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Orthogonal Technicolor with Isotriplet Dark Matter on the Lattice

Ari Hietanenr,∗ Claudio Picar,† Francesco Sanninor,‡ and Ulrik Ishøj Søndergaardr§
rCP3-Origins & the Danish Institute for Advanced Study DIAS,

University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.

We study the gauge dynamics of an SO(4)-gauge theory with two Dirac Wilson fermions trans-
forming according to the vector representation of the gauge group. We determine the lattice phase
diagram by locating the strong coupling bulk phase transition line and the zero PCAC mass line. We
present results for the spectrum of the theory. In particular we measure the pseudoscalar, vector and
axial meson masses. The data are consistent with a chiral symmetry breaking scenario rather than
a conformal one. When used to break the electroweak symmetry dynamically the model leads to a
natural dark matter candidate.
Preprint: CP3-Origins-2012-030 & DIAS-2012-31

I. INTRODUCTION

Understanding the phase diagram of strongly inter-
acting theories will unveil a large number of theories of
fundamental interactions useful to describe electroweak
symmetry breaking, dark matter and even inflation [1–
4]. To gain a coherent understanding of strong dynamics
besides the SU(N) gauge groups [5, 6], one should also
investigate the orthogonal, symplectic and exceptional
groups. SO(N) and SP(2N) phase diagrams were investi-
gated with analytic methods in [7], while the exceptional
ones together with orthogonal gauge groups featuring
spinorial matter representations were studied in [8]. So
far lattice simulations have been mostly employed to ex-
plore the phase diagram of SU(N) gauge theories while
a systematic lattice analysis of the smallest symplectic
group was launched in [9].

Here we move forward by analyzing on the lattice
the dynamics of the SO(4) gauge group with two Dirac
fermions in the vector representation of the group. This
choice is based on the following theoretical and phe-
nomenological considerations. The theory is expected
to be below or near the lower boundary of the conformal
window [7, 10], and therefore break chiral symmetry.
The theory can be used as a technicolor [11, 12] tem-
plate similar, from the global symmetry point of view, to
Minimal Walking Technicolor (MWT) [5, 13, 14]. How-
ever, the fermion representation is such that, differently
from MWT, one cannot construct composite fermions
out of one techniquark and one techniglue. This re-
moves immediately the presence of fractionally charged
states with the simplest choice of the hypercharge as-
signment. Furthermore the technicolor theory leads
to a weak isotriplet with the neutral member being an
ideal dark matter candidate [7, 10], the isotriplet Tech-
nicolor Interactive Massive Particle (iTIMP). This state
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†Electronic address: pica@cp3-origins.net
‡Electronic address: sannino@cp3.dias.sdu.dk
§Electronic address: sondergaard@cp3.sdu.dk

is a pseudo Goldstone and therefore can be light with
respect of the electroweak scale making it an natural
candidate to resolve some of the current experimental
puzzles [10, 15]. The first model featuring composite
dark matter pions appeared in [16, 17] and the first study
of technipion dark matter on a lattice appeared in [9].

Due to the reality of the fermion representation the
quantum global symmetry group is SU(4) expected to
break spontaneously to SO(4), yielding nine Goldstone
bosons. Once gauged under the electroweak theory
three are eaten by the SM gauge bosons. Six additional
Goldstone bosons form an electroweak complex triplet
of technibaryon with the neutral isospin zero component
to be identified with the iTIMP of [10].

SO(4) is a semi simple group, SO(4) � SU(2)⊗SO(3),
and it has a non-trivial center Z2. The theory is asymp-
totically free and since the two-loop β-function for dif-
ferent number of flavors looses the infrared zero for
N f = 2.3 while the all-orders beta function [18, 19] pre-
dicts the anomalous dimension of the mass to be unity
for N f = 2.86 we expect that chiral symmetry breaks for
two Dirac flavors. However, we want to confirm here
this result via first principle lattice simulations. Further-
more there is also the possibility that the theory shows a
certain degree of walking [7, 10, 20–22] unless the phase
transition is of jumping type [23, 24]. Jumping confor-
mal phase transitions have been demonstrated to occur
in a wide class of theories [25].

As a natural first step, we study the phase diagram in
the (β,m0)-plane to find the relevant region of parame-
ter space to simulate. We then determin the zero PCAC
mass line as well as the strong coupling bulk phase tran-
sition line. In addition, we report on the pseudoscalar,
vector and axial vector meson masses. From the mea-
sured spectrum we infer that the theory breaks chiral
symmetry dynamically. Part of these results appeared
in [26].

