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We analyse the θ-angle physics associated to extensions of the standard model of particle

interactions featuring new strongly coupled sectors. We start by providing a pedagogical re-

view of the θ-angle physics for Quantum Chromodynamics (QCD) including also the axion

properties. We then move to analyse composite extensions of the standard model elucidat-

ing the interplay between the new θ-angle with the QCD one. We consider first QCD-like

dynamics and then generalise it to consider several kinds of new strongly coupled gauge

theories with fermions transforming according to different matter representations. Our

analysis is of immediate use for different models of composite Higgs dynamics, composite

dark matter and inflation.

Preprint: CP3-Origins-2013-34 & DIAS-2013-34

∗Electronic address: divecchi@nordita.org
†Electronic address: sannino@cp3.dias.sdu.dk

ar
X

iv
:1

31
0.

09
54

v2
  [

he
p-

ph
] 

 2
0 

O
ct

 2
01

3

mailto:divecchi@nordita.org
mailto:sannino@cp3.dias.sdu.dk


2

Contents

I. Introduction 3

II. Setting the stage: The QCD θ angle review 4

A. QCD - Low Energy Effective Lagrangian 5

B. Adding the θ angle 7

C. The Witten-Veneziano relation 9

D. The QCD axion 10

III. The θ physics of minimal composite extensions of the Standard Model 12

A. QCD - like minimal composite extensions 13

B. Quarks in arbitrary representations 17

C. Adding the lightest composite scalars 19

IV. Conclusions 21

Acknowledgements 21

A. Review of strong CP violation phenomenological effects for QCD-like dynamics 21

1. Strong CP violating mesonic amplitudes 22

2. Strong CP violating amplitudes with baryons 25

References 27



3

I. INTRODUCTION

The Planck experiment [1] has provided the most accurate determination to date of the com-

position of the universe. It has found that circa 95% of the universe is made by unknown forms

of matter and energy, while to describe the remaining 5% one needs at least three fundamental

forces, i.e. Quantum Electrodynamics (QED), weak interactions and Quantum Chromo Dynamics

(QCD). Furthermore QCD, also known as strong interactions, is responsible for creating the bulk

of the bright mass, i.e. the 5%. It is therefore natural to expect that to correctly describe the

rest of our universe, while providing a sensible link to the visible component, new forces will

soon emerge. There are at least three primary areas of research where new strong dynamics can

emerge. The first is the sector responsible for breaking spontaneously the electroweak symmetry.

The standard model Higgs sector in this scenario is expected to be replaced by new strongly

interacting dynamics. The second application is in the use of new strong dynamics to construct

(near) stable dark matter candidates. Last but not the least there is the intriguing possibility that

even the mechanism behind inflation is powered by new strong dynamics.

Not only QCD constitutes one of the pillars of the standard model of particle interactions, and

accounts for the bulk of the visible matter in the universe, but it continues to pose formidable

challenges both theoretically and phenomenologically. On the theoretical and experimental side

we do not have yet a complete understanding of the strongly coupled infrared dynamics of the

theory.

Another puzzle is the experimental absence of otherwise theoretically legitimate CP violating

effects stemming from the topological sector of the theory known as the θ-angle sector [2]. Topo-

logical sectors are known to be extremely relevant since they carry the underlying gauge theory

imprint and can therefore help single out the underlying dynamics [2–10].

The purpose of this work is to provide a pedagogical review of the basic theoretical and

phenomenological analyses of the θ-angle physics for QCD, extend the analysis to other relevant

gauge theories and, last but not the least, study the interplay between the θ physics of different

extensions of the standard model of particle interactions featuring new strongly coupled sectors.

In Section II we provide a pedagogical review of the θ-angle physics for Quantum Chromody-

namics (QCD) including also the axion properties. We then move to analyse composite extensions

of the standard model elucidating the interplay between the new θ-angles with the QCD one in

Section III. We will present examples of how the introduction of new strongly coupled dynamics

can affect the ordinary QCD θ-angle physics. In this section we will generalise the θ-angle physics
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to consider several kinds of new strongly coupled gauge theories with fermions transforming in

arbitrary matter representations. Last but not the least we will generalise the theories to include

the lightest scalar state of the theory relevant both for QCD [11] or its extensions were it be used

for interpreting the composite state as the recently observed Higgs [12, 13] or the inflaton field

[14, 15]. We conclude in Section IV and in the Appendix A we summarise some of the salient

phenomenological imprints of the QCD θ physics.

Our analysis is of immediate use for different models of composite Higgs dynamics [16–23],

composite dark matter [20, 24–26] and inflation [27–30].

II. SETTING THE STAGE: THE QCD θ ANGLE REVIEW

Any extension of the standard model featuring a new SU(N) gauge group can feature also

a topological term. The topological term is added to the standard Yang-Mills Langrangian as

follows:

L = −
1
4

Fa
µνF

aµν
− θq(x) , (1)

where a = 1, . . . ,N2
− 1 with N the number of colors of the given SU(N) gauge theory and q(x) is

the topological charge density given by:

q(x) =
g2

32π2 Fa
µνF̃

aµν , F̃µν =
1
2
εµνρσFρσ . (2)

The additional term violates CP. This is easily understood since the topological term leads to an

operator of the form Ea
·Ba when re-written directly in terms of the electric and magnetic field. Being

a topological term, i.e. mathematically a volume term since the Lorentz indices are contracted

via the four-dimensional fully antisymmetric tensor, it does not affect the classical equations of

motions. Its physical effects derive from the interplay of field theory and quantum mechanics.

In addition this operator, being of dimension four in mass dimensions, is renormalizable and

therefore there is no theoretical reason forbidding its presence at the Lagrangian level.

In QCD this term is known as θ-term and the associated CP violation as strong CP-violation to

distinguish it from sources of CP violation due to the electroweak sector of the standard model.

Experiments, however, do not observe any violation of strong CP setting the very stringent upper

bound θ < 10−9 . In fact, as we shall see, the bound is for a specific linear combination of the QCD

θ angle and the argument of the determinant of the quark masses.
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A. QCD - Low Energy Effective Lagrangian

To elucidate the physics of the theta angle the most efficient way is to use the low energy

effective Lagrangian of QCD featuring directly the pseudoscalar mesons and baryon composite

states. The U(1) anomaly can be made explicit at the effective Lagrangian level which also allows

to readily compute the relevant hadronic processes. Although the effective Lagrangian cannot be

explicitly derived from the fundamental QCD Lagrangian as it is, instead, the case of the CPN−1

model 1, one can nonetheless constrain its form by imposing the effective theory to faithfully

respect both the anomalous and non-anomalous underlying QCD symmetries.

