

which essentially describes a target action pose in world
coordinates (SE(3)AW ) and an evaluation of the grasp
outcome (E). The evaluation can theoretically take any
value, but for the grasping case in this paper, we utilise
a binary description. Other parameters such as preshape
joint angles of the gripper could also be added to get a
more elaborated action description.

Normal

α1

d1

n2

n1

Π1
σ

Π2
σ

Π1
σNormal

α1

d1

n2

n1

Π1
σ

Π2
σ

Π1
σ

Fig. 7. Illustration of the linkage between action and perception
for the first order case (left) and the second order case (right),
essentially being a linkage (the dotted line) between the frame of
the perception descriptor and the frame of the action.

3.3 Linking perception and action

In the final step, we link the perception part with the ac-
tion part. Instances of the combined representation will
be referred to as particles and denoted ρ as depicted in
equation 4 and described in a condensed form using ρ’s
with superscript A (for action) and P (for perception)
respectively.

ρi = {ρPi × ρAi } (4)

A linked particle based on the previous examples of per-
ception, equation 2, and action, equation 3, is presented
in equations 5 to 6, where SE(3)AP is a condensation of
the poses from the different domains into a single pose,
where the action is described in terms of the coordinate
system of the perception side. In Fig. 7, an illustration of
a particle is shown for two different levels of perception.

ρ = {SE(3)PW , α1, α2, α3, d1, SE(3)AW ,E} (5)

ρ = {SE(3)AP , α1, α2, α3, d1,E} (6)
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4 Learning algorithm
In this section, the algorithm for learning and apply-
ing the visually predicted action affordances will be ex-
plained. An overview of the process is shown in Fig. 8.
The figure covers the steps from the Object/Action en-
vironment through a data-creation process, a learning
process of which the results are stored in an Action Per-
ception database, and finally a prediction step where the
knowledge is used to predict actions to be performed in
the Object/Action environment.

In the following subsections, the different compo-
nents shown in the overview diagram will be cov-
ered. First we describe the data creation process, (sec-
tion 4.1), next the learning phase will be explained (sec-
tion 4.2) and finally the utilisation of the learned knowl-
edge for predicting actions will be described in (sec-
tion 4.3).

4.1 Data creation

The data creation process is relying on the formalism
defined in section 3.1, where the two domains, action
and perception, are combined. From the Object/Action
environment, we acquire evaluated action information
as well as visual information in terms of extracted 3D
surfling features, for training set objects. From features,
we compute feature relations and then link the two do-
mains together such that that the action is defined with
respect to the feature combination (see equation 6).

The procedure for doing the linking process is ex-
plained in algorithm 1. Note, that for every particle,
ρ, a random action and feature relation is chosen and
combined into a particle. The random selection is in-
troduced due to the intractability of exhaustively com-
bining feature relations and actions. In the combination
step, additional constraints such as, e.g., locality (the

  Action Perception
DB

Data Creation Learning

Prediction

Object/Action
Environment

Fig. 8. Overview diagram of the data creation, learning, storing
and prediction of action affordances.

action target pose should be close to the feature rela-
tion pose) could be added.

Alg. 1: Combining feature relations with actions.
Input: FeatureRelations ρP, Actions ρA

Output: Particles, ρ
1 N ; // Number of particles we use
2 i = 0;
3 while i < N do
4 ρAj = random ρA;
5 ρPk = random ρP;
6 ρi = {ρPk × ρAj };
7 ρ.push_back(ρi);
8 i++;

A fundamental part of the data creation process is
the input actions. Such actions could be provided from
various sources, e.g., real world experiments, simulation,
hand labelled data or through human demonstration.
The desirable properties of the input actions are that
they provide a reasonable coverage and success rate for
a given situation. In this work, we approach the data
creation with a simulated environment that allows for a
more explorative approach as compared to real world ex-
periments. We utilise visually extracted surfling features
as a bias for proposing a input action set. In Fig. 3a, a
number of examples are shown of how features can act as
a bias for proposing candidate actions for the grasping
case. That said, the action candidate creation is likely
to be very dependent on the type of action. The input
actions are then evaluated in simulation. Hereby we re-
tain some control over the amount of input actions while
we also can guide the rate of success.

4.2 Neighbourhood analysis

In this section, the foundation for learning will be de-
scribed in terms of the different components. First the
learning approach is presented, next a two-stage exten-
sion is introduced and finally an optimisation of the
learning outcome is considered.

4.2.1 Algorithm outline

The overall outline of the learning process is depicted in
Fig. 9. This illustration encapsulates the steps from the
feature extraction, action creation to the establishment
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Feature Extraction

Create Candidate Actions

Create Feature Relations

Instance Neighbourhood Analysis

Combine Action & Perception

Evaluate Candidate Actions

Global Neighbourhood Analysis

Object instance

Action Perception
DB

Fig. 9. Overview of the learning process, note the two-stage
neighbourhood analysis, initially on instance level and finally on
the combined set.

Centroid

Support

Neighbourhood 
boundary

Fig. 10. 2D illustration of the neighbourhood analysis around a
particle, highlighted in green.

of an action perception database, in terms of particles
ρ.

The core of the learning process is a neighbourhood
analysis, which is illustrated in Fig. 10. The first step is
to find the set of particles in the neighbourhood, which
is formally described by, Ak, in equation 7. Based on
the set of particles, the two measures probability and
support are computed. The support, sk, is given as the
size of the set inside the neighbourhood (equation 8)
and the probability, Pk, is defined as the average success
probability within the neighbourhood (equation 9).