In Section II we present the analytic expectations for
the phase diagram of SO(N) as function of the number
of flavors. We also summarize the expected breaking
pattern of the quantum global symmetries for theories
below the conformal window. We also prove the spec-
tral degeneracy between certain diquarks and ordinary
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meson-like states. In Section III we recall the lattice for-
mulation of the theory and summarize the physical ob-
servable studied here. The results of the simulations are
reported in Sect. IV and conclude in Sect. V.

II. ORTHOGONAL CONFORMAL WINDOW AND
CHIRAL SYMMETRY BREAKING PATTERN

The two loop β-function for an SO(N) theory with Nf
Dirac fermions transforming according to the vector rep-
resentation of the gauge group is

β(α) = −
α2

2π

(
b0 + b1

α
2π

)
, (1)

where

b0 =
11
3

Nc −
4
3

Nf −
22
3
,

b1 = −
10
3

(Nc − 2)Nf − (Nc − 1)Nf +
17
3

(Nc − 2)2 .
(2)

A naive estimate of the lower bound of conformal win-
dow is given when the second coefficient b1 changes
sign. For SO(4) this happens when N f = 68

29 ' 2.3. The
corresponding values for three and four-loops in the MS-
scheme are N f = 1.8 and N f = 3.0. The all-orders beta
function predicts as lower boundary N f = 2.86, see Fig. 1.
Hence, perturbative and nonperturbative methods sug-
gest that chiral symmetry breaks for two Dirac flavors.
However, lattice simulations can seal this expectation.
Since the vector representations of orthogonal groups are
real the quantum global symmetry of the theory is, for a
generic N f SU(2Nf) which is larger than SU(Nf)⊗SU(Nf)⊗
UV(1) valid for complex fermion representations. The
reality property of the representation translates in the
following property of the Dirac operator

( /D + m)Cγ5 = Cγ5( /D + m)∗, (3)

where /D = γµ(∂µ − igAa
µτa), a = 1, ..., d[G] where d[G] is

the dimension of the adjoint representation of the gauge
group and C = iγ0γ2 is the charge conjugation operator.

The global SU(2Nf) is assumed to break to the maximal
diagonal subgroup

SU(2Nf) → SO(2Nf) , (4)

for the massless theory and for N f below the conformal
window. A common mass for the Dirac fermions leads
to the same pattern of explicit symmetry breaking. The
explicit interpolating operators for the Goldstones can
be naturally divided in three independent antifermion-
fermion bilinears

ψ̄ fγ
5ψ f ′ , (5)

with f and f ′ the flavor indices f = 1, 2 and six difermion
operators

ψT
f Cγ5ψ f ′ and ψ̄ fγ

5Cψ̄T
f ′ . (6)

3 4 5 6 7 8
0

2

4

6

8

10

Nc

N
f

FIG. 1: Conformal window of SO(Nc) with Nf Dirac fermions
in the fundamental representation. Upper bound is when
asymptotic freedom is lost. Lower bounds are 2-loop (red,
dashed), 3-loop (yellow, dotted) and 4-loop estimates (green,
solid).

The reader can find a useful summary of the global sym-
metry breaking patterns tailored for lattice computations
in [27] while applications to beyond standard model
physics for similar patterns appeared in [16, 28]. No-
tice that whereas the usual pions have odd parity, the
corresponding diquarks are parity even. It was noticed
in [9] that when fermions are in a pseudoreal represen-
tation, the diquark correlator is exactly identical to the
corresponding mesonic correlator. In appendix A we
give a similar proof for fermions in real representations.
The proof uses the symmetry (3) of the Dirac operator
along with the γ5-hermiticity γ5( /D + m)γ5 = ( /D + m)†
property. The result can be stated as

c(Γ)
ψ̄ f ψ̄ f ′

(x − y) = c(Γ)
ψ̄ fψ f ′

(x − y) = c(Γ)
ψ fψ f ′

(x − y) , (7)

where c(Γ)
ψ̄ fψ f ′

is the correlator for the operator ψ̄ f Γψ f ′

and c(Γ)
ψ fψ f ′

is the correlator for the corresponding di-

quark operator ψT
f ΓCψ f ′ . Γ can be any of the matrices

1, γ5, γµ, γµγ5.