The QCD Lagrangian with N f massless quark flavours possesses, at the classical level, a

UL(N f ) × UR(N f ) chiral symmetry that spontaneously breaks to the diagonal vectorial subgroup

UV(N f ). The pseudoscalar bosons are the massless Goldstone bosons corresponding to the spon-

taneous breaking of the chiral symmetry. In the real world, however, the light quarks are not

massless. They have a mass which can be considered small with respect to the intrinsic infrared

QCD scale ΛQCD. At low energy the pseudoscalar bosons are described by the following chiral

Lagrangian:

L =
1
2

Tr
[
∂µU∂µU†

]
+

Fπ
2
√

2
Tr

[
M(U + U†)

]
, (3)

where U contains the fields of the pseudoscalar mesons, that are composite states of a quark and

an antiquark:

Ui j = −
2
√

2mi

µ2
i Fπ

ΨR;i ·ΨL; j , ΨR,L =
1 ± γ5

2
Ψ , (4)

with Fπ = 95 MeV, the pion decay constant and i, j = 1, . . . ,N f the flavour index. The central dot

in the first equation indicates the contraction of the colour indices. We assume the mass matrices

of both the quarks and mesons to be diagonal and real:

mi j = miδi j , Mi j = µ2
i δi j . (5)

They are related by the Gell-Mann, Oakes and Renner relation [31]:

µ2
i F2
π = −2mi < ΨR;i ·ΨL;i > , (6)

implying that the ratio mi
µ2

i
is independent of i since, in the limit of small masses, both Fπ and the

vacuum expectation value are flavour independent. Notice that Eq. (4) is a consequence of Eq. (6)

1 See for instance Ref. [9] and references therein.
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and of the following equation:

Ui j

< Ui j >
= 2

ΨR;i ·ΨL; j

< ΨR;i ·ΨL; j >
. (7)

It can be easily checked that the first term of the Lagrangian in Eq. (3) is invariant, as the QCD

Lagrangian without the term involving the masses of the quarks, under the chiral UL(N f )×UR(N f )

group that acts on U as follows:

U→ gLUg†R ; U† → gRU†g†L ; g−1
L = g†L; g−1

R = g†R , (8)

while the mass term breaks explicitly this symmetry precisely as the quark mass matrix does in

QCD. gL/R is a generic element of the first UL/R(N f ). The chiral symmetry is spontaneously broken

by imposing that the meson field satisfies the constraint:

UU† =
F2
π

2
(9)

that implies:

U(x) =
Fπ
√

2
ei
√

2 Φ(x)
Fπ with Φ(x) = ΠaTa +

S√
N f

, (10)

where Ta are the generators of SU(N f ) in the fundamental representation normalised as

Tr[TaTb] = δab . (11)

In the case of a U(3) flavour symmetry Πa(x) corresponds to the fields of the octet of the pseu-

doscalar mesons, while S is a SU(3) singlet. In this case we get:

ΠaTa =
1
√

2


π0 + η8/

√
3

√
2π+

√
2k+

√
2π− −π0 + η8/

√
3

√
2k0

√
2k−

√
2k̄0

−2η8/
√

3

 . (12)

The Lagrangian in Eq. (3) does not reproduce correctly, however, the effect of the U(1) axial

anomaly since, apart from the mass term, is invariant under the axial U(1). It is possible to take

care of the axial anomaly, at the effective Lagrangian level, by adding an effective term containing

the topological charge density:

L =
1
2

Tr
[
∂µU∂µU†

]
+

Fπ
2
√

2
Tr

[
M(U + U†)

]
+

i
2

q(x)Tr
[
log

U
U†

]
. (13)

Having introduced the background field q(x), of mass dimension four, one can show, when taking

the large number of QCD colours N limit, that it is sufficient to add to the previous Lagrangian
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only a quadratic term in q(x) since higher powers of q are suppressed in this limit. We arrive at

the following Lagrangian:

L =
1
2

Tr
[
∂µU∂µU†

]
+

Fπ
2
√

2
Tr

[
M(U + U†)

]
+

i
2

q(x)Tr
[
log

U
U†

]
+

q(x)2

aF2
π

. (14)

We are ready to introduce explicitly the θ angle and study the physical consequences following

the original derivations and results [2–8] also reviewed in [9].

B. Adding the θ angle

The θ angle multiplies the topological charge density and therefore the Lagrangian in Eq. (14)

is augmented by one more term as follows:

L =
1
2

Tr
[
∂µU∂µU†

]
+

Fπ
2
√

2
Tr

[
M(U + U†)

]
+

i
2

q(x)Tr
[
log

U
U†

]
+

q(x)2

aF2
π

− θq(x) . (15)

Since q(x) is a background field, introduced to correctly saturate the axial anomaly and to take into

account the θ term, it can now be eliminated through its equation of motion:

q(x) =
aF2
π

2

[
θ −

i
2

Tr
(
log U − log U†

)]
. (16)

Substituting the expression for q(x) back in the effective Lagrangian we arrive at:

L =
1
2

Tr
[
∂µU∂µU†

]
+

Fπ
2
√

2
Tr

[
M(U + U†)

]
−

aF2
π

4

[
θ −

i
2

Tr
[
log U − log U†

]]2
. (17)

Since UU† is proportional to the identity matrix and the mass matrix is diagonal the vacuum

expectation value of U must be:

< Ui j >= e−iφiδi j
Fπ
√

2
, (18)

where, as we shall show, the quantitiesφi are determined by minimising the energy. It is convenient

to introduce the matrix V that has a vacuum expectation value proportional to the identity matrix:

Ui j = e−iφiVi j , < Vi j >=
Fπ
√

2
δi j , (19)

and rewrite Eq. (17) in terms of the field V. We get (Mi j ≡ µ2
i cosφiδi j):

L =
1
2

Tr
[
∂µV∂µV†

]
+

aF2
π

16

[
Tr

[
log V − log V†

]]2
+

Fπ
2
√

2
Tr

[
M

(
V + V† −

2Fπ
√

2

)]
+

+
F2
π

2

N f∑
i=1

µ2
i cosφi −

aF2
π

4

θ −
N f∑
i=1

φi


2

− i
Fπ

2
√

2
Tr

[
µ2

i sinφi(V − V†)
]
+
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+ i

θ −
N f∑
i=1

φi

 aF2
π

4
Tr(log V − log V†) . (20)

The angles φi are determined by minimising the total energy, namely:

E =
F2
π

2

 a
2

(θ −
N f∑
i=1

φi)2
−

N f∑
i=1

µ2
i cosφi

 . (21)

The minimisation yields:

µ2
i sinφi = a

θ −
N f∑
i=1

φi

 , i = 1 . . .N f . (22)

These equations determine the angles φi as a function of a and θ. Substituting Eqs. (22) in Eq. (20)

we get:

L =
1
2

Tr
[
∂µV∂µV†

]
+

aF2
π

16

(
Tr

[
(log V − log V†

])2
+

Fπ
2
√

2
Tr

[
M(θ)

(
V + V† −

2Fπ
√

2

)]
+

+ i

θ −
N f∑
i=1

φi

 aFπ
2
√

2

(
Fπ
√

2
Tr

[
log V − log V†

]
− Tr

[
V − V†

])
− E0 , (23)

where E0 is the energy at the minimum. Since the matrix V satisfies the equation VV† =
F2
π

2 , we

can write V as follows:

V(x) =
Fπ
√

2
ei
√

2Φ(x)/Fπ , Φ(x) = ΠaTa +
S√
N f

. (24)

Substituting the above expressions in Eq. (77) we get:

L =
1
2

Tr
[
∂µV∂µV†

]
−

aN f

2
S2 +

F2
π

2
Tr

[
M(θ)

(
cos

√
2Φ

Fπ
− 1

)]
+

+
aFπ
√

2

θ −
N f∑
i=1

φi

 Tr
[

Fπ
√

2
sin

√
2Φ

Fπ
−Φ

]
− E0 , (25)

where Φ is given in Eq. (24) and Mi j(θ) ≡ µ2
i cosφiδi j.