As we will show in the result section, both variables
are essential for the efficient prediction of affordances.

Ak = {ρi∣Dist(ρi, ρk) < t} (7)
sk = ∣Ak ∣ (8)

Pk =
1
∣Ak ∣

∑
ρi∈Ak

Ei (9)

Given these two measures, we have a description of
the action perception space in terms of success-outcome
likelihood and the support for this likelihood. The latter
can also be seen as the particle density in the neighbour-
hood. From a formal point of view, we go from particles
in the form of equation 5 to evaluated particles of the
form expressed in equation 10.

ρEi = {ρPi × ρAi , Pi, si} (10)

The elementwise Dist function in equation 7, is
used to decide whether the particle, ρk, is in the neigh-
bourhood of ρi. For the distance computation, we split
SE(3)AP , from equation 6, into a rotational part de-
scribed by a quaternion q and a positional part (x, y, z)
described by three components:

SE(3)AP = {x, y, z,q} (11)

The distance is computed in the individual dimensions
of the parametrisation, with the exception of the ori-
entation part of the SE(3)AP pose, which is computed
as the shortest angular distance between the orienta-
tion of ρk and ρi. Using a quaternion representation,
the computation can be done with the formula in equa-
tion 12, where ⟨q1,q2⟩ depicts the inner product of the
two quaternions q1 and q2.

dist(q1,q2) = 2 arccos(⟨q1,q2⟩) (12)

In equation 13, the distance computation is expressed
between two particles of the type described in equation
6.

Dist(ρi, ρk) = {xi − xk, yi − yk, zi − zk, dist(qi,qk),
α1,i − α1,k, α2,i − α2,k, α3,i − α3,k, d1,i − d2,k}

(13)

It should be noted that the comparison operator (<) in
equation 7 is an element wise comparison of the distance
vector (see equation 13) and the threshold vector (t).
For it to be true, all the elementwise comparisons should
be true.

The basic process for performing a neighbourhood
analysis is captured by algorithm 2. The decisive pa-
rameter when doing a neighbourhood analysis is the
choice of “neighbourhood” or vicinity, expressed as the
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Alg. 2: Neighbourhood analysis.
Input: Particles ρ
Output: ActionPerceptionDB, ρDB

1 t =Compute threshold;
2 for ρk in ρ do
3 Ak = {ρi∣Dist(ρk, ρi) < t}, ρi ∈ ρ;
4 Pk = 1

∣Ak ∣ ∑Ak
Ei;

5 sk = ∣Ak ∣;
6 ρEk = {ρk, Pk, sk};
7 ρDB.push_back(ρEk );

threshold vector t in equation 7. The argument is that
a too large neighbourhood will over-smooth the data re-
sulting in no or little gain in information and predictive
power. In a similar sense, a too narrow neighbourhood
will result in no generalisation at all. In order to have
a reasonable basis for choosing the neighbourhood, we
propose two options for setting the threshold, t, a man-
ual choice and an automatic choice. Using a manual
approach to set the parameters involves setting a fixed
threshold of each individual dimension based on com-
mon sense and then enable a scaling of the fixed param-
eter vector t by a scalar multiplier, Mm (see equation
14).

tmanual,M =Mmtmanual (14)

The manual parameter setting can make use of the
semantics in the feature spaces (e.g., a distance measure
for position can be chosen relative to the gripper open-
ing). An alternative to the manual setting is to utilise a
rule of thumb from Kernel Density Estimation to find a
suitable threshold. Scott [22] proposed such a rule (see
equation 15). The estimated threshold or bandwidth,
tscott is depending on the number of instances in the
data, n, the dimensionality of the space, d, and the esti-
mated standard deviation of the data-points within the
dataset, σ̂. It should be noted that the dimension of the
vector t and σ̂ depend on the parametrisation used for
the particles ρ.

tscott = n
−1

d+4 σ̂ (15)

We can then use Scott’s rule as a guideline for the
ratio between the distances in the different dimensions.
To adjust the neighbourhood-distance, we introduce an
additional scaling parameter, Ms, similar to the multi-
plier mentioned for the manual defined threshold.

tscott,M =Mstscott (16)

The potential risk of using Scott’s rule for band-
width computation is that it does not take the semantic
of the parameters into account. Given the data has the
property of having a large variance but very narrow dis-
criminative areas, an automatic threshold will result in
suboptimal interpretation of potential good areas as it
will work as an smoothing operator on the data.

In the Appendix, a comparison of an automatic-
versus a manually set threshold is carried out. Here it
it becomes apparent, that there might be a gain in pre-
diction performance by choosing an appropriate manual
threshold. Although there is a little gain, it is unlikely
that the effort is worth it, especially when considering
even more advanced visual representations of higher di-
mension.

4.2.2 Two-stage neighbourhood analysis

As displayed in the overview diagram (see Fig. 9), the
neighbourhood analysis is performed in a two-stage pro-
cess. This is motivated by the urge to decrease the com-
putation time. The cost for performing the neighbour-
hood analysis is related to the number of particles n, due
to reliance on the KD-tree data structure. The computa-
tion cost for performing a search is O(logn), and when
we take into account that we need to perform a search
for every particle, the computational cost adds up to
O(n ⋅ logn). We can reduce the computational complex-
ity by decreasing the amount of particles on which we
are performing the neighbourhood analysis.