Having discussed the generic features expected for
orthogonal groups we now turn to the lattice formulation
and results for the relevant case of SO(4) with two Dirac
flavors.
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III. LATTICE FORMULATION

In this work we have used the Wilson prescription for
the lattice action

S = SF + SG , (8)

where

SG = β
∑

x

∑
µ,ν<µ

[
1 −

1
Nc

Tr Uµν(x)
]
, (9)

is the Yang-Mills gauge action. We have normalized the
lattice spacing to a = 1. Uµν(x) is the plaquette defined
in terms of the link variables as

Uµν(x) = Uµ(x)Uν(x + µ̂)UT
µ(x + µ̂ + ν̂)UT

ν (x + ν̂) . (10)

The Wilson fermion action is

SF =
∑

f

∑
x,y

ψ̄ f (x)M(x, y)ψ f (y) , (11)

with f running over fermion flavors and the Wilson-
Dirac matrix M(x, y) given by∑

y

M(x, y)ψ(y) = (4 + m0)ψ(x)

−
1
2

∑
µ

[
(1 + γµ)UT

µ(x − µ̂)ψ(x − µ̂)

+ (1 − γµ)Uµ(x)ψ(x + µ̂)
]
.

(12)

Here the gauge and spinor indices have been suppressed.
The bare parameters are the inverse of the bare coupling
β = 2Nc/g2

0 appearing in the gauge action and the bare
mass m0 of the Wilson fermions.

We employ the Partial Conservation of the Axial Cur-
rent (PCAC) relation to define the physical quark mass

mPCAC = lim
t→∞

1
2
∂tVPS

VPP
, (13)

where the currents are

VPS(x0) = a3
∑

x1,x2,x3

〈
ψ̄1(x)γ0γ5ψ2(x)ψ̄1(0)γ5ψ2(0)

〉
,

VPP(x0) = a3
∑

x1,x2,x3

〈
ψ̄1(x)γ5ψ2(x)ψ̄1(0)γ5ψ2(0)

〉
. (14)

The meson masses are estimated using time slice av-
eraged zero momentum correlators

C(Γ)
ψ̄1ψ2

(x0) = a3
∑

x1,x2,x3

Tr
([
ψ̄1(x)Γψ2(x)

]† ψ̄1(0)Γψ2(0)
)
,

(15)
where Γ = γ5 for pseudoscalar, Γ = γk (k = 1, 2, 3) for
vector, and γ5γk for axial vector meson.

FIG. 2: Lattice phase structure outlined on an 83
× 16 lattice.

Circles represent points of critical bare mass where mPCAC = 0.
The transition between the bulk phase is of first order. The error
bars represent the interval over which the measured average
plaquette jumps.

Volume β Iterations Thermalization

83
× 16 4.1,4.2. . . 4.9, 5.2, 5.4, 5.6 2000 500

4 4.5 5, 5.5, 6, 7 5000 2000
123
× 64 5.5, 7 5000 1500

243
× 64 7 850 - 2000 600

TABLE I: Simulation parameters and thermalization times. For
each coupling we performed multiple simulations with appro-
priate bare masses. The thermalization column refers to the
number of discarded initial configurations.

IV. RESULTS

The simulations were performed on three different lat-
tices 83

× 16, 123
× 64 and 243

× 64 where in all cases the
larger dimension is the temporal one. All the simula-
tions were started from a random configuration and the
first 500-2000 iterations were discarded. This is enough
to thermalize the system for the quantities we measured.
For a complete list of the simulations see Table I where
we have omitted the values of the bare masses.

The smallest lattice was used for exploration of the
parameter space spanned by the bare mass m0 and the
coupling β. Fig. 2 shows an outline of the lattice phase
structure measured on this 83

× 16 lattice. For small val-
ues of β the system is in a bulk phase not connected to
continuum physics. The bulk phase is separated from
the small coupling (large β) phase by a first order phase
transition. Fig. 3 shows the discontinuous behavior of
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0.4
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0.6
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0.7
<

P
>

m
0
 = 0

m
0
 = -0.3

m
0
 = -0.6

FIG. 3: Average plaquette 〈P〉 vs. β on an 83
× 16 lattice at three

different values of the bare mass.

the average plaquette when crossing the bulk phase tran-
sition, for three different values of m0. The uncertainty on
the location of the bulk phase transition shown in Fig. 2
is due to taking discrete values of β between simulation
points.

