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Abstract
We analyze quantum corrections on the naive φ4-Inflation. These typically lead to

an inflaton potential which carries a non-integer power of the field. We consider both

minimal and non-minimal couplings to gravity. For the latter case we also study unitarity

of inflaton-inflaton scattering. Finally we confront these theories with the Planck and

BICEP2 data. We demonstrate that the presence of nonvanishing primordial tensor modes

requires sizable quantum departures from the φ4-Inflaton model for the non-minimally

coupled scenario which we parametrize and quantify. We compare the results with the

minimally coupled case and elucidate the main distinctive features.
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I. NON-MINIMALLY COUPLED THEORIES WITH QUANTUM POTENTIALS

The underlying origin of the inflationary paradigm constitutes a prominent

problem in cosmology [1–6]. Inflation is traditionally modelled via the introduc-

tion of new scalar fields. Many models have been put forward to describe the

dynamics of these scalar fields and their interactions with other fields, as it has

been recently reviewed in [7].

On general grounds any renormalizable field theory will recieve quantum

corrections to the potential. One can think of the E. Weinberg and Coleman per-

turbative quantum corrections to the classical scalar potential of any field theory

as a simple example of these type of corrections [8, 9]. We phenomenologically

characterize these corrections to the φ4 theory by introducing a real parameter γ

as follows:

Ve f f = λφ4

(
φ

Λ

)4γ

, (1)

with Λ a given energy scale. Of course, model by model, one can compute the

specific potential as in [10]. Nevertheless we will show that it is possible to provide

useful information on a large class of models corresponding to different values of

γ using this simple approach. For completeness we analyze the cases in which

φ couples both minimally and non-minimally to gravity. We find that for the

non-minimally coupled case, the recent results by BICEP2 indicating the presence

of primordial tensor modes [11] constrains γ to lie in the region 0.08 − 0.12, at

the two-sigma confidence level. However, independently on the validity of the

BICEP2 results [12, 13], it is fundamental to know whether quantum corrected

potentials can account for nonzero tensor modes.

Interestingly, we also discover that for large primordial tensor modes the results

are largely independent on the number of e-foldings. Relevant examples of non-

minimally coupled models are the Higgs-Inflation model [14] and the ones in

which the inflaton is a composite state [15–18].

II. COUPLING TO GRAVITY AND SLOW-ROLL INFLATION

We consider the action of a scalar field non-minimally coupled to gravity:
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SJ =

∫
d4x
√
−g

[
−
M

2 + ξφ2

2
R + gµν∂µφ∂νφ − Ve f f

(
φ
)]
. (2)

The subscript J refers to the Jordan frame, and indicates that the gravity sector

is not of the Einstein Hilbert form. Generally in the Jordan frame, the scalar

background contributes to the effective Planck mass: M2
P = 〈M2 +ξφ2

〉. However,

〈φ2
〉 = 0 in the present case and we can safely identifyMwith MP.

It is rather cumbersome to analyze inflation using this action. Instead we pro-

ceed by applying a conformal transformation, which eliminates the non-minimal

coupling term:

gµν → g̃µν = Ω(φ)2gµν, Ω(φ)2 = 1 +
ξφ2

M2
p
. (3)

We then land in the Einstein frame, in which the gravity sector is of the Einstein

Hilbert form (tildes are omitted to ease notation):

SE =

∫
d4x
√
−g

[
−

1
2

M2
p R + Ω−2

(
1 + 3M2

pΩ
′2
)

gµν∂µφ∂νφ −Ω−4V(φ)
]
. (4)

The transformation leads to an involved kinetic term and it is convenient to

replace φ by a canonically normalized field χ using a field redefinition:

1
2

(
dχ
dφ

)2

= Ω−2
(
1 + 3M2

pΩ
′2
)

=
M2

p

(
M2

p + (1 + 3ξ) ξφ2
)

(
M2

p + ξφ2
)2 . (5)

The Einstein frame action then describes a scalar field minimally coupled to

gravity:

SE =

∫
d4x
√
−g

[
−

1
2

M2
pgµνRµν +

1
2

gµν∂µχ∂νχ −U(χ)
]
, U(χ) ≡

(
Ω−4Ve f f

) (
φ (χ)

)
.