In an initial stage, we perform a neighbourhood
analysis on the particles from the individual objects in
the full dataset. By splitting in terms of object instances
rather than doing a random split of the full dataset, we
ensure that the smaller problems covers the same ar-
eas of the action perception space and hence allow for
generalisation. The partitions provides us with a set of
significantly smaller neighbourhood problems, instead
of a single large problem. Having a set of smaller prob-
lems, that are independent, we also facilitate a paralleli-
sation of the first stage. The second stage in the analy-
sis (global neighbourhood analysis), is a neighbourhood
analysis performed on the outcome of the set of smaller
first stage problems. In order for the two-stage approach
to have an effect, the first stage should work as a filter,
such that only “promising” particle candidates are taken
into account.

One way of filtering away “un-promising” particles,
is to set up a criteria for the minimum support that
a particle should have for it to be taken into account.
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Such a filter could be expressed in absolute, average or
median values of the support in the dataset. There are
however some pitfalls when using support as a filter-
ing parameter, namely the risk for filtering away the
diversity in the particles. This aspect of the learning is
addressed in the results (section 6.4), where different
levels of support filtering has been applied to verify the
effect on the prediction outcome.

In practice, an introduction of support filtering in
the neighbourhood analysis includes a small extension
that removes particles below a certain support threshold
for the final dataset.

4.3 Prediction

In order to apply the learned data in novel situations,
two different methods have been applied. One method
where we look for similarities on the perception side and
use these as direct cues for proposing actions denoted as
“direct action proposition” and secondly a method, de-
noted as “voting scheme”, where we suggest a candidate
list of actions from the ActionPerceptionDB to vote for
the actions. The two approaches will be explained in the
following subsections.

4.3.1 Direct action propositions

The direct action proposition approach is based on
the assumptions, that our learned high probability and
high support action perception particles are descriptive
enough for predicting actions. In Fig. 11, an overview of
the involved steps is shown. We extract feature relations,

Feature Extraction

Create Feature Relations

Neighbourhood Analysis

Action Perception
DBAction predictions

Fig. 11. Overview diagram of the steps involved in the direction
action proposition method.

the ρP part of the particles, from the novel object and
search for similar ρP parts in the ActionPerceptionDB.
If we find a similar perception part with a high proba-
bility for success and high level of support, we take its
action part, ρA, and attach to our ρP part. This means,
if we find an action described in terms of the perception
part from the novel object, we have a proposed action.

Given the simplicity of the direct action proposition
approach, it has some limitations. The main problem is,
that the approach relies heavily on a discriminative per-
ceptual representation in order to make reliable predic-
tions. The potential problem arises when we use a too
simple perceptual representation, namely that a partic-
ular simple relation can predict very different actions de-
pending on the object it was learned from. This problem
should eventually disappear if we utilise a more descrip-
tive perception representation. Therefore we introduce
a second approach, the voting scheme. For comparison,
experiments have been carried out with the direct action
proposition method (see Appendix), where the predic-
tion performance and limitation in the method are pre-
sented.

Feature Extraction

Create Candidate Actions Create Feature Relations

Neighbourhood Analysis

Combine Action & Perception

Action Perception
DBPrediction for Candidate Actions

Fig. 12. Overview diagram of the voting scheme.

4.3.2 Voting scheme

The principle behind the voting scheme is that we want
to utilise our learned ActionPerceptionDB as a means
to vote for a set of candidate actions. Hereby we utilise
multiple perception descriptors to predict the action
outcome of a single candidate action, and by that im-
prove the robustness of the prediction. In Fig. 12, an
overview of the process involved in the voting scheme is
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shown. Note that the candidate action creation is iden-
tical to the one described in section 4.1.

The voting procedure has been formalised in algo-
rithm 3. The process is very similar to the actual learn-
ing phase, however where we in the learning phase “for-
get” the origin actions when we combine them with the
perception part, ρP , we remember them in the voting
scheme. This allows for a final step in which we can
project a prediction probability back to the origin can-
didate action, and thereby give a prediction based on
multiple perception action particles. In Fig. 13, an ex-
ample is presented, where we utilise multiple feature re-
lations (Figs. 13d to 13g), to vote for a single candidate
action (Fig. 13h).

Alg. 3: Voting scheme.
Input: ActionPerceptionDB ρDB, Features
Output: Candidate Actions with prediction

ρA
C,E

1 ρA
C = Create Candidate action through visual

bias;
2 ρP

C = Compute feature relations;
3 ρC= Combine feature relations with candidate
actions as in ALG. 1;

4 for ρC,k in ρC do
5 Ak = {ρC,i∣Dist(ρC,i, ρk) < t}, ρC,i ∈ ρDB;
6 Pk = 1

∣Ak ∣ ∑Ak
Ei;

7 sk = ∣Ak ∣;
8 ρEC,k = {ρC,k, Pk, sk} = {ρPC,k, ρAC,k, Pk, sk};
9 // Backproject probabilities to origin actions

10 for ρAC,l in ρA
C do

11 Bo = {ρA,EC,i ∣ρ
A,E
C,i == ρAC,l}, ρAC,i ∈ ρA

C;
12 Pavg = 1

∣Bo∣ ∑Bo
Pi;

13 ρAC,l = {ρAC,l, Pavg};
14 ρA

C,E.push_back(ρAC,l)

5 Setting
In this section, the settings for the experimental work
will be explained. It involves the object data set (sec-
tion 5.1), the simulation environment (section 5.2), the
feature extraction (section 5.3), the visual biased action
sampling (section 5.4) and details regarding action and
perception parametrisation (section 5.5).