The way to proceed is the following. First we have to solve Eq.s (22) that determine φi as a

function of θ, a and µ2
i . Then insert them in the effective Lagrangian of Eq. (25) that will depend

on θ, a and µ2
i . Before we proceed it is useful to show that the quantities that we will extract from

the previous effective Lagrangian will be invariant under the shift θ→ θ + 2π. This follows from

the fact that, if we have found a solution φi(θ) of Eq.s (22) then it is easy to show that also the

following will be a solution:

φ1(θ + 2π) = φ1(θ) + 2π , φi(θ + 2π) = φi(θ) , i = 2 . . .N f (26)
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But the physical quantities depend only on eiφi and therefore are invariant under a shift of 2π of

the θ angle.

It is also clear that strong CP is conserved if θ −
∑N f

i=1 φi = 0. This happens when:

1. θ = 0 that implies that φi = 0,

2. the mass of a quark flavour is zero

3. and θ = π for particular relations among the quark masses (see appendix).

C. The Witten-Veneziano relation

In order to get the Witten-Veneziano relation we have to consider the theory without fermions.

In this case the original effective Lagrangian in Eq. (15) becomes:

Lno f erm. =
q2

aF2
π

− θq − iqJ , (27)

where we have added an external source that is coupled to the topological charge density q. From

the previous expression one can compute the partition function:

Z(J, θ) ≡ e−iW(J,θ) = e−iV4aF2
π(θ+iJ)2/4 . (28)

The vacuum energy is equal to:

E(θ) ≡
W(0, θ)

V4
=

aF2
π

4
θ2 (29)

From it we get:

d2E(θ)
dθ2 |θ=0 =

aF2
π

2
. (30)

On the other hand, neglecting the term with M(θ) in Eq. (25), the mass of the singlet field can be

obtained from the effective Lagrangian in Eq. (25) and it is equal to:

M2
S = aN f . (31)

Putting together Eq.s (30) and (31) we get the Witten-Veneziano relation:

M2
S =

2N f

F2
π

d2E(θ)
dθ2 |θ=0 . (32)



10

D. The QCD axion

From the analysis reviewed in the Appendix A, we see that, if none of the quark masses is

exactly zero, the θ angle must be very small. If instead one of the quark masses were zero,

CP violation would be absent thanks to an exact classical symmetry (the chiral rotation of the

massless quark) which allows to rotate θ away. The latter solution is, however, disfavoured by

lattice and experimental low energy data [11]. The strong CP problem can, therefore, be stated in

the following way: Within the standard model there is no natural explanation of why a parameter,

unprotected by any symmetry, must vanish or being tuned to be very tiny.

The solution to the strong CP problem requires, therefore, to extend the standard model. For

example, the Peccei-Quinn (PQ) [32, 33] solution of the strong CP problem includes new matter

degrees of freedom. The essential property of the PQ model is that such an extension should

provide a new classically exact but quantum mechanically anomalous and spontaneously broken,

U(1)PQ symmetry.

The low-energy effective action of such a theory will have to contain, besides the usual QCD

degrees of freedom, an extra would-be Goldstone boson related to the spontaneously broken

U(1)PQ symmetry. If we denote by aPQ the coefficient of the U(1)PQ anomaly and by Fα the scale of

its spontaneous breaking (the analog of Fπ), we can write down an effective action that incorporates

all the relevant (anomalous and non-anomalous) Ward identities. It is sufficient, indeed, to add a

few terms to the effective Lagrangian of Eq. (15) yielding 2:

L =
1
2

Tr
[
∂µU∂µU†

]
+

1
2
∂µN∂µN† +

Fπ
2
√

2
Tr

[
M(U + U†)

]
+

q2

aF2
π

− θq +

+
i
2

q(x)
(
Tr

[
log U − log U†

]
+ aPQ(log N − log N†)

)
, (33)

where U is given in (10) and

N(x) =
Fα
√

2
ei
√

2α(x)/Fα . (34)

Notice that, following our assumptions, the only term that breaks U(1)PQ is the one related to the

anomaly.

Under the axial U(1) and the additional U(1)PQ defined by:

U→ eiβU ; N→ eiγN , (35)

2 This analysis was performed in an unpublished paper by one of us (PDV) with G. Veneziano.
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the effective Lagrangian transforms as follows:

δL = −
(
N fβ + aPQγ

)
q(x) . (36)

The Lagrangian is invariant if we impose N fβ+ aPQγ = 0. This is an anomaly-free U(1) subgroup,

whose spontaneous and explicit breaking (by quark masses) implies a new, pseudo-Goldstone

boson, the (Peccei-Quinn-Weinberg-Wilczek) axion.

Proceeding as in the previous sections (< Ui j >= e−iφiδi jFπ/
√

2 and < N >= e−iφ/aPQFα/
√

2 ), we

have to minimise the energy given by:

E =
F2
π

2

 a
2

(θ −
N f∑
i=1

φi − φ)2
−

N f∑
i=1

µ2
i cosφi

 . (37)

This gives

a

θ −
N f∑
i=1

φi − φ

 = µ2
i sinφi ; θ − φ −

N f∑
i=1

φi = 0 . (38)

The conditions above imply φi = 0 and θ − φ = 0. In this case there is no dependence on the θ

angle and no CP violation because θ − φ −
∑N f

i=1 φi = 0 (in analogy, again, with the case of a single

massless quark).

The mass matrix involving the axion and the components of Φ belonging to the Cartan subal-

gebra of U(N f ) (Φi j = viδi j) is given by:

−
1
2


N f∑
i=1

µ2
i v2

i + a


N f∑
i=1

vi + bα


2 , (39)

where b ≡ aPQFπ/Fα. The masses of the neutral mesons and of the axion are given by setting to

zero the determinant of the following matrix:

b2a − λ ba ba ba . . . ba

ba µ2
1 + a − λ a a . . . a

ba a µ2
2 + a − λ a . . . a

. . . . . . . . . . . . . . . . . .

ba a a a . . . µ2
N f

+ a − λ


. (40)
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The determinant of the previous matrix is equivalent to the one of the following matrix:

b2a − λ ba ba ba . . . ba
λ
b µ2

1 − λ 0 0 . . . 0
λ
b 0 µ2

2 − λ 0 . . . 0

. . . . . . . . . . . . . . . . . .

λ
b 0 0 0 . . . µ2

N f
− λ


, (41)

obtained from the first matrix by subtracting the first row divided by b from all of the remaining

rows. By developing the determinant along the first row one derives:

λ

1
a

+

N f∑
i=1

1
µ2

i − λ

 = b2 . (42)

By solving for λ one can determine the mass spectrum and its associated eigenstates involving

the original axion and the pseudoscalars of the theory. So far the analysis is completely general

and applicable also to other non QCD theories. However, since phenomenologically for QCD,

b << 1 the lowest eigenvalue can be determined in a straightforward manner and corresponds to

the mass of the QCD axion

m2
α =

b2

1
a +

∑N f

i=1
1
µ2

i

∼
b2

1
µ2

1
+ 1
µ2

2

= 2m2
πb2
·

m1m2

(m1 + m2)2 , (43)

where in the second passage we used the knowledge that the lightest quarks are the up and

down, and invoked the chiral limit. In the last passage we used Eq. (6) with mi the mass of the

light quarks. Experimental constraints require that Fα ≥ 109 GeV corresponding to an axion mass

mα < 0.01 eV.