(6)

We will assume that inflation takes place in the large field regime φ � Mp
√
ξ
. In

this limit the solution to (5) is:
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χ ' κMp ln

 √ξφMp

 , κ ≡

√
2
ξ

+ 6. (7)

In the large field limit the Einstein frame potential then takes the form:

U (χ) = Ω−4V
(
φ (χ)

)
=

M4
p(

M2
p + ξφ2

)2λφ
4

(
φ

Λ

)4γ

(8)

=
λM4

p

ξ2

(
1 + exp

[
−2χ
κMp

])−2

︸                        ︷︷                        ︸
φ4-Inflation

(
Mp
√
ξΛ

)4γ

exp
[

4γχ
κMp

]
︸                    ︷︷                    ︸

Corrections from γ

. (9)

The underbraced ’φ4-Inflation’-term refers to the potential one would obtain by

setting γ = 0, that is, non-minimally coupled φ4-Inflation. Large field asymptotic

flatness of this term is what makes Higgs-Inflation viable [14]. However, quantum

corrections which we parametrize by γ, may spoil this feature of the potential.

The analysis of inflation in the Einstein frame is straightforward. We proceed

by the standard slow-roll approach and compute the slow-roll parameters in the

large field limit using the field χ and its potential U (χ). These may be expressed

in terms of the Jordan frame field φ by reinserting (7):

ε =
M2

p

2

(
dU/dχ

U

)2

∼

8M4
p

κ2ξ2φ4︸  ︷︷  ︸
φ4−Inflation

+
16M2

p

κ2ξφ2γ +
8
κ2γ

2. (10)

η = M2
p

(
d2U/dχ2

U

)
∼

8
κ2


−

M2
p

ξφ2 +
3M4

p

ξ2φ4︸          ︷︷          ︸
φ4−Inflation

+
4M2

p

ξφ2 γ + 2γ2


. (11)

So far γ can assume any value and the only approximation made is the one in (7).

Inflation ends when the slow-roll approximation is violated, in the present case

this occurs for ε
(
φend

)
= 1. Thus the field value at the end of inflation is:

φend =
2Mp
√
ξ

1√
√

2κ − 4γ
=

(
1.07 + 0.32γ

) Mp
√
ξ

+ O
(
γ2

)
for ξ� 1. (12)
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From the first identity we derive the universal bound:

γ <

√
3

2
. (13)

Assuming the quantum corrections to be perturbative, in the underlying inflaton

theory, we can expand for small values of γ and obtain the right-hand side of

(12). We set ξ � 1 since ξ ∼ 104 is required to generate the proper amplitude

of density perturbations. This is a general feature of non-minimally coupled

theories of single-field inflation [14, 16–20]. A relatively small ξ can be realized

but it requires an extremely small λ as noted in [21]. We will quantify this relation

between ξ and λ later, see equation (26).

The observed Cosmic Microwave Background (CMB) modes cross the horizon

about N = 60 e-foldings before the end of inflation. The corresponding value of

the inflaton field is denoted by χ∗ and is given by:

N =
1

M2
p

∫ χ∗

χend

U
dU/dχ

dχ =
κ2

4

∫ φ∗

φend

1 +
ξφ2

M2
p

1 + γ
(
1 +

ξφ2

M2
p

) 1
φ

dφ ∼
κ2

8γ
ln

[
1 + γ

ξφ2

M2
p

]φ∗
φend

.

(14)

Combining the previous equation with (12) we deduce

φ∗ ∼

√
1
γ

(
exp

8γN
κ2 − 1

)
Mp
√
ξ

(15)

=

2.83 + 5.66
(
γN
κ2

)
+ 9.43

(
γN
κ2

)2

+ O

(
γN
κ2

)3
√

N
κ2

Mp
√
ξ

(16)

=

 8.94︸︷︷︸
φ4−Inflation

+179γ + 2980γ2 + O
(
γ3

) Mp
√
ξ

for ξ� 1, N = 60. (17)

We expanded in γ to clarify how the result deviates from φ4-Inflation. It is

evident that the γ-correction push inflation to higher field values. An expansion

is, however, justified for tiny values of γ.