(a) (b) (c) (d) P=0.25

(e) P=0.95 (f) P=0.50 (g) P=0.75 (h) P=0.61

Fig. 13. A 2D example illustration of the voting scheme. (a) 2D
container, (b) a two-finger gripper, (c) a feature representation
with a candidate grasp. Figures (d), (e), (f) and (g) show feature
relations that are used to vote for the candidate action. Proba-
bilities are shown below which would be the probabilities found
in the database. Given the example probabilities, the combined
probability for the candidate grasp is shown in (h).

5.1 Object set

In Fig. 14 an overview of the different objects used in the
experiments is given. The objects are split into three dif-
ferent categories, namely box-like objects, curved/cylin-
drical objects and open/container objects. The objects
in the set are partly taken from the KIT object database
[23] and partly from the online database archive3D [24].
The KIT objects are digitalised real objects which po-
tentially simplifies the transfer from a simulated envi-
ronment to the real world. Furthermore they add real-
ism to the feature extraction as the objects are textured
based on the real objects. However due to the lack of
open/container objects in the KIT set, we needed to
extend the object set with objects from other sources,
which are not digitalised real objects.

5.2 Simulation environment

The experiments in this paper are all performed in a
simulated environment utilising the robotic library Rob-
Work [25]. RobWork is used to create a realistic environ-
ment, that facilitates simulated sensors (such as RGB-D
sensors and Stereo cameras) as well as a dynamics sim-
ulator [26]. Fig. 15 shows a view of a dynamic grasp
simulation with the Schunk SDH-2 hand and a pitcher
from the visualisation tool. The grasping simulations
are performed in a free-floating world where gravity is
not taken into account since it facilitates grasping from
every direction.
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Fig. 14. Visualisation of the three different categories of objects.
(Top), box objects, (middle), round objects and (bottom) open
objects.

5.3 Feature extraction

An essential part of the setting is the feature extraction
from the simulated environment. In Fig. 16, our setup
of RGB-D sensors is displayed. Having a setup of three
sensors surrounding the object and an additional sen-
sor from below gives an approximated full view of the
objects in the centre.

Based on the simulated setup in RobWork, we are
able to extract the 3D surfling features at different gran-
ularities and with added semantic. An example of the
feature extraction of surflings at four different granular-
ity levels is visualised in Fig. 17. Furthermore the ex-
tracted features are shown both with and without the

Fig. 15. Visualisation from RobWork showing a grasping action
with the Schunk SDH-2 hand.

Fig. 16. Visualisation of the four simulated RGB-D sensor views,
illustrated with the four coloured frames, and the object of inter-
est in the centre. The frames depict the position and the camera-
view are along the negative z-axis, coloured blue. The views from
the four cameras are shown in the small images.

added semantic for boundary features. The boundary
features are shown with an additional vector depicting
the direction of the boundary.

5.4 Action sampling

The action sampling biased through the visually ex-
tracted features is a prerequisite for learning the grasp
affordances in an automatic way since it ensures a rea-
sonable chance of success as well as a limit to the amount
of considered actions. We propose two template grasp
types for the sampling. The two types are visualised
in Fig. 18, one is denoted the SidePinchGrasp and the



14 Mikkel Tang Thomsen, Dirk Kraft, and Norbert Krüger

(a) σ = 3 (b) σ = 3

(c) σ = 5 (d) σ = 5

(e) σ = 15 (f) σ = 15

(g) σ = 30 (h) σ = 30

Fig. 17. Visualisation of extracted features at four different gran-
ularities with (right column) and without (left column) boundary
semantic.

other is denoted TopGrasp. The SidePinchGrasp has
a rather narrow opening between the two fingers such
that it can grasp within a container and the TopGrasp
have wide open fingers to make an encompassing grasp
of larger objects. We create a set of candidate grasps by
means of extracted 3D surfling features with a small fea-
ture size such that we can achieve a reasonable coverage
of the objects. Based on the features, we propose a set
of template grasps by rotating them in 32 steps around
the feature normal. From this sampling we achieve an
average success-rate between 10% and 50% depending

on the object set (see the random chance as dashed hor-
izontal lines in the results plots Figs. 22, 23 and 24).

Fig. 18. Visualisation the two different basic grasp types, Side-
PinchGrasp (left) and TopGrasp (right)

5.5 Parametrisation of feature relations

Throughout the experiments, we will rely on a limited
set of different feature relation types, namely of first and
second order relation with different levels of boundary
semantics. In equations 17 to 22 the different parametri-
sations are presented.

Υσ
1 = f(Πσ) = {SE(3)} (17)

Υσ,β̂
1 = f(Πσ,β̂

1 ) = {SE(3)} (18)

Υσ,β
1 = f(Πσ,β

1 ) = {SE(3)} (19)
Υσ

2 = f(Πσ
1 ,Πσ

2 ) = {SE(3), α1, α2, α3, d1} (20)

Υσ,β̂
2 = f(Πσ,β̂

1 ,Πσ
2 ) = {SE(3), α1, α2, α3, d1} (21)

Υσ,β
2 = f(Πσ,β

1 ,Πσ
2 ) = {SE(3), α1, α2, α3, α4, d1} (22)

In Fig. 19 visualisations are shown of the different
types of feature relations used in the experiments. Note
that only four different feature relations are visualised.
The reason is that the parameters for equations 17 and
18 are similar with the only difference being that we
know the feature in equation 18 is a boundary feature.
The same holds for the two cases in equation 20 and 21.
The parametrisation covers three first order cases: one
plain feature (Υσ

1 ), one where we know the feature is
a boundary feature (Υσ,β̂

1 ) and one were we utilise the
boundary semantic with direction (Υσ,β

1 ). As for first
order, we introduce a parametrisation for three second
order cases: One without semantic (Υσ

2 ), one with the
knowledge of a boundary but not the direction (Υσ,β̂

2 )
and finally one with boundary semantic and direction
(Υσ,β

2 ).
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Fig. 19. Visualisation of the utilised feature relations and the
associated parameters.