The leading consequences for the meson and baryon physics of QCD are summarised in

Appendix A.

III. THE θ PHYSICS OF MINIMAL COMPOSITE EXTENSIONS OF THE STANDARD MODEL

Having reviewed the salient properties of the QCD θ-angle physics and associated strong

CP problem, we are now equipped to start investigating generalisations of the standard model

featuring new strong dynamics sectors and associated new θ-angles paying attention to their

interplay with the QCD one.
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A. QCD - like minimal composite extensions

We consider here the class of composite extensions of the standard model constituted by a novel

QCD-like theory (QCD’) which couples to QCD via the mass term operator. A time-honoured class

of models of this kind are minimal Technicolor extensions [34] according to which the Higgs sector

of the standard model is replaced by a more fundamental interaction. Here by minimal we mean

that the new theory does not carry ordinary colour. We also observe that the neutral new baryon

of the theory can also be naturally identified with a dark matter candidate [23–26, 35–37, 37, 38].

Another interesting possibility is that the new QCD’ could describe directly and solely the dark

matter sector [39, 40], i.e. a dark QCD which would still feel the weak interactions. The first lattice

simulations of theories containing composite dark matter have only recently appeared [41–44].

Here we work in the low energy effective regime for both QCD and QCD’. In this regime the

low energy effective Lagrangian for QCD, as reviewed above, is:

LQCD =
1
2

Tr
[
∂µV∂µV†

]
−

a f 2
π

2

[
θ −

i
2

Tr
[
log

V
V†

]]2
, (44)

where V = fπei Φ
fπ with fπ ≡

Fπ
√

2
with Fπ ∼ 93 MeV. For the sake of simplicity, we consider the case

with two flavors. Φ can be written in terms of the Pauli matrices τi and the identity matrix

Φ =
1
√

2
(S + Πiτi) . (45)

The four matrices τi are the three Pauli matrices and the identity matrix. They are normalized

such that Tr
[
τiτ j

]
= 2δi j.

Analogously, the low energy effective Lagrangian for QCD’ is:

LQCD′ =
1
2

Tr
[
∂µU∂µU†

]
−

a′ f ′π
2

2

[
θ′ −

i
2

Tr
[
log

U
U†

]]2
. (46)

We assume that the two theories communicate by means of the generalised mass term:

Lmass = fπ f ′πTr
[
λ(U†V + V†U)

]
. (47)

λ is a two by two diagonal matrix that we take to be real. In Technicolor extensions of the standard

model such a term emerges naturally as a four-fermion operator from new sectors responsible for

giving a mass to the standard model fermions.

The complete Lagrangian reads [45]

L = LQCD + LQCD′ + Lmass . (48)
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In order to study the vacuum of the theory and the CP violating terms we write the fields V and

U as follows:

V = XV0 fπ , (V0)i j ≡ e−iφ jδi j , U = YU0 f ′π , U0 ≡ e−iφ′jδi j

X ≡ ei Φ
fπ , ≡ e

i Φ′

f ′π . (49)

By inserting the previous expressions in Eq. (48) we get:

L =
f 2
π

2
Tr

[
∂µX∂µX†

]
+

f ′π
2

2
Tr

[
∂µY∂µY†

]
−

a f 2
π

2

θ −∑
j

φ j −
i
2

Tr
[
log

X
X†

]
2

−
a′ f ′π

2

2

θ −∑
j

φ′j −
i
2

Tr
[
log

Y
Y†

]
2

+ f 2
π f ′π

2Tr
[
ΛY†X + Λ†X†Y

]
, (50)

where

Λ ≡ V0λU†0 = e−i(φi−φ′i )λiδi j =
(
cos(φi − φ

′

i ) − i sin(φi − φ
′

i )
)
λiδi j . (51)

The angles φi and φ′i are determined by minimizing the energy:

E =
a f 2
π

2

θ −∑
j

φ j


2

+
a′ f ′π

2

2

θ′ −∑
j

φ′j


2

− 2 f 2
π f ′π

2
∑

j

λ j cos(φ j − φ
′

j) . (52)

We obtain the following equations:

− a f 2
π

θ −∑
j

φ j

 + 2 f 2
π f ′2π λi sin(φi − φ

′

i ) = 0 , i = 1, 2

− a′ f ′2π

θ′ −∑
j

φ′j

 − 2 f 2
π f ′2π λi sin(φi − φ

′

i ) = 0 , i = 1, 2 . (53)

These equations lead to the following constraints:

a f 2
π

θ −∑
j

φ j

 = −a′ f ′π
2

θ′ −∑
j

φ′j

 , λ1 sin(φ1 − φ
′

1) = λ2 sin(φ2 − φ
′

2) . (54)

We can then write Eq. (50) as follows

L = −E +
f 2
π

2
Tr

[
∂µX∂µX†

]
+

f ′π
2

2
Tr

[
∂µY∂µY†

]
+

a f 2
π

8

[
Tr

[
log

X
X†

]]2

+
a′ f ′2π

8

[
Tr

[
log

Y
Y†

]]2
+ i

a f 2
π

2

θ −∑
j

φ j

 Tr
(
log

X
X†

)

+i
a′ f ′2π

2

θ′ −∑
j

φ′j

 [Tr
[
log

Y
Y†

]]
+ f 2

π f ′2π Tr
[
M(θ, θ′)

(
Y†X + X†Y − 2

)]
−i

a f 2
π

2

θ −∑
j

φ j

 Tr
[
Y†X − X†Y

]
, (55)
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where

(M(θ, θ′))i j = λi cos(φi − φ
′

i )δi j . (56)

The previous Lagrangian can be written as the sum of a CP conserving and a CP violating term:

L = LCPC + LCPV , (57)

where (neglecting the constant term −E0)

LCPC =
f 2
π

2
Tr

[
∂µX∂µX†

]
+

f ′π
2

2
Tr

[
∂µY∂µY†

]
+

a f 2
π

8

[
Tr

[
log

X
X†

]]2

+
a′ f ′2π

8

[
Tr

[
log

Y
Y†

]]2
+ f 2

π f ′2π Tr
[
M(θ, θ′)

(
Y†X + X†Y − 2

)]
=

f 2
π

2
Tr

[
∂µX∂µX†

]
+

f ′2π
2

Tr
[
∂µY∂µY†

]
− aS2

− a′S′2

−4 f 2
π f ′π

2Tr

M(θ, θ′) sin2


√

f 2
π + f ′π

2

fπ f ′π

R
2


 (58)

and

LCPV = i
a f 2
π

2

θ −∑
j

φ j

 Tr
[
log

X
X†
− log

Y
Y†
−

(
Y†X − X†Y

)]

= a f 2
π

θ −∑
j

φ j

 Tr


√

f 2
π + f ′π

2

fπ f ′π
R − sin


√

f 2
π + f ′π

2

fπ f ′π
R


 . (59)

We have introduced the two following combinations

R ≡
fπΦ′ − f ′πΦ√

f 2
π + f ′π

2
, T ≡

f ′πΦ′ + fπΦ√
f 2
π + f ′π

2

Φ′ =
fπR + f ′πT√

f 2
π + f ′π

2
, Φ =

fπT − f ′πR√
f 2
π + f ′π

2
. (60)

Notice that LCPV and also the mass term in the last line of Eq. (58) depend only on R. The only

dependence on T appears in the kinetic terms and in the two mass terms of the flavour singlets

S and S′ in the next to the last line of Eq. (58). This means that, independently from the form

of the mass matrix, the triplet of states contained in the matrix T are always massless. One can

introduce the electroweak gauge group in such a way3 that upon spontaneous symmetry breaking

3 The standard model electroweak sector is introduced through the covariant derivatives:

∂µX =⇒ DµX = ∂µX + ig2AµX − ig1XBµτ3 , ∂µY =⇒ DµY = ∂µY + ig2AµY − ig1YBµτ3 (61)
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these three Goldstone bosons become, in the unitary gauge, the longitudinal degrees of freedom

of the gauge bosons W± and Z. It is worth studying the mass of the pseudoscalar mesons by

concentrating only on the quadratic terms in the Lagrangian (58).

