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Composite Goldstone Dark Matter: Experimental Predictions from the Lattice

Ari Hietanenr, Randy Lewis♠, Claudio Picar, and Francesco Sanninor

r CP3-Origins & the Danish IAS, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
♠Department of Physics and Astronomy, York University, Toronto, Ontario, M3J 1P3, Canada

Abstract
We study, via first principles lattice simulations, the nonperturbative dynamics of SU(2) gauge theory with two fundamental

Dirac flavors. The model can be used simultaneously as a template for composite Goldstone boson dark matter and for breaking
the electroweak symmetry dynamically. We compute the form factor, allowing us to estimate the associated electromagnetic
charge radius. Surprisingly we observe that the form factor obeys vector meson dominance even for the two color theory. We
finally compare the model predictions with dark matter direct detection experiments. Our results are a foundation for quantitative
new composite dynamics relevant for model building, and are of interest to current experiments.
Preprint: CP3-Origins-2013-30 DNRF90 & DIAS-2013-30

Unveiling the nature of dark matter (DM) constitutes
a fundamental problem in physics. It plays an impor-
tant role in large scale structure formation as well as the
evolution of the Universe. DAMA [1], CoGeNT [2, 3],
CRESST-II [4] and CDMS-Si [5] reported potential sig-
nals of weakly interacting massive particles while the
remaining experiments report negative results [6–11] in-
terpreted as upper bounds on interaction rates.

We explore the paradigm according to which DM is
a composite pseudo-Goldstone boson (GB) [12]. Com-
posite non-GB DM models appeared earlier [13]. The
template is an SU(2) gauge theory with two fundamen-
tal fermion flavors termed U and D [14]. We view this
theory as the kernel from which more elaborate models
can grow. Our minimal template has the appeal to ad-
dress simultaneously electroweak symmetry breaking
and the origin of a naturally-light DM candidate [14].
The observed Higgs mass can arise due to top quark
corrections to the mass of the lightest non-GB scalar in
the theory [15]. The action has a global SU(4) symme-
try, and the lattice simulations of [16] showed that it
is dynamically broken to Sp(4), thereby producing five
GBs. By embedding the standard model (SM) within
the SU(4) symmetry, one shows that three of these are
eaten by the W± and Z bosons; the remaining pair of
GBs is taken to be the DM candidate and its antipar-
ticle. Depending on the cross section for annihilation
into SM fields one can have a symmetric (i.e. thermal
relic density), asymmetric, or a mixed scenario [17].
An exact GB would be massless but the DM candidate
can acquire a small mass from explicit symmetry break-
ing through new four-fermion interactions breaking the
original SU(4) symmetry to SUL(2)×SUR(2)×U(1) while
keeping the U and D fermions massless [14]. The inter-
actions with ordinary matter relevant for direct detec-
tion experiments occur prevalently via the exchange of
a Higgs or a photon. The photon interaction is due to
the DM electric dipole moment that we wish to estimate,
and in doing so we will show that vector meson dom-
inance is at play even for the two color theory. Finally
we will confront the theory predictions with direct DM
detection measurements.

The lattice method and results: In the continuum, the
Lagrangian for our template is

L = −
1
4

Fa
µνF

aµν+U(iγµDµ−mU)U+D(iγµDµ−mD)D. (1)

On the lattice we use the Wilson plaquette action with
Wilson fermions. Mesons will couple to local operators
of the form O(Γ)

XY
(x) = X(x)ΓY(x), and

√
2O(Γ)

UU±DD
(x) =

O
(Γ)

UU
(x) ± O(Γ)

DD
(x), where Γ denotes any product of Dirac

matrices and X,Y are either U,D or D,U. Baryons couple
to

O
(Γ)
XY(x) = XT(x)(−iσ2)CΓY(x) , (2)

O
(Γ)
UU±DD(x) =

1
√

2

(
O

(Γ)
UU(x) ± O(Γ)

DD(x)
)
, (3)

where the Pauli structure−iσ2 acts on color indices while
the charge conjugation operator C acts on Dirac indices.
A photon can couple to a local vector operator such as
O

(γµ)