6 Results
The result section is divided into four subsections. In
section 6.1, we will present the outcome of the learning
phase in terms of associated support and probability of
the evaluated particles. In section 6.2, we will present
the core results comparing the prediction performance
when features at different granularities, different levels
of abstraction and different semantics are input to the
voting scheme. Subsequently (section 6.3), a qualitative
analysis is presented of the results. Finally (section 6.4),
we will present results regarding the impact of support
filtering. In the experimental work, the different object
sets have been split into two classes such that the learn-
ing from the first class and is applied on the second and
vice versa.

6.1 Learning outcome

In order to examine the learning outcome before it is
used for prediction, we visualise the frequency of occur-
rence of the evaluated particles (see equation 6) in terms
of support and probability. Fig. 20 shows the distribu-
tions in 2D histogram for the different parametrisations
described in equations 17 to 22, where the colour de-
picts the frequency. The colouring is based on the log10

transform of the actual frequency in the area to allow
for a visible distinction. A histogram corresponding to
Fig. 20a but without performing a log10 transformation
of the frequency is shown in Fig. 21 as a comparison. In

this plot, we only see that the majority of the particles
have low support and probability.

When assessing the 2D histograms in Fig. 20, we can
acquire indications about the predictive power of the
different visual representations. We see a shift towards
the higher probability areas when the order is raised or
semantic is added to the feature relation, e.g., compare
Fig. 20a towards Fig. 20f. This change is reflected in the
later presented prediction results (see Fig. 24).

6.2 Core experiments

The outcome of the voting method (section 4.3.2) is a
set of candidate actions with associated predicted prob-
ability. To discretise these outcomes, which allows for
a comparison to the binary grasp outcome from simu-
lation and hence to quantify the performance, we in-
troduce a probability selection threshold. We vary the
actual value of the threshold between the extremes. This
results in the plots in Figs. 22–24.

In order to assess the prediction results, we present
two different average measures of the prediction success
over the object set.
– Avg-1 - An average computed over all the objects

in the set, independent of whether feature combi-
nations leading to any grasp prediction were found
for a certain object. If no predictions was found the
object contribute to the average with a success rate
of zero. This average type is plotted with a full line.

– Avg-2 - An average computed over the average suc-
cess prediction for only the set of the object in-
stances, where a prediction was found. This average
type is plotted with a dashed line.

– random - The average chance on the object set
for randomly getting a successful outcome given the
candidate actions. This measure is plotted with a
dashed black line.

When assessing the result plots, there are multiple as-
pects that one need to consider when we want to identify
a good result. One aspect is the difference between the
random chance and the top point of the predictions, an-
other is how well a change in the moving threshold to a
higher value is reflected as a higher rate of success pre-
diction. Finally one should note the difference between
the dotted lines and the full lines as it can be seen as a
measure of how well the object set is covered, because
the first average will get lower the more objects no grasp
affordances can be found for.
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(b) Υ30,β̂
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(f) Υ30,β
2

Fig. 20. Visualisation of the particle distribution for the open object set in terms of support and probability for the learned ActionPer-
ceptionDB. The number of particles in the databases ranges from ∼ 250,000 to ∼ 400,000.
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Fig. 21. Visualisation of the particle distribution in terms of sup-
port and probability for a learned ActionPerceptionDB, where the
particle frequency is shown without any modifications.

Box objects: The results for the box object set are pre-
sented in Fig. 22. The plots show results where the two
dimensions “order” (denoted N, equation 1) and “fea-
ture granularity” (denoted σ equation 1), were varied.
From the results we derive: (1) When the order is in-
creased, we see a clear improvement of the prediction
rates and (2), when the feature size is changed, small
changes in the performance are observed. For the first
order case, we see the best performance with a medium
sized feature whereas there is no or little difference when
we compare the second order cases at different granu-
larities.
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Fig. 22. Box objects prediction results. See equations 17 and20
for the utilised parametrisation and see text for further details.

Round objects: The experimental results acquired for
the round object set are shown in Fig. 23. As above, the
plots show results where the two dimensions “order” and
“feature granularity” where varied. We see: (1) When
the order is increased a clear improvement is seen in the
predictions and (2), when feature size is varied, we see
small changes in the performance for the first order case,
whereas we see a clear drop in performance when we use
the largest feature size for the second order case. The
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last result is in line with the expected result, namely
that a large surfling patch is a bad reflection of a round
object and hence should be less descriptive as compared
to a feature of smaller size.
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Fig. 23. Round objects prediction results. See equations 17 and20
for the used parametrisation, and see text for further details.

Open objects: The experimental results for the open
object set are displayed slightly differently compared to
the round and box object sets, since we observed that
for open objects the semantic information in terms of
boundary information is crucial. The introduction of
boundary features allows for all the parametrisations
described in section 5.5. The results are presented in
Fig. 24 for three different granularities, respectively 5,
15 and 30. In each of the figures, results for the order
and level of abstraction through semantic are shown. We
see, that the higher order we use and the more seman-
tic we add, the prediction results improve. A significant
improvement is observed when we go to second order
relations as compared to first order, however we do not
see a significant improvement in the prediction power
when we add the semantic of a boundary without direc-
tion, although we have a better object set coverage as
the full line is resulting in a higher success probability.
A significant improvement of success prediction rating is
achieved for second order relations with boundary and
direction. We see however a small drop when we reach
the higher end of the selection filter. This can be ex-
plained with the fact that the voting method act as a
smoothing operator hence high prediction areas will be
in general occurring rarely. When we compare the re-

sults acquired for the different granularities, we see a
similar outcome as in Fig. 22 and 23.