The various fields are defined via:

R =
1
√

2
(Raτ

a + SR) , T =
1
√

2
(Taτ

a + ST) ,

R =
1
√

2

 R3 + SR R1 − iR2

R1 + iR2 −R3 + SR

 =


R3+SR
√

2
R−

R+ −R3+SR
√

2

 . (64)

the quadratic terms are given by

L2 =
1
2

Tr
(
∂µT∂µT

)
+

1
2

Tr
(
∂µR∂µR

)
− a

(
fπTS − f ′πRS

)2

f 2
π + f ′π

2 − a′
(

fπRS + f ′πTS
)2

f 2
π + f ′π

2 −

(
f 2
π + f ′π

2
)

Tr
[
M(θ, θ′)R2

]
=

1
2

3∑
a=1

(
∂µTa∂

µTa
)

+
1
2
∂µTS∂

µTS +
1
2
∂µRS∂

µRS +
1
2

3∑
a=1

(
∂µRa∂

µRa
)

−
a f 2
π + a′ f ′π

2

f 2
π + f ′π

2 T2
S −

a f ′π
2 + a′ f 2

π

f 2
π + f ′π

2 R2
S + 2(a − a′)

fπ f ′π
f 2
π + f ′π

2 TSRS −
(

f 2
π + f ′π

2
)

Tr
[
M(θ, θ′)R2

]
, (65)

where RS and TS are the U(1) components of R and T. If we neglect the dependence on φi − φ′i in

the mass matrix, the term with the mass is equal to:

−

(
f 2
π + f ′π

2
)

Tr


 λ1 0

0 λ2




R3+RS
√

2
R−

R+
RS−R3
√

2




R3+RS
√

2
R−

R+
RS−R3
√

2




= −
(

f 2
π + f ′π

2
)

Tr


 λ1 0

0 λ2


 1

2 (R3 + RS)2 + R−R+

√
2RSR−

√
2RSR+

1
2 (RS − R3)2 + R−R+




= −
(

f 2
π + f ′π

2
) [
λ1

(1
2

(R3 + RS)2 + R−R+

)
+ λ2

(1
2

(RS − R3)2 + R−R+

)]
(66)

If λ1 = λ2 ≡ λ then the terms that contribute to the mass are the following:

−

(
f 2
π + f ′π

2
)
λ
[
R2

3 + R2
S + 2R−R+

]
−

a f 2
π + a′ f ′π

2

f 2
π + f ′π

2 T2
S −

a f ′π
2 + a′ f 2

π

f 2
π + f ′π

2 R2
S + 2(a − a′)

fπ f ′π
f 2
π + f ′π

2 TSRS

(67)

and the addition of the gauge bosons kinetic terms:

Lgauge = −
1
2

Tr
(
FµFµν

)
−

1
4

BµνBµν +
f 2
π

2
Tr

(
DµXDµX†

)
+

( f ′π)2

2
Tr

(
DµYDµY†

)
(62)

where

Fµν = ∂µAν − ∂νAµ + ig2[Aµ,Aν] , Bµν = ∂µBν − ∂νBµ . (63)

Here A and B are respectively the SU(2)L weak and U(1) hypercharge gauge bosons.
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The triplet of states Ra (a = 1, 2, 3) has mass squared equal to 2
(

f 2
π + f ′π

2
)
λ, while the mass of the

two singlet states is obtained by diagonalizing the following matrix:
(

f 2
π + f ′π

2
)
λ +

a f ′π
2+a′ f 2

π

f 2
π+ f ′π

2 (a − a′) fπ f ′π
f 2
π+ f ′π

2

(a − a′) fπ f ′π
f 2
π+ f ′π

2
a f 2
π+a′ f ′π

2

f 2
π+ f ′π

2

 (68)

As expected when λ = 0 the eigenvalues are respectively a and a′ yielding the masses of the

respective unmixed singlet pseudoscalars.

If we add another explicit mass term, for example for the QCD’ quarks, it is no longer possible to

rotate away one linear combination of the theta angles and new sources of CP violating operators

will appear. This possibility is particularly interesting if the new QCD’ physics is used to give rise

only to a dark sector.

B. Quarks in arbitrary representations

We now consider the case of a QCD’ theory in isolation - i.e. not yet coupled to the stan-

dard model or very weakly coupled - with Dirac quarks transforming according to an arbitrary

representation of the SU(N) gauge group. The U(1) axial anomaly is given by:

∂µJµ5 = 4N f cRq(x) , with Tr
(
λaλb

)
= cRδ

ab , q ≡
g2

32π2 FµνF̃µν . (69)

For example, for the fundamental representation cR = 1
2 and for the two-index symmetric (antisym-

metric) representations cR = N+2
2

(
cR = N−2

2

)
. Explicitly for the two-index complex representations

we have

∂µJµ5 = N f
N ± 2

2
g2

32π2 ε
µνρσFa

µνF
a
ρσ ≡ 2N f (N ± 2) q . (70)

One observes immediately that for the case of the antisymmetric representation, when N = 3 one

recovers the fundamental representation. This is so because group theoretically the two-index

antisymmetric representation for three colors is the fundamental representation [46–50]. For real

representations such as the adjoint representation we have:

∂µJµ5 = 2NwN
g2

32π2 ε
µνρσFa

µνF
a
ρσ ≡ 2NwNq , (71)

with Nw the number of Weyl fermions. Super Yang-Mills corresponds to Nw = 1. The link at

large N between two-indices theories featuring one Dirac flavour and supersymmetric Yang-Mills

was explored in [48, 49]. The application of higher dimensional representations for phenomeno-

logically relevant candidates of new strong dynamics was put forward in [16, 17, 19, 51]. These
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theories are being investigated via first principle lattice simulations with interesting results [52–60]

including the physical spectrum of the composite states [41, 41, 42, 42, 61]. The phenomenology

associated to minimal models of dynamical electroweak symmetry breaking is summarised in

[62–67].