UU±DD
which is a conserved current in the continuum

limit but not in the lattice theory. It is advantageous to
work directly with the lattice conserved currents,

VX
µ (x) =

1
2

X(x + µ̂)(1 + γµ)U†µ(x)X(x)

−
1
2

X(x)(1 − γµ)Uµ(x)X(x + µ̂) , (4)

where Uµ(x) ∈ SU(2) is the gauge link matrix. With
Eq. (4) we can produce the electromagnetic current,

Vµ(x) =
1
2

VU
µ (x) −

1
2

VD
µ (x) . (5)

A three-point correlation function that probes the elastic
form factor of the DM candidate can be fitted in two ways
(see, e.g., [18]). One is the simultaneous fit method:

C(3)
UD(ti, t, t f , ~pi, ~p f )

|ZΠ|
2 =

e−(t f−t)EΠ(~p f )

2EΠ(~p f )
e−(t−ti)EΠ(~pi)

2EΠ(~pi)
FΠ(pi + p f )µ ,

C(2)
UD(ti, t f , ~p) = |ZΠ|

2 e−(t f−ti)EΠ(~p)

2EΠ(~p)
+

∑
excited n

|Zn|
2 e−(t f−ti)En(~p)

2En(~p)
,

(6)
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where we have used the standard definition of the
form factor, 〈Π(~p f )|Vµ(0)|Π(~pi)〉 = FΠ(Q2)(pi + p f )µ, and

Q2 = (~p f −~pi)2
−

(
EΠ(~p f ) − EΠ(~pi)

)2
. For any chosen lattice

momentum, the fit parameters are the energies EΠ and
En, the coefficients |ZΠ|

2 and |Zn|
2, and the form factor

FΠ(Q2). Besides the method of Eq. (6), the form fac-
tor can also be obtained from a ratio method, valid for
ti � t� t f :

FΠ(Q2) =
C(3)

UD(ti, t, t f , ~pi, ~p f )C
(2)
UD(ti, t, ~p f )

C(2)
UD(ti, t, ~pi)C

(2)
UD(ti, t f , ~p f )

2EΠ(~p f )

EΠ(~pi) + EΠ(~p f )
.

(7)
This equation is very convenient because all Zn have can-
celed away, and the ratio EΠ(~pi)/EΠ(~p f ) is easy to obtain
from the lattice two-point functions. All that remains is
to fit the ratio to a constant for each value of Q2. A feature
of Eq. (7) is that the only two-point function that extends
all the way from ti to t f has momentum ~p f . We maximize
numerical precision by always choosing ~p f = ~0.

The U and D fermions in our action have electroweak
charges that are constrained by anomaly cancellation:
they form a left-handed weak doublet, right-handed
weak singlets, and have electric charges QU = +1/2 and
QD = −1/2. Neither fermion carries QCD color. The DM
GB has a valence structure UD. Because it is symmetric
under U ↔ D, the DM candidate has no electroweak
elastic form factors if the theory has exact isospin sym-
metry. Isospin breaking is expected to occur in nature
given that it is already present for the ordinary quarks,
and is welcome in the present context since it serves
to further diminish, or eliminate, tensions with preci-
sion data. The ultimate origin of isospin breaking might
be four-fermion interactions arising from higher-energy
physics [14], but we can mimic it here by simply using
two different explicit masses for the U and D fermions.
Our lattice study therefore follows standard lattice QCD
methods. See [18, 19] and references therein.

In the large Nc limit the form factor can be written as a
sum over vector meson poles [20]. In practice those sums
are dominated by the lightest vector mesons. Perhaps
surprisingly, this large Nc result has long been known
to work rather well for certain QCD observables despite
the seemingly small value of Nc = 3. A QCD example
that exactly parallels our mU , mD effects is the neu-
tral kaon, which has a nonzero form factor arising from
md , ms. The experimental determination of the neutral
kaon charge radius [21] is dominated by the difference
between ρ0 and φ meson exchanges,