6.3 Qualitative analysis of the power of
semantic information

In order to illustrate the performance gain we get when
we introduce the boundary semantic, we present a visu-
alisation of the ActionPerceptionDB for the three first
order cases. The visualisations are shown in Fig. 25. In
the centre, a surfling feature is placed and the coloured
area around the feature represents how the actions are
distributed with respect to the pose of the feature. The
colour coding of the actions depicts the likelihood of
success for that particular particle.

For Υ5
1 we see a uniform distribution of success

probability, whereas for Υ5,β̂
1 we see two rather uni-

formly coloured areas. Noticeable is an inner part with
a higher success likelihood as compared to the outer
part. This is explained with the added knowledge of the
boundary, specifically by the fact that, at the boundary,
a successful action will be closer to the feature, hence
the inner circle captures both the successful boundary
grasp as well as unsuccessful, whereas the outer part
mostly capture the non-boundary action.

When assessing Υ5,β
1 , it becomes obvious what we

gain by introducing the direction towards the bound-
ary. The visualisation shows a high likelihood of success
along the direction of the boundary and the further the
grasp are located orientational wise from the boundary
direction a lower success likelihood is observed.

To visualise how the power of semantic constitute
itself when applied for predicting actions, a visualisation
of the distribution of predicted grasps for an object is
shown in Fig. 26. The figure shows the prediction result
for a pitcher, where the order and level of semantic are
varied. One can easily notice how the introduction of
boundary and direction information for both first and
second order cases allow for high success areas at the
boundary of the pitcher.

6.4 Support filtering

In order to investigate the impact of the support filter, a
series of experiments based on the open object set have
been performed, in which the amount of particles used
from the first stage of the neighbourhood analysis is var-
ied. We filter by choosing the 0th to the 10th decile of
the particles based on their support, e.g., split the first
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Fig. 24. Prediction result for open objects of granularity 5, 15 and 30. See equations 17–22 for the used parametrisation, and see text
for further details.

Fig. 25. The three visualisations show how the learned particles
are distributed, when the feature part of the particles is posi-
tioned in the centre. The three cases are Υ5

1 (left), Υ5,β̂
1 (mid-

dle) and Υ5,β
1 (right). Red colour depict a success likelihood of

0.0 and green a success likelihood of 1.0.

decile lowest supported particles from the highest sup-
ported particles and then utilise the highest supported
part. Hereby we cover the extreme situations, from us-
ing every particle to using very few. The acquired results
are presented in Figs. 28 and 27. Note the support level
is described as a measure between zero and 1.0.

From the results, three main points are derived:
(1) When assessing the results for Avg-1 for the

four cases, Υ1, Υβ̂
1 , Υ2 and Υβ̂

2 , the observed pattern
shows, that a lower support filter results in higher suc-
cess rate, although only at lower selection threshold.
When comparing the results of Avg-1 with Avg-2 for
the same four cases, it is noticed that a larger support
level result in a higher success rate for the instances
that are found. This is in particular seen for Υ1 and Υ2,
as the selection threshold increases towards 1.0. This re-
sult indicates, that with a higher support level very good
prediction for a subset of the objects can be derived.

(2) When assessing the Υβ
1 results the pattern is

significantly different. For Avg-1 the prediction results

show similar performance independent of the applied
support level, with the only exception being the highest
support level, where the performance is degrading at
a low selection threshold. The results for Avg-2 show
that if a prediction is found, then a higher success rate
is achieved when a high support level is used.

(3) When assessing the results for Υβ
2 the recog-

nised pattern for both the averages, Avg-1 and Avg-2,
show similar performance with a small advantage at the
higher support levels. Especially at the two highest sup-
port levels, an improved performance is noticed.

To summarise the outcome of the support filter ex-
periment, it can be observed that for the less elaborated
feature representations, good predictions can be found
for individual instances of objects at a high support
level, whereas generalisation is in general not observed
when utilising a lot of instances (a low support level).
For the more elaborated visual representations, it be-
comes evident, that we are able to achieve an improved
performance and still retain the generalisation when us-
ing a higher support level. This result indicate, that
there indeed exists particular feature relations, which
are predictive for grasping in the provided visual repre-
sentation.

7 Summary and conclusion
In this paper, we have introduced a method for finding
combinations of visual features that are predictive for
actions. The method has been exemplified for the prob-
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1 (b) Υ5,β̂

1
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Fig. 26. Visualisation of the grasp predictions for a pitcher object with feature relations of different order and with different semantic.
The colour depict the predicted likelihood for success. Green meaning a success likelihood of 1.0 and red meaning a success likelihood
of 0.0.
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Fig. 27. Prediction results for the open object set, with a feature size of 5 and different support filters, see equations 17–22 for the
used parametrisations, and see text for further details.

lem of learning grasping actions. We have performed an
analysis of the cross space of perceptual features and
grasping actions with special focus on how an enrich-
ment of the perception side leads to improvements of
the derived prediction.