Since the pattern of chiral symmetry breaking for the case of two-index complex representations

is identical to QCD, provided that the number of flavours is small enough that the underlying

theory does not develop an infrared conformal fixed point [16, 19, 68–70], we can generalize

Eq. (15) to take into account the associated anomaly in the following way:

L =
1
2

Tr
[
∂µU∂µU†

]
+

Fπ
2
√

2
Tr

[
M(U + U†)

]
+ icRq(x)Tr

[
log U − log U†

]
+

q(x)2

aF2
π

− θq(x) . (72)

For a given complex representation the pion decay constant scales at large N as Fπ2
∝ dR with dR the

dimension of the representation which for the fundamental and two-index asymmetric/symmetric

representations are respectively N and N(N ∓ 1)/2. Technically q(x) is an auxiliary field allowing

to implement the axial transformations linearly. The introduction of the θ term is identical for

any representation since appears in the Yang-Mills sector. Eliminating the auxiliary field via its

equation of motion the Lagrangian reads:

L =
1
2

Tr
[
∂µU∂µU†

]
+

Fπ
2
√

2
Tr

[
M(U + U†)

]
−

aF2
π

4

[
θ − i cR Tr

(
log U − log U†

)]2
. (73)

Re-parametrizing the matrix U with Ve−φ, in order to minimise with respect to the abelian phases

of U, we obtain:

L =
1
2

Tr
[
∂µV∂µV†

]
+

aF2
π

4
c2

R

(
Tr

[
log V − log V†

])2
+

Fπ
2
√

2
Tr

[
M

(
V + V† −

2Fπ
√

2

)]

+
F2
π

2

N f∑
i=1

µ2
i cosφi −

aF2
π

4

θ − 2cR

N f∑
i=1

φi


2

− i
Fπ

2
√

2
Tr

[
µ2

i sinφi(V − V†)
]

+ icR

θ − 2cR

N f∑
i=1

φi

 aF2
π

2
Tr

[
log V − log V†

]
. (74)

This expression generalises (20) to a generic complex matter representation. Assuming that on the

ground state 〈V〉 = 〈V†〉 = Fπ/
√

2 the total energy of the system is:

E =
F2
π

2

 a
2

(θ − 2cR

N f∑
i=1

φi)2
−

N f∑
i=1

µ2
i cosφi

 , (75)

minimised for

µ2
i sinφi = 2cR a

θ − 2cR

N f∑
i=1

φi

 ; i = 1 . . .N f . (76)
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Substituting back in the Lagrangian we have:

L =
1
2

Tr
[
∂µV∂µV†

]
+

aF2
π

4
c2

R

(
Tr

[
log

V
V†

])2
+

Fπ
2
√

2
Tr

[
M(θ)

(
V + V† −

2Fπ
√

2

)]
+

+ i 2cR

θ − 2cR

N f∑
i=1

φi

 aFπ
2
√

2

(
Fπ
√

2
Tr

[
log

V
V†

]
− Tr

[
V − V†

])
− E0 . (77)

Using for V equation (24) we obtain:

L =
1
2

Tr
[
∂µV∂µV†

]
− 2aN f c2

RS2 +
F2
π

2
Tr

[
M(θ)

(
cos

√
2Φ

Fπ
− 1

)]
+

+ 2cR
aFπ
√

2

θ − 2cR

N f∑
i=1

φi

 Tr
[

Fπ
√

2
sin

√
2Φ

Fπ
−Φ

]
− E0. (78)

From the previous action we deduce the mass of the pseudo scalar S:

M2
S = 4aN f c2

R . (79)

We also have at large N that a ∝ 1/dR, or equivalently aF2
π is N independent. This implies

that at large N the pseudoscalar S becomes massless when fermions transform according to the

fundamental representation while its mass becomes leading in N for the two-index representations.

C. Adding the lightest composite scalars

It is, by now, well established that the correct description of the low energy ππ scattering data

requires the introduction of the σ state [71–74] indicated as f0(500) by the particle data group

[11]. The latter makes use also of the dispersion relations results [75–80] implementing the Roy

equations [81] forππ scattering. Historically this particle was introduced by Johnson and Teller [82]

and incorporated later in the Linear Sigma Model of Gell-Mann and Levy [83]. The Higgs sector

of the standard model is a Linear Sigma Model with the σ state identified with the Higgs state.

Within the standard model, however, the Higgs state is assumed to be elementary. Furthermore

the Linear Sigma Model, is however, a specific realisation of the mechanism of spontaneous

symmetric breaking which requires, for the standard model case, also the renormalizability of the

model 4.

4 Although the ATLAS and CMS collaborations have independently reported the discovery of a new particle [12, 13]
with properties consistent with the standard model Higgs the burning question remains: Is the new particle state the
standard model Higgs? It is tempting, by thinking fast, to accept the simplest paradigm, i.e. that it is the standard
model Higgs. After all, the standard model paradigm corresponds to the most minimal renormalisable model one
can write able to break the electroweak symmetry preserving the SU(2)c custodial symmetry while giving masses
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However, the Linear Sigma Model, or any other effective Lagrangian, does not explain spon-

taneous symmetry breaking, at best parametrizes the phenomenon. Furthermore scalars are not

fundamental representations of the Lorentz group, spin one-half fermions are. No elementary

(pseudo)scalar has ever been discovered so far in Nature. It would be the most important discov-

ery made at the LHC.

A composite Higgs and associate composite sector represent a natural solution to this prob-

lem. By composite, we mean composite by four-dimensional fermionic matter in the form of a

strongly coupled gauge theory. One can, of course, enlarge the space of theories or the idea of

compositeness, but should, at the same time, declare the standard model problems is set to solve.

In technicolor, for example, [88, 89] the Higgs sector of the standard model is replaced by a new

gauge dynamics featuring fermionic matter.

Because of the theoretical and phenomenological relevance of such a state both for QCD and the

electroweak breaking sector of the standard model, as well as, any other extension of the standard

model featuring composite dynamics, it is useful to extend the effective description investigated

so far to incorporate this state. We refer to [90] for a recent relevant phenomenological analysis at

the light of the LHC data.

Using as starting point the effective Lagrangian for any complex fermionic matter in a generic

representation of the underlying SU(N) gauge theory given in Eq. (73) we extend it as follows:

Lσ =
κD[σ]

2
Tr

[
∂µU∂µU†

]
+

Fπ
2
√

2
κM[σ]Tr

[
M(U + U†)

]
−

aF2
π

4
κθ[σ]

[
θ − i cR Tr

(
log U − log U†

)]2
+

1
2
∂µσ∂µσ −

m2
σ

2
κmσ[σ] σ2 . (80)

with the κ functions being Taylor expansions in σ/(4πFπ) and the dimensionless coefficients of

the expansion depend on the specific underlying gauge theory. We also have κ[0] = 1 for any

κ function. There will also be higher derivatives in σ but we consider only the leading order

assuming that we are not too far, in the phenomenological processes, from the σ mass production

threshold. The κθ term controls the theta physics of the scalar degree of freedom.

The generalisation to consider two coupled strongly interacting sectors can be achieved using

to the standard model fermions, and it is compatible with the bulk of the experimental data [84]. If the standard
model paradigm is accepted then it becomes relevant to investigate its vacuum stability [85, 86] making sure that the
quantum corrections do satisfy the Weyl consistency conditions determined in [86, 87]. According to these analyses
the standard model is in a metastable state and can therefore tunnel to the true ground state located at much higher
values of the Higgs field. The stability of the potential, per se, is lost at around 1010 GeV reinforcing the idea that one
needs to go beyond the standard model of particle interactions to have a more complete theory of nature.
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as starting point, for example, the Lagrangian in Eq. (48) with independent kappa functions for

the two sectors, and therefore two independent scalar states, σ and σ′. The direct mixing between

these two scalar states is induced by the generalised Lmass term in the Lagrangian which now reads

Lmass = κmass [σ, σ′] fπ f ′πTr
[
λ(U†V + V†U)

]
. (81)

The function κmass depends on the specific extension coupling these two sectors and can be

expanded simultaneously in σ/(4π fπ) and σ′/(4π fπ′).