FK0 (Q2) ≈ −
1
3

 m2
ρ

m2
ρ + Q2

 +
1
3

 m2
φ

m2
φ + Q2

 , (8)

with 〈r2
〉K0 = −6 dFK0

dQ2

∣∣∣∣
Q2=0

. If vector meson dominance

were also applicable to our Nc = 2 case, then lattice de-
terminations of the vector meson masses would provide
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FIG. 1: Ratio definition of the GB form factor, Eq. (7),
for momentum (px, py, pz) = (1, 1, 0) × 2π/L in the en-

semble having (β,m0) = (2.2,−0.72).

estimates of all GB form factors. The following discus-
sion presents a lattice simulation of the GB form factor
in the mU = mD limit and shows that the large Nc result
is indeed reflected in our Nc = 2 theory.

The simulations performed for this project use some of
the lattice parameters from [16] that are closest to the chi-
ral limit, but now with a larger lattice volume (namely
L4 = 324, which removes all finite volume effects) and
more configurations. A complete analysis of 500 con-
figurations at (β,m0) = (2.2,−0.72) provides a first result
for the form factor. To consider discretization effects an
analysis of 300 configurations at (β,m0) = (2.0,−0.947) is
performed. To study chiral extrapolation effects, an anal-
ysis of 300 configurations at (β,m0) = (2.2,−0.75) is per-
formed. All ensembles were created with the HiRep code
[22] for fully-dynamical plaquette-action SU(2) gauge
theory with two flavors (U and D) of mass-degenerate
Wilson fermions.

We choose the outgoing GB to be at rest in our form
factor computations, so momentum flows from the in-
coming GB to the photon coupling. All momentum di-
rections are averaged for each configuration. We use
Dirichlet boundary conditions in the time direction for
fermions. The GB creation operator is placed at the fifth
time step from the lattice’s left edge (ti = 4) and the an-
nihilation operator is placed at the fifth from the right
(t f = 27).

As an example, Fig. 1 shows the raw form factor data
for the right-hand side of Eq. (7) with one particular
momentum in the (β,m0) = (2.2,−0.72) ensemble. There
is a broad range of Euclidean times between ti and t f
where the ratio is indeed constant, allowing the form
factor to be read from the plot.

Numerical results for the form factors are compared
to vector meson dominance in Fig. 2. The form factor
consistently has the shape of a simple meson pole but
only panel (c), with our lightest fermion, obeys vector
meson dominance. Panels (a) and (b) have a heavier
fermion and virtually identical vector mesons on our
finer and coarser lattices, respectively. Because the form

2



0.2
0.4
0.6
0.8

1

0.2
0.4
0.6
0.8

1

F
Π

0 0.1 0.2 0.3 0.4
Q

2
  [lattice units]

0.2
0.4
0.6
0.8

1

^

(a) β=2.2 and m
0
=-0.72

(b) β=2.0 and m
0
=-0.947

(c) β=2.2 and m
0
=-0.75

FIG. 2: Lattice results for the GB form factor, with
statistical errors. The curves are the predictions from
a vector meson pole, (1+Q2/m2

ρ), with the vector mass
taken from the corresponding lattice simulation.

factors in (a) and (b) are consistent with each other, there
is no indication of discretization errors. A direct statis-
tical comparison in Fig. 2 gives χ2/d.o.f. = (a) 11, (b) 12
and (c) 0.94. We conclude that the lightest vector meson
dominates the form factor for sufficiently light fermions.
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FIG. 3: Direct detection experimental constraints as
detailed in the text. The composite GB DM cross sec-

tion is shown for two values of dB.

Dark form factor: The charge radius of a scalar cou-

ples to the photon as follows [23]

Lγ = ie
dB

Λ2φ
∗
←→
∂µφ∂νFµν . (9)

In our case we have a specific expression for the coeffi-
cient,

dB

Λ2 =
1

Q2

1
2

m2
ρU

m2
ρU

+ Q2
−

1
2

m2
ρD

m2
ρD

+ Q2

 =
m2
ρU
−m2

ρD

2m2
ρU

m2
ρD

+ h.o. ,

which, for small isospin breaking (mρU ≈ mρD ≡ mρ),
corresponds to Λ = mρ, and dB = (mρU − mρD )/mρ. The
numerical value of mρ is obtained by extrapolating our
lattice data for mρ and fπ/ZA, shown in Figs. 7 and 6
of [16] respectively, to the chiral limit. Using the finer
lattice spacing (β = 2.2) a quadratic extrapolation gives
mρ = 0.30 in lattice units. Similarly, fitting with a ratio of
linear functions gives fπ/ZA = 0.029. We conclude that
mρ = 0.30

0.029 (246 GeV) = 2.5 ± 0.2 TeV, where the error bar
is the difference between the coarse and fine lattices.