III. UNITARITY TEST VIA INFLATON-INFLATON SCATTERING

Next, we turn to the constraints set by tree-level unitarity of inflaton-inflaton

scattering. We consider the Einstein frame action in the large field regime:
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SE =

∫
d4x
√
−g

−1
2

M2
p gµνRµν +

M2
p

φ2 κ
2gµν∂µφ∂νφ −

M4
p

ξ2 λ

(
φ

Λ

)4γ . (18)

Violation of tree-level unitarity of the scattering amplitude, concerns fluctua-

tions of the inflaton around its classical homogeneous background:

φ
(
~x, t

)
= φc

(
~x, t

)
+ δφ

(
~x, t

)
. (19)

In first approximation we neglect the time dependence of the background

during the inflationary period and write φc (t) = φc. To estimate the cutoff we

expand the kinetic and potential term around the background. The kinetic term

for the fluctuations then takes the form

M2
pκ

2

φ2
c

(
1 +

δφ
φc

)2κ
2
(
∂δφ

)2
=

M2
pκ

2

φ2
c

(
∂δφ

)2
∞∑

n=0

(n + 1)
(
−δφ

φc

)n

. (20)

The first term of the series, i.e. the kinetic term for a free field, may be canonically

normalized by a field redefinition

δφ

φc
=

δφ̃
√

2κMp

. (21)

The kinetic term then takes the form

1
2

(
∂δφ̃

)2
∞∑

n=0

(n + 1)

 −δφ̃√
2κMp

n

. (22)

Expanding the potential, the leading higher order operators take on the same

form

γλM4
p

ξ2

(
φc

Λ

)4γ  δφ̃
√

2κMp

n

. (23)

From these expression, we determine the cutoff of the theory which controls the

physical suppression of higher order operators:

ΛUC ∼
√

2κMp. (24)

This implies that the theory is valid, from the unitarity point of view, till the

Planck scale.
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IV. PHENOMENOLOGICAL CONSTRAINTS AFTER BICEP2

We are now equipped to confront the inflationary potential with experiments.

We start by considering the constraints set by the observed amplitude of density

perturbation As [22]. To generate the proper value of As, the potential should

satisfy at horizon crossing φ∗

As =
1

24π2M4
p

∣∣∣∣∣U∗ε∗
∣∣∣∣∣ = 2.2 · 10−9

⇔

∣∣∣∣∣U∗ε∗
∣∣∣∣∣ =

(
0.0269Mp

)4
. (25)

For a minimally coupled quartic potential this imposes a constraint on the self

coupling, which must be unnaturally small: λ ∼ 10−13 [23]. However, in the

present case, (25) yields a relation between ξ, λ and γ. We can self-consistently

solve for ξ� 1

ξ =

 3λ
4 · 0.02694

(
Mp

Λ

)4γ
(
exp 4γN

3 − 1
)2 ( 1

γ exp 4γN
3 −

1
γ

)2γ

γ2
(
exp 4γN

3 + γ
)2


1

2+2γ

. (26)

The resulting constraint is plotted in Fig. 1. The magnitude of ξ needed to

produce the observed amplitude of scalar perturbations decreases for increasing

γ to a certain point from which it increases monotonically.

Expanding in γ and setting N = 60, λ = 1
4 (which are standard values) the

relation takes on a more readable form:

ξ = 48000︸︷︷︸
φ4−Inflation

+ (−2.27 · 106 + 9.57 · 104 ln
Mp

Λ
)γ

+

7.46 · 107
− 4.63 · 106 ln

Mp

Λ
+ 9.57 · 104 ln

(
Mp

Λ

)2γ2 + O
(
γ3

)
.

Next we consider the scalar spectral index ns and the tensor-to-scalar power

ratio r

r = 16ε∗ =
16
κ2


8M4

p

ξ2φ4
∗︸︷︷︸

φ4−Inflation

+
16M2

p

ξφ2
∗

γ + 8γ2


, (27)

ns = 2η∗ − 6ε∗ + 1 = 1 −
16M2

p

ξκ2φ2
∗︸      ︷︷      ︸

φ4−Inflation

−

32M2
p

ξκ2φ2
∗

γ −
16γ2

κ2 . (28)
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Using (15) and expanding in γ we obtain

r =
11.8
N2︸︷︷︸

φ4−Inflation

+
16.3γ

N
+ 8.73γ2 + O

(
γ3

)
, for ξ� 1 (29)