IV. CONCLUSIONS

After having reviewed the θ-angle physics, the associated strong CP problem of QCD and its

axion resolution, we considered extensions of the standard model featuring new strongly coupled

sectors coupled to QCD. In particular we elucidated the interplay between the new θ-angle sector

with the QCD one. Our analysis can be viewed as a stepping stone towards generic composite

extensions of the standard model featuring new theta-angles.

We have considered several kinds of new strongly coupled gauge theories with fermions

transforming according to different matter representations of the underlying SU(N) gauge theory.

We have also shown how to generalise the framework to include the lightest scalar state of any

strongly coupled theory (to be identified in QCD with the σ state) and, for models of dynamical

electroweak breaking, with the Higgs.

Our analysis is of immediate use for different models of composite Higgs dynamics, composite

dark matter and inflation.
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Appendix A: Review of strong CP violation phenomenological effects for QCD-like dynamics

In this appendix we review, for completeness, how to obtain physically relevant observables

for QCD induced by the presence of a nonzero θ angle.
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1. Strong CP violating mesonic amplitudes

We start by minimising Eq. (21) in the case of two flavours and in the limit where a >> µ2
1, µ

2
2.

In this case we must impose that θ = φ1 + φ2 and the minimisation equations become:

µ2
1 sinφ1 = µ2

2 sin(θ − φ1) . (A1)

The solutions to the previous equation are:

sinφ1 =
µ2

2 sinθ√
µ4

1 + µ4
2 + 2µ2

1µ
2
2 cosθ

, sinφ2 =
µ2

1 sinθ√
µ4

1 + µ4
2 + 2µ2

1µ
2
2 cosθ

, (A2)

and

cosφ1 =
µ2

1 + µ2
2 cosθ√

µ4
1 + µ4

2 + 2µ2
1µ

2
2 cosθ

, cosφ2 =
µ2

2 + µ2
1 cosθ√

µ4
1 + µ4

2 + 2µ2
1µ

2
2 cosθ

. (A3)

Computing the associated energy in Eq. (21) we get

E(θ) = −
F2
π

2

√
µ4

1 + µ4
2 + 2µ2

1µ
2
2 cosθ . (A4)

For equal masses (µ1 = µ2 = µ) yields

E(θ) = −F2
πµ

2
∣∣∣∣∣cos

θ
2

∣∣∣∣∣ . (A5)

We find that both Eq.s (A4) and (A5) are periodic of period 2π inθ. Having solved the minimisation

equation in the a >> µ2
1, µ

2
2 limit we consider the first correction

µ2
1 sinφ1 = µ2

2 sinφ2 = a(θ − φ1 − φ2) (A6)

which can be determined by expanding around the large a solution as follows

φ1,2 = φ̄1,2 + εδφ1,2 , ε =
µ1µ2

a
. (A7)

One deduces

φ1 = φ̄1 − ε
sinθ
R3

µ2
2 + µ2

1 cosθ

µ2
1

, φ2 = φ̄2 − ε
sinθ
R3

µ2
1 + µ2

2 cosθ

µ2
2

, (A8)

where φ̄1,2 is the large a solution

φ̄1 + φ̄2 = θ , R =

√
µ4

1 + µ4
2 + 2µ2

1µ
2
2 cosθ

µ2
1µ

2
2

. (A9)
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Using the previous expression we can compute the CP violating term contribution

θ − φ1 − φ2 = ε
sinθ

R
=

µ2
1µ

2
2 sinθ

a
√
µ4

1 + µ4
2 + 2µ2

1µ
2
2 cosθ

. (A10)

This contribution vanishes if θ = 0 or if µ2
1 and/or µ2

2 are equal to zero. If µ1 , µ2 it is also zero for

θ = π. But if µ1 = µ2 ≡ µ we get:

θ − φ1 − φ2 =
µ2

a
sin

θ
2

=
µ2

a
, for θ = π . (A11)

One concludes that if µ1 = µ2 then CP is violated also at θ = π.

From the CP violating term in Eq. (25) we can extract a cubic term in the fields of the pseu-

doscalar mesons that is given by:

−

a
(
θ −

∑N f

i=1 φi

)
3
√

2Fπ
Tr

[
Φ3

]
−→ −

a
(
θ −

∑N f

i=1 φi

)
√

3Fπ
π+π−η8 , (A12)

from which we extract the decay amplitude η8 → π+π− given by

T(η→ π+π−) =
a
(
θ −

∑N f

i=1 φi

)
√

3Fπ
=

2m2
π(θ)
√

3Fπ
·

µ2
1µ

2
2 sinθ

µ4
1 + µ4

2 + 2µ2
1µ

2
2 cosθ

, (A13)

where

m2
π(θ) =

µ2
1 cosφ1 + µ2

2 cosφ2

2
=

1
2

√
µ4

1 + µ4
2 + 2µ2

1µ
2
2 cosθ . (A14)

For small values of θ we get

T(η→ π+π−) ∼
2m2

π
√

3Fπ

θ(√
m1
m2

+
√

m2
m1

)2 , (A15)

where mi is the quark mass related to the meson mass through Eq. (6). Notice that in the previous

calculation we have identified η8 with the particle state η 5.

From the previous equation we get:

Γ(η→ π+π−) =
θ2(√

m1
m2

+
√

m2
m1

)4

m4
π

√
m2
η − 4m2

π

12πF2
πm2

η

. (A16)

5 The physical η is the linear combination η = cosϕη8 + sinϕη1 of the η8 and the isosinglet η1 with a mixing angle
ϕ ∼ 11.
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Using Fπ = 95 MeV, mπ = 140 MeV and mη = 548 MeV we get

Γ(η→ π+π−)) =
θ2(√

m1
m2

+
√

m2
m1

)4
· 1.8 MeV = θ2

· 98.2 KeV , (A17)

and

Γ(η→ π+π−)
Γtot

= 68 θ2 . (A18)

From experiments we have

Γ(η→ π+π−)
Γtot

< 1.3 · 10−5 , (A19)

that yields an upper limit on the value of θ < 4.4 × 10−4. We will get a much better limit from

the electric dipole moment of the neutron. The decay amplitude of η → π+π− is zero for θ = 0

and π given that µ2
1 , µ

2
2. For extensions of the standard model where these masses are not yet

determined we recall that if µ2
1 = µ2

2 the corresponding process is not vanishing anymore at θ = π.

In the previous analysis we have assumed that there are only two quark flavours. In the case

of three flavours one finds that

1. If |µ2
2 − µ

2
1|µ

2
3 > µ

2
1µ

2
2 then CP is conserved at θ = π

2. If |µ2
2 − µ

2
1|µ

2
3 < µ

2
1µ

2
2 then CP is violated at θ = π.