From [23], the cross section for a DM particle φ scat-
tering from a proton through photon exchange is

σγp =
µ2

4π

(
8παdB

Λ2

)2

(10)

where µ = mφmp/(mφ + mp) < mp and mp the proton
mass. The only remaining unknown is |dB| which is
clearly less than unity. We therefore have the first lattice-
determined upper bound on the cross section for a model
of composite GB DM,

σγp < 2.3 × 10−44 cm2 . (11)

Besides the photon interactions we expect also a com-
posite Higgs exchange [14, 17, 23, 24]. The relevant terms
in the Lagrangian connecting our DM candidate to the
composite Higgs are d1

Λ h ∂µφ∗∂µφ + d2
Λ m2

φ hφ∗φ. A com-
plete classification for all the possible operators can be
found in [25]. We cannot yet determine via first prin-
ciples simulations these form factors, however from the
pseudo-GB nature of the DM field φ, we expect d1 and
d2 to be order unity and Λ ≈ mρ.

Making the further minimal assumption that the com-
posite Higgs state couples to the SM fermions with a
strength proportional to their masses, as for the ordi-
nary Higgs, the zero momentum transfer cross section
of φ scattering off a nucleus with Z protons and A − Z

neutrons is [17, 23] σA =
µ2

A
4π

∣∣∣Z fp + (A − Z) fn
∣∣∣2, where

fn = dH f mp

m2
Hmφ

, fp = fn − 8παdB
Λ2 , µA is the φ-nucleus re-

duced mass, f ∼ 0.3 parametrizes the Higgs to nucleon
coupling, and we have defined dH = − d1+d2

vEW Λ m2
φ [24] .

The event rate formulae and derivation for generic
couplings fn and fp can be found in [24]. In the upper
and lower panel of Fig. 3 we show the favored regions
and exclusion contours in the (mφ, σp) plane for (upper
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panel) fn/ fp = −0.015 corresponding to dB = −1 and
d1+d2 = 1 and (lower panel) fn/ fp = −0.14 corresponding
to dB = −0.1 and again d1 + d2 = 1. The green contour is
the 3σ favored region by DAMA/LIBRA [26] assuming
no channeling [27] and that the signal arises entirely from
Na scattering; the blue region is the 90% CL favored
region by CoGeNT; the light blue region corresponds to
CRESST [4] results; the dashed orange line corresponds
to CDMS-Ge [9] and the magenta one to CDMS-Ge-low-
thr for masses below 10 GeV [9]; the bound [11] and
the allowed region in purple corresponds to CDMS-Si
[5]; the red, black and blue lines are respectively the
exclusion plots from the PICASSO [28], Xenon10 [6] and
Xenon100 [8] experiments.

We find that the theoretical composite GB DM cross
sections (the black dot-dashed curves) are below the ex-
clusion limits set by the most stringent experiments but
can be accessed by future experiments for sufficiently
large weak isospin breaking. The maximal size of the
cross section with ordinary matter, at low energies, is set
by having explicitly shown, via lattice simulations, that

in this theory the relevant form factors are saturated by
a single vector meson exchange whose mass is in the 2.5
TeV energy range.

One can envision natural models with larger cross sec-
tions. These would require smaller values of the vector
masses which can be obtained, for example, by rendering
the theory near conformal by either adding new mat-
ter gauged under the composite dynamics and singlet
with respect to SM interactions [14, 29], and/or changing
the matter representation or the composite gauge group
[30, 31]. Lattice investigations of non-GB composite DM
were performed in [32]. Other electroweak embeddings,
where the Higgs is a pseudo-GB, are possible [33].
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