= 0.0033︸ ︷︷ ︸
φ4−Inflation

+0.27γ + 8.73γ2 + O
(
γ3

)
for ξ� 1, N = 60. (30)

ns = 1 −
1.98
N︸   ︷︷   ︸

φ4−Inflation

+
(
1.30 −

3.96
N

)
γ + (−0.0699 − 0.262N)γ2 + O

(
γ3

)
for ξ� 1 (31)

= 0.967︸︷︷︸
φ4−Inflation

+1.23γ − 15.8γ2 + O
(
γ3

)
for ξ� 1, N = 60. (32)

The expansion above shows immediately that for Higgs-inflation like models[14],

featuring a small γ, it is not possible to achieve values of r consistent with the

new BICEP2 results [11]. However, the situation changes if we allow for large

corrections to the conformal φ4 potential. We use the full dependence on γ,

derived in (15), (27), (28), to plot r versus ns and compare with the BICEP2 results.

0.05 0.1 0.15 0.2 0.25 0.3
0

20 000

40 000

60 000

80 000

Anomalous scaling dimension HΓL

N
on

-
m

in
im

al
co

up
lin

g
HΞ

L

FIG. 1: Here we show (26) as a function of γ for ξ� 1, N = 60, Mp

Λ
= 1 and

λ = 1
4 . As γ increases from zero the magnitude of ξ needed to produce the

correct amount of scalar perturbations decreases. The minimum is obtained at

γ ∼ 0.1. For this value of γ, the model produce an amount of tensor modes

which is in agreement with the BICEP2 results, see figure 2.

8



The comparison is in Fig. 2. We deduce that, quite independently on the number

of e-foldings N, the two-sigma allowed value of γ lie in the range 0.08 < γ < 0.12.

For reference we summarize the results one would obtain if the model were

minimally coupled to gravity. Ve f f then produce standard minimally coupled

power-law inflation. Within the slow-roll approximation, the scalar spectral index

and the tensor-to-scalar ratio are:

r = 16ε∗ =
128M2

p
(
1 + γ

)
φ2

i

=
16

(
1 + γ

)
N + 1 + γ

. (33)

ns = 2η∗ − 6ε∗ + 1 = 1 −
8M2

p
(
1 + γ

) (
3 + 2γ

)
φ2

i

=
N − 2 − γ
N + 1 + γ

. (34)

These expressions corresponds to lines in the (r,ns) plane. Some of these are

plotted in Fig. 3 along with constraints from Planck and BICEP2. From the figure

we see that this model is consistent with the data, provided that a large fine-tuning

of the self-coupling is accepted to address the amplitude of density perturbations.

1Σ CL
2Σ CL

Γ=0.09

Γ=0.04

Γ=0.12

Lines of constant Γ

Lines of constant N

0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Spectral Index HnsL

T
en
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R
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io

HrL

FIG. 2: The cosmological parameters r and ns, as measured by Planck [22] and

BICEP2 [11] as well as the parameters stemming from the model of this paper.

The two variables N and γ, span the intervals 50 to 70 and 0 to 0.15

respectively. The contours for N from left to right is 50, 60 and 70.
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1Σ CL: Planck13+WP+highL+BICEP2

2Σ CL: Planck13+WP+highL+BICEP2

N = 50

N = 60

N = 70

Γ = 0

Γ = 0.25
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FIG. 3: Predictions for the minimally coupled case, given for different values

of γ and N. The standard φ4-Inflation is obtained for γ = 0.

Contrary to the non-minimally coupled case, we observer a strong dependence

on N for any value of γ. Specifically for γ > 0.25 the number of e-foldings must

exceed 70 to be within the two-sigma confidence level.

To summarize we have shown that, for the non-minimally coupled case, quan-

tum corrections to φ4-Inflation are needed to accommodate simultaneously the

latest Planck and BICEP2 results. More generally quantum corrected potentials

non-minimally coupled to gravity can account for large primordial tensor modes.

This result can be tested once the experimental situation is settled.

Our analysis is sufficiently general to provide useful constraints for a general

class of quantum field theories that can be used to drive inflation.
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