From the meson mass matrix one can easily get the mass of the pseudoscalar mesons as a

function of the angle θ. One gets:

m2
π0,π±

=
µ2

1 cosφ1 + µ2
2 cosφ2

2
, m2

k± =
µ2

1 cosφ1 + µ2
3 cosφ3

2
, (A20)

and

m2
k0;k̄0 =

µ2
2 cosφ2 + µ2

3 cosφ3

2
. (A21)

These relations imply

R(θ) ≡
m2

k0 −m2
k+ −m2

π0 + m2
π+

m2
π

=
µ2

2 cosφ2 − µ2
1 cosφ1

µ2
2 cosφ2 + µ2

1 cosφ1
=

(µ2
2 − µ

2
1)(µ2

2 + µ2
1)

µ4
1 + µ4

2 + 2µ2
1µ

2
2 cosθ

(A22)

where we have used Eq.s (A3). In particular one deduces

R(θ = 0) =
µ2

2 − µ
2
1

µ2
2 + µ2

1

, R(θ = π) =
µ2

2 + µ2
1

µ2
2 − µ

2
1

. (A23)
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Experimentally R ' 0.26 which is consistent with θ = 0. The ratio of masses for the two lightest

quarks is determined from the following relation

m1

m2
=
µ2

1

µ2
2

=
2m2

π0 −m2
π+ + m2

k+ −m2
k0

m2
k0 −m2

k+ + m2
π+

' 0.56, for θ = 0 . (A24)

For the sake of completeness we provide also the ratio between the mass of the strange and that

of the down quarks:

m3

m2
=
µ2

3

µ2
2

=
m2

k0 −m2
π+ + m2

k+

m2
k0 −m2

k+ + m2
π+

' 20.18 (A25)

2. Strong CP violating amplitudes with baryons

In order to compute the CP violating terms involving baryons we add to the effective Lagrangian

terms involving baryons. The baryons belong to an octet of SUV(3) and are described by the

following matrix:

B =


Σ0
√

2
+ Λ
√

6
Σ+ p

Σ− −
Σ0
√

2
+ Λ
√

6
n

Ξ− Ξ0
−2 Λ
√

6

 . (A26)

Here B is a Dirac spinor and, being a matter field, transforms naturally under the SU(3)V diagonal

vector subgroup,

B→ kBk† , with k ∈ SU(3)V . (A27)

The constraint equation linking k to the underlying pion dynamics and the original SU(3)× SU(3)

global symmetry is obtained imposing

gLξ(Φ)k†(Φ, gL, gR) = k(Φ, gL, gR)ξ(Φ)g†R , with ξξ ≡ U
√

2
Fπ

. (A28)

Under the chiral SUL(3)×SUR(3) we can define purely left and right globally transforming baryon

fields:

R ≡
1 + γ5

2
ξ†Bξ→ gRRg†R , L ≡

1 − γ5

2
ξBξ† → gLLg†L . (A29)

The meson fields transform as in Eq. (8) and therefore the, relevant to us, Lagrangian involving

baryons can be written as follows

Lbar = Tr
[
B̄iγµ∂µB

]
−

√
2α

Fπ
Tr

[
L̄URU† + R̄U†LU

]
+ δTr

[
L̄URM + R̄U†LM†

]
+ γTr

[
L̄M†RU† + R̄MLU

]
.

(A30)
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In terms of ξ and B reads:

Lbar = Tr
[
B̄iγµ∂µB

]
− α

Fπ
√

2
Tr

[
B̄B

]
+ δ

Fπ
2
√

2
Tr

[
B̄B(ξMξ + ξ†M†ξ†)

]
+ δ

Fπ
2
√

2
Tr

[
B̄γ5B(ξMξ − ξ†M†ξ†)

]
+ γ

Fπ
2
√

2
Tr

[
B̄(ξMξ + ξ†M†ξ†)B

]
− γ

Fπ
2
√

2
Tr

[
B̄γ5(ξMξ − ξ†M†ξ†)B

]
(A31)

As done earlier we make explicit the relevant U(1) axial phase via

Fπ
√

2

(
ξ2

)
i j

= Ui j = e−i
φi
2 Vi je−i

φi
2 , (A32)

implying

ξi j = e−i
φi
2 νimk†mj = kimνmje−i

φ j
2 , with ν = e

i Φ
√

2Fπ . (A33)

Provided we transform the B fields as in (A27) the previous Lagrangian becomes,

Lbar = Tr
[
B̄iγµ∂µB

]
− α

Fπ
√

2
Tr

[
B̄B

]
+

Fπ
√

2
δ Tr

[
B̄BMp(θ) + B̄γ5BMm(θ)

]
+

Fπ
√

2
γ Tr

[
B̄Mp(θ)B − B̄γ5Mm(θ)B

]
+a

θ −∑
i

φi

 Fπ
√

2
Tr

[
δ

(
B̄B sin

( √
2

Fπ
Φ

)
− i B̄γ5B cos

( √
2

Fπ
Φ

))
+γ

(
B̄ sin

( √
2

Fπ
Φ

)
B + i B̄γ5 cos

( √
2

Fπ
Φ

)
B
)]
, (A34)

with

Mp/m(θ) ≡
νM(θ)ν ± ν†M(θ)ν†

2
. (A35)

One can determine α, γ and δ in terms of the baryon masses

α =

√
2

Fπ

mΣ +
µ2

(µ2
3 − µ

2)
(2mΣ −mΞ −mN)

 , (A36)

γ =

√
2

Fπ(µ2
3 − µ

2)
(mΣ −mΞ) , (A37)

δ =

√
2

Fπ(µ2
3 − µ

2)
(mΣ −mN) . (A38)

The baryon masses satisfy the Gell-Mann-Okubo mass formula:

3mΛ + mΣ = 2(mΞ + mN) . (A39)
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From the previous Lagrangian one can extract the πN coupling constants

N̄
[
iγ5gπNN + ḡπNN

]
πiτiN . (A40)

The CP violating one reads:

ḡπNN = −
a(θ −

∑
i φi)

µ2
3 − µ

2

mΞ −mΣ

Fπ
= −

µ2
1µ

2
2 sinθ

(µ2
3 − µ

2)
√
µ4

1 + µ4
2 + 2µ2

1µ
2
2 cosθ

mΞ −mΣ

Fπ
. (A41)

In deriving the last identity we used Eq. (A10). We can also rewrite the previous expression in the

chiral limit, directly in terms of the quark masses as:

ḡπNN = −2θ
µ2

1µ
2
2

(2µ2
3 − µ

2
1 − µ

2
2)(µ2

1 + µ2
2)

mΞ −mΣ

Fπ
= −2θ

m1m2

(2m3 −m1 −m2)(m1 + m2)
mΞ −mΣ

Fπ
, (A42)

where we also assumed the small θ limit. For the CP preserving coupling one must add new

operators dictated by current algebra involving derivative couplings with the mesons. This leads

to

FπgπNN ' mN . (A43)

This is the Goldberger-Treiman relation (with gA = 1) apart from terms that vanish in the chiral

limit. Having computed ḡπNN we can use it to estimate the electric dipole moment of the neutron

that, if different from zero, implies a violation of CP. The dominant contribution comes from the

two diagrams discussed and computed in Ref. [2] and one gets:

Dn =
1

4π2mN
· gπNN ḡπNN log

mN

mπ
= −1.4 · 10−15θ cm , (A44)

in units where the electric charge e = 1. The experimental limit is:

|Dn| < 6 · 10−26 , =⇒ θ < 10−10 . (A45)
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