We can compare our result for the location of the bulk
transition to previous studies of SO(N) pure gauge the-
ories. Earlier simualtions focused mainly on the SO(3)
gauge group [29] with the exception of [30] where also
other values of N were considered. For SO(4) the au-
thors of [30] find that the bulk phase transition happens
for 4.62(3) < β < 4.87(3), which is in agreement with our
result in Fig. 3.

The critical line where the physical quark mass van-
ishes is determined from the PCAC relation (13). The
critical line of mq = 0 in the phase diagram (Fig. 2) is con-
structed by linear fits to the PCAC mass. Fig. 4 shows
the bare mass dependency of the PCAC mass at three
different couplings on the 83

× 16 lattice.

A. Finite size effects

According to the perturbative estimates discussed in
section II the running of the gauge coupling is expected
to be slow. This also suggests that attention should be
paid to finite size effects, which need to be estimated
non-perturbatively by measuring physical observables
as a function of lattice size.

In the case of SO(N) pure gauge theories [29, 30] the
bulk phase transition occurs at such a weak coupling that
extremely large lattices are required for simulations in

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0
m

0

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

m
P
C
A
C

β = 5.0

β = 6.0

β = 7.0

FIG. 4: mPCAC in units of inverse lattice spacing at three different
couplings. The measurements are performed on a 83

× 16.

the confined phase, the one connected to the continuum
physics. However, in the presence of dynamical quarks,
we find that somewhat smaller volumes (243

× 64) are
enough to probe the chiral regime of the system.

In figure Fig. 5 the mass of the pseudoscalar meson mPS
and the PCAC quark mass mPCAC is plotted for different
lattice sizes. The PCAC mass has little dependence on
the lattice size being a UV quantity. The pseudoscalar
meson mass, on the contrary, is very sensitive to finite
size effects even if it is still somewhat heavy at the bare
mass used in Fig. 5.

Another interesting property which occurs in this
model is a novel phase separation at small volumes.

We observe the coexistence of two distinct phases
which can be characterized by the average value of
Polyakov loops wrapping around the three spatial di-
rections taken on each time slice separately. In detail,
the operators we consider are defined as

Lk(t) =

〈
1

NiN j

∑
xi,x j

1
Nc

Tr
∏

xk

Uk(t, x)
〉
, (16)

where i , j , k are spatial directions. Fig. 6 shows the
time resolved Polyakov loops on a 123

×64 lattice at β = 7
and m0 = −0.3. The averaging is performed over 700
configurations belonging to the same simulation. The
coexistence of two phases with different values of L2 is
clear from the figure. The phenomenon appears in all
simulations performed on small lattices. The location
of the phase boundaries and the direction in which the
Polyakov loop has non-zero average is random. In some
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5 10 15 20 25 30
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0

0.2

0.4

0.6

0.8

1
m

m
PCAC

m
PS

FIG. 5: Finite size effects on mPS and mPCAC in units of inverse
lattice spacing. The measurements are performed on a 243

×64
lattice at β = 7 and m0 = −0.2.

cases more than two phase boundaries appear in the
same system.

The coexistence of two phases with different mesonic
correlation lengths separated by a domain walls could
explain the unusual decorrelation of mesonic operators
observed for volumes smaller than 243

× 64. This is
reflected in the rise of the effective mass plateaux of the
pseudoscalar meson shown in Fig. 7.

In order to understand whether these phase separa-
tions are related to the presence of dynamical fermions
we have also performed pure gauge simulations on
123
× 64 lattices. The phase separation occurs also for

the pure gauge. Thus the phenomenon seems to be a
feature stemming from the pure gauge sector.

We will not explore this feature further, but it would
be interesting to continue its investigation in the future.

In order to avoid the complications stemming from
the phase separation described above we use 243

× 64
lattices for the rest of the paper.

B. Spectrum and chiral symmetry breaking

We address the dynamical fate of the chiral symme-
tries of the theory by determining the pseudoscalars and
(axial) vectors spectrum.