Through the performed investigations, we have been
able to learn actions with a high likelihood of success for

three different object classes, namely box like, round and
open objects. For the box and round object set we were
able to reach a grasp prediction success of up to 0.90
and 0.80 respectively, when utilising a second order fea-
ture constellation as a perceptual descriptor. This high
success rate should be seen in the context that grasping
of those objects is a rather simple task. For the more
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Fig. 28. Prediction results for the open object set, with a feature size of 5 and different support filters, see equations 17–22 for the
used parametrisations, and see text for further details.

difficult open object set, we investigated in addition to
granularity and order of feature combination also the
impact of additional semantic information attached to
the features through boundary information. From these
results, we were able to achieve a success-rate of up to
0.75, when second order features with added semantic
where utilised on the perception side.

By that we have replaced manual design if affor-
dances as done in [4] by learning. We could confirm that
relatively high success rates for action feature associa-
tions built by means of rather basic features is possi-
ble. Moreover and most importantly, we showed how the
structure of the feature space influences the results of
the algorithm. For that we investigated three important
dimensions of a feature space motivated by the visual
hierarchy of the human visual system: granularity, order
of features and semantic abstraction. Since our approach
is not restricted to grasping, in future work we plan to
apply our algorithm to other action affordances

A Learning methodology
experiments

In the following subsections, two aspects of the learning
approach will be investigated. (1) The prediction re-
sults when the direct action proposition approach (see
section 4.3.1) is applied, and (2) the difference between
an automatically- and a manually set threshold (see sec-
tion 4.2.1).

A.1 Direct action proposition approach

As a comparison to the voting scheme (see section 4.3.2),
a number of experiments were performed using the di-
rect action proposition method. The experimental re-
sults are presented in table 1. Compared to the re-
sults presented when utilising the voting method (see
section 6.1), these results are evaluated with a single
measure depicting the success prediction. In the exper-
iments, the order and granularity were varied for the
box- and round object classes, whereas the level of se-
mantic in addition were varied for the open object class.

For the box- and round objects, two things are ob-
served, (1) A larger feature size improve the success rate
for the first order cases, whereas it degrades for the sec-
ond order cases and (2), the success rate is, in general,
higher for the second order cases. The improvement,
due to a larger feature, is explained by the increased
object knowledge that it brings. This information gain
however seem to counteract the added knowledge of two
combined features, resulting in a degrade in prediction
performance, when a larger feature is used in second
order combination.

For the open objects, three things are observed.
(1) The performance when utilising the representations
without semantic is very low, however an improvement
is noticed when going from 1st order cases to second or-
der cases. (2) For the first order cases, a larger feature
results in a better prediction rate. This is not the case
for the second order cases, where the highest prediction
rate is achieved at a feature size of 15. (3) The highest
overall prediction rate is achieved at a representation
based on Υ30

1 . This essentially tell us, that the infor-
mation gain from a larger feature is superior to adding
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FeatureSize ObjectSet Order + Abstraction
σ N=1 N=1, β̂ N=1, β N=2 N=2, β̂ N=2, β

5

Box objects 0.51 - - 0.65 - -
Round objects 0.57 - - 0.66 - -
Open objects 0.05 0.10 0.44 0.12 0.14 0.45

15
Box objects 0.54 - - 0.61 - -
Round objects 0.62 - - 0.63 - -
Open objects 0.06 0.08 0.52 0.12 0.18 0.49

30

Box objects 0.54 - - 0.60 - -
Round objects 0.67 - - 0.56 - -
Open objects 0.08 0.08 0.53 0.11 0.13 0.45

Table 1. Prediction results when utilising the direct action proposition method. The used parametrisations are found in equations 17–
22, and see text for further details.

another feature when used in connection with the direct
action proposition method.

Finally, when comparing the results with the vot-
ing method results, the direct action approach does not
show similar performance, which is explained by the di-
rect attachment of an action to a perceptual represen-
tation. This compares to the multiple particles, that are
used to vote for a single action in the voting method.

A.2 Automatic vs. manual threshold

In this experiment we show the impact of an auto-
matically chosen threshold as compared to a manually
chosen threshold (see equations 14, 15 and 16 in sec-
tion 4.2.1). In Fig. 29, the outcome of the experiments
are shown for the three different object classes. We fo-
cus on the results with highest abstraction and order,
meaning Υβ

2 for the open objects and Υ2 for the box and
round objects. For the open objects, we see an improved
performance when the manual threshold is used. Both
the top point of the curve and the consistency between
the selection threshold and the prediction rate on the
high end of the selection threshold show superior per-
formance compared to the automatic threshold. For the
box- and round objects, the automatic threshold results
show slightly better performance as the top point has
a higher success rate, although the curve drops earlier
than the manually selected threshold.

From these results, it can be derived, that an auto-
matically chosen threshold shows a tendency to smooth
the data more. Hence, the correspondence between the
selection threshold and the actually success outcome is
suboptimal close to the selection threshold of 1.0. How-
ever, although the manual chosen threshold shows bet-

ter consistency between the selection threshold and the
actual prediction, it comes with the cost of a lower top
point and the need to manually define the threshold for
the individual dimensions of the parametrisation.
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see text for further details.

and J. Tsotsos, Eds. Springer Berlin Heidelberg,
2008, vol. 5008, pp. 435–444. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-79547-6_42

[8] G. Fritz, L. Paletta, M. Kumar, G. Dorffner, R. Breithaupt,
and E. Rome, “Visual learning of affordance based cues,”
in Proceedings of the 9th International Conference on From
Animals to Animats: Simulation of Adaptive Behavior, ser.
SAB’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp.
52–64. [Online]. Available: http://dx.doi.org/10.1007/
11840541_5

[9] D. Rao, Q. V. Le, T. Phoka, M. Quigley, A. Sudsang, and
A. Y. Ng, “Grasping novel objects with depth segmentation,”
in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ
International Conference on. IEEE, 2010, pp. 2578–2585.