Fig. 8 shows the pseudoscalar, vector, and axial vector
meson masses measured on a 243

× 64 lattice at β = 7
as the bare quark mass is decreased towards the critical
value. At the lightest quark mass the pseudoscalar me-

0 10 20 30 40 50 60

t

-0.2

-0.15

-0.1

-0.05

0

L
k

L
1

L
2

L
3

FIG. 6: Average Polyakov loops wound around the three spa-
tial dimensions computed at each timeslice of the lattice. This
measurement was performed on a 123

× 64 lattice at β = 7 and
m0 = −0.3. The values are averages over 700 configurations
starting at 1800 where the system does not appear to thermal-
ize further.

son has a mass of about mPS ' 0.15 in lattice units. This
means that mPS ·L ' 3.6 which is where finite volume ef-
fects starts to become relevant. At large quark masses the
vector and pseudoscalar are degenerate with the com-
mon mass increasing linearly with the quark mass. At
smaller masses the vector meson becomes heavier than
the pseudosclar. This is consistent with dynamical gen-
eration of a chiral scale. To see this more clearly the ratio
of the vector and the pseudoscalar masses have been
plotted in Fig. 9. Indeed the mass ratio approaches unity
for large quark masses. However, when approaching the
chiral limit the ratio increases signaling chiral symmetry
breaking. In fact this result is consistent with the expec-
tation that if spontaneous symmetry breaking occurs the
vector meson remains massive whereas the pseudoscalar
meson is massless. A diverging ratio mV/mPS therefore
indicates chiral symmetry breaking. This is the trend we
observe in Fig. 9. However to nail this conclusion more
studies have to be performed.

The axial mass in the chiral limit is poorly determined
Fig. 8. In the future we plan on improving its determi-
nation. We will then be able to use it to infer interesting
properties of the chiral transition. For example one can
investigate whether the axial remains (near) degenerate
with the vector in the chiral regime which could signify
the onset of walking dynamics [28, 31].

To extract further properties of the theory we analyze
in more detail the functional dependence of the pseu-
docalar mass on the quark mass. It is well known that,
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FIG. 7: Effective mass of pseudoscalar meson for two different
volumes.

meson fit fit function best parameter χ2/dof

ps chiral a
√

m a = 1.167(6) 0.43/2
ps conformal am a = 4.69(3) 364/2

ps alt. 1 a + bm a = 0.111(6) 6.4/1b = 2.9(1)

ps alt. 2 a + b
√

m a = −0.001(10) 0.41/1b = 1.17(4)

vector chiral a + bm a = 0.16(1) 3.3/1b = 2.3(2)
vector conformal am a = 4.91(3) 273/2
vector alt. 1 a

√
m a = 1.231(6) 18/2

vector alt. 2 a + b
√

m a = 0.07(2) 0.69/1b = 0.96(7)

TABLE II: Different types of fit functions in the chiral regime
for the data with m identified with the mPCAC.

for this kind of theories, spontaneously broken chiral
symmetry leads to the Gell-Mann–Oakes–Renner rela-
tion [32]

m2
PS ' ΛmPCAC , (17)

valid in the chiral limit, where Λ = −2〈ψ̄ψ〉/ f 2
PS is a dy-

namically generated scale. For conformal theories the
behavior is different [33, 34]. In [34] it was also shown
that the instanton contributions to conformal chiral dy-
namics can be neglected when the anomalous dimension
of the mass operator is less than one. This property has
been investigated and confirmed via lattice simulations
in [35]. A clever separation of the ultraviolet and infrared
modes presented in [36, 37] led to a better understanding
of the conformal chiral scenario but without discussing

0 0.05 0.1 0.15 0.2 0.25 0.3
m

PCAC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m
m
e
s
o
n

m
PS

m
V

m
AV

FIG. 8: Pseudoscalar, vector, and axial vector meson masses
measured on a 243

× 64 lattice at β = 7.

the instanton contributions [34]. Building upon these
results an interesting method to determine the anoma-
lous dimension of the fermion masses was put forward
in [38]. To sum up, for a conformal scenario the dy-
namical scale Λ mutates into a fermion-mass dependent
quantity [34] and therefore m2

PS must vanish as m2
PCAC.

In Fig. 10 we plot the ratio m2
PS/mPCAC for decreasing

fermion mass. We see that the ratio approaches a con-
stant for vanishing fermion masses which is consistent
with the chiral symmetry breaking scenario (17).

In table II we report the fit to the data for the depen-
dence of the pseudoscalar mass as well as the vector
mass as function of the mPCAC within the believed chiral
regime of the theory. This corresponds to the three low-
est values of mPCAC where the ratio m2

PS/mPCAC becomes
roughly constant as shown in Fig. 10. The data points
used for the chiral fits in the table are shown in Fig. 11.
The best fit curve, determined by the lowest χ2/dof, for
the pseudoscalar mass corresponds to the first line of the
table which is in agreement with the GMOR expectation.
It is remarkable that by even allowing for an offset of the
mass value in the chiral limit the best fit demands the
offset to vanish, see the last line of the table. We have
tried also to test the possibility that the pseudoscalar
mass vanishes linearly with the fermion mass and found
that this is highly disfavored. If the theory would have
been conformal we would have expected this case to fit
much better.

Similarly, by fitting the vector masses dependence on
the fermion mass, in the lower part of table II, we ob-
serve a reasonable agreement with the expected chiral
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FIG. 9: Ratio between pseudoscalar and vector meson masses
measured on a 243

× 64 lattice at β = 7.
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FIG. 10: Psudoscalar mass squared divided by the quark mass
measured on a 243

× 64 lattice at β = 7.

behavior of the theory. The two best fits correspond to
the first and last line of the lower part of the table. We
would have expected the first line to yield a better fit if
chiral symmetry breaks like in ordinary Quantum chro-
modynamics. We believe that for this case more statistics
is needed to resolve which of the two cases is actually

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
m

PCAC

0

0.05

0.1

0.15

0.2

0.25

0.3

m
m
e
s
o
n

m
PS

m
V

FIG. 11: The chiral fits to the pseudo scalar and vector meson
masses on a 243

× 64 lattice at β = 7.

realized given that the data cannot yet differentiate be-
tween the two. As for the pseudoscalar case the would
be conformal case is highly disfavored (see second line
of the lower part of the table).

Using the identity for the hadronic correlators (7) we
can immediately infer the baryonic diquark masses.

V. CONCLUSIONS

Orthogonal lattice gauge theories with dynamical
fermions have so far been terra incognita. However, as
explained in the introduction, these theories can be rel-
evant for models of dynamical electroweak symmetry
breaking as well as for the construction of interesting
dark matter candidates. Furthermore to have a deeper
understanding of strong dynamics it is essential to gain
information on different gauge theories. We have cho-
sen to start investigating the orthogonal gauge groups
dynamics with a phenomenologically relevant example,
i.e. the SO(4) gauge theory with two Dirac flavors trans-
forming according to the vector representation of the
group.

We have uncovered the lattice phase diagram and
shown that there is a novel phase separation phe-
nomenon at small volumes which persists even in the
pure gauge case. We have shown that the phase sepa-
ration can be circumvented and the chiral regime of the
theory studied using large but still feasible lattices.

Finally we investigated the spectrum of the theory for
the pseudoscalar, vectors and axial vectors. The results
for the spectrum are consistent with chiral symmetry
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breaking and strongly disfavor a conformal behavior.

Appendix A: Diquark correlators

A generic mesonic correlator will have the form

c(Γ)
ψ̄ψ′

(x − y) = Tr
([
ψ̄(x)Γψ′(x)

]† ψ̄(y)Γψ′(y)
)
, (A1)

and the baryonic diquark correlator will have the form

c(Γ)
ψψ′ (x − y) = Tr

([
ψT(x)CΓψ′(x)

]†
ψT(y)CΓψ′(y)

)
. (A2)

Rewriting the diquark correlator slightly gives

c(Γ)
ψψ′ (x − y) = Tr

(
Γψ′(y)ψ̄′(x)γ0Γ†C†(γ0)T [

ψ(y)ψ̄(x)
]T C

)
.

(A3)
Now we can invoke two identities

(γµ)T = −CγµC† , (A4)

ψ(x)ψ̄(y) = C†
[
ψ(y)ψ̄(x)

]T C . (A5)

The latter identity follows from the symmetry of the
Dirac matrix given in (3) along with γ5-hermiticity
γ5( /D + m)γ5 = ( /D + m)†. The identity (A5) extend to the
Wilson lattice formulation of the Dirac matrix. This is
demonstrated for pseudoreal representations in the ap-
pendix of [9]. Invoking the identities in the expression
for the diquark correlator (A3) we have

c(Γ)
ψψ′ (x − y) = Tr

(
Γψ′(y)ψ̄′(x)γ0Γ†γ0ψ(x)ψ̄(y)

)
= c(Γ)

ψ̄ψ′
(x − y) .

(A6)

A similar derivation holds for the antiparticles leading
to the identity (7).
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