[10] M. Ciocarlie, K. Hsiao, E. G. Jones, S. Chitta, R. B. Rusu,
and I. A. Şucan, “Towards reliable grasping and manipulation
in household environments,” in Experimental Robotics.
Springer, 2014, pp. 241–252.

[11] J. Stückler, R. Steffens, D. Holz, and S. Behnke, “Efficient 3d
object perception and grasp planning for mobile manipulation
in domestic environments,” Robotics and Autonomous
Systems, vol. 61, no. 10, pp. 1106–1115, 2013.

[12] M. Richtsfeld and M. Zillich, “Grasping unknown objects
based on 21/2d range data,” in Automation Science and En-
gineering, 2008. CASE 2008. IEEE International Conference
on. IEEE, 2008, pp. 691–696.

[13] K. Huebner, S. Ruthotto, and D. Kragic, “Minimum volume
bounding box decomposition for shape approximation in
robot grasping,” in Robotics and Automation, 2008. ICRA
2008. IEEE International Conference on. IEEE, 2008, pp.
1628–1633.

[14] N. Curtis, J. Xiao, and S. Member, “Efficient and effective
grasping of novel objects through learning and adapting
a knowledge base,” in IEEE International Conference on
Robotics and Automation (ICRA), 2008, pp. 2252–2257.

[15] R. Detry, C. H. Ek, M. Madry, and D. Kragic, “Learning a
dictionary of prototypical grasp-predicting parts from grasping

experience,” in IEEE International Conference on Robotics
and Automation, 2013.

[16] C. Goldfeder, P. K. Allen, C. Lackner, and R. Pelossof,
“Grasp planning via decomposition trees,” in Robotics and
Automation, 2007 IEEE International Conference on. IEEE,
2007, pp. 4679–4684.

[17] A. Herzog, P. Pastor, M. Kalakrishnan, L. Righetti, T. Asfour,
and S. Schaal, “Template-based learning of grasp selection,” in
Robotics and Automation (ICRA), 2012 IEEE International
Conference on. IEEE, 2012, pp. 2379–2384.

[18] T. A. J. Bohg, A. Morales and D. Kragic, “Data-driven
grasp synthesis – a survey,” IEEE Transactions on Robotics,
vol. 30, no. 2, pp. 289–309, 2014.

[19] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting
robotic grasps,” CoRR, pp. –1–1, 2013.

[20] Y. Jiang, S. Moseson, and A. Saxena, “Efficient grasping from
rgbd images: Learning using a new rectangle representation,”
in ICRA’11, 2011, pp. 3304–3311.

[21] S. Fidler, M. Boben, and A. Leonardis, “Learning hierarchical
compositional representations of object structure,” in Object
Categorization: Computer and Human Vision Perspectives,
S. Dickinson, A. Leonardis, B. Schiele, and M. Tarr, Eds.
Cambridge University Press, 2009, pp. 196–215.

[22] D. W. Scott, Multivariate Density Estimation: Theory,
Practice, and Visualization (Wiley Series in Probability and
Statistics), 1st ed. Wiley, Sept. 1992. [Online].
Available: http://www.amazon.com/exec/obidos/redirect?
tag=citeulike07-20&path=ASIN/0471547700

[23] R. Becher, P. Steinhaus, R. Zöllner, and R. Dillmann, “Design
and implementation of an interactive object modelling
system,” in Proceedings Conference Robotik/ISR 2006,
München, May 2006.

[24] archvied3D, “Archive3d free online cad model database,”
http://www.archive3d.net.

[25] L.-P. Ellekilde and J. A. Jørgensen, “Robwork: A flexible
toolbox for robotics research and education,” Robotics
(ISR), 2010 41st International Symposium on and 2010 6th

http://dx.doi.org/10.1007/978-3-540-79547-6_42
http://dx.doi.org/10.1007/11840541_5
http://dx.doi.org/10.1007/11840541_5
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0471547700
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0471547700


Identifying feature-action associations 23

German Conference on Robotics (ROBOTIK), pp. 1 –7, june
2010.

[26] J. A. Jørgensen, L.-P. Ellekilde, and H. G. Petersen, “Rob-
WorkSim - an Open Simulator for Sensor based Grasping,”
Robotics (ISR), 2010 41st International Symposium on and
2010 6th German Conference on Robotics (ROBOTIK), pp.
1 –8, june 2010.


	Identifying relevant feature-action associations for grasping unknown objects
	1 Introduction
	2 State of the art
	3 Problem description and formalisation
	3.1 Formalisation
	3.2 Action representation
	3.3 Linking perception and action

	4 Learning algorithm
	4.1 Data creation
	4.2 Neighbourhood analysis
	4.2.1 Algorithm outline
	4.2.2 Two-stage neighbourhood analysis

	4.3 Prediction
	4.3.1 Direct action propositions
	4.3.2 Voting scheme


	5 Setting
	5.1 Object set
	5.2 Simulation environment
	5.3 Feature extraction
	5.4 Action sampling
	5.5 Parametrisation of feature relations

	6 Results
	6.1 Learning outcome
	6.2 Core experiments
	6.3 Qualitative analysis of the power of semantic information
	6.4 Support filtering

	7 Summary and conclusion
	A Learning methodology experiments
	A.1 Direct action proposition approach
	A.2 Automatic vs. manual threshold



