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Abstract

BACKGROUND
A new measure of the number of life years lost due to specific causes of death is intro-

duced.

METHODS

This measure is based on the cumulative incidence of death, it does not require “indepen-
dence” of causes, and it satisfies simple balance equations: “total number of life years lost
= sum of cause-specific life years lost”, and “total number of life years lost before age x
+ temporary life expectancy between birth and age = = z”.

RESULTS
The measure is contrasted to alternatives suggested in the demographic literature and all
methods are illustrated using Danish and Russian multiple decrement life-tables.
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1. Introduction

Measures of life lost to specific causes of death have been discussed since the famous
debate on smallpox between Bernoulli (1766) and d’ Alembert (1761), chronicled several
times, perhaps in greatest detail by Karn (1931, 1933) and Dietz and Heesterbeek (2002).
The dominant assumption has been that removal of a cause of death may be modeled
by equating the corresponding death intensity to zero in the relevant multiple decrement
model. The effect of removal of a cause of death can thus be measured by comparing life
expectancy with and without that cause operating. This view is still prevalent in demog-
raphy, e.g. in the authoritative textbook by Preston, Heuveline, and Guillot (2001: Box
4.2), who as an example calculated that for U.S. females in 1991:

“... in the absence of neoplasms, life expectancy at birth would have been
82.46 years, a gain of 3.54 years relative to the life table with all causes
present.”

However, there have been grave doubts about the relevance of the so-called indepen-
dent competing risks model. Formally, independent competing risks is defined as stochas-
tic independence of latent cause-specific times to failure and it leads to a situation where
the removal of one cause will leave the risk of dying from all other causes unchanged. Al-
ready Makeham (1874) concluded his attractive, concise exposition of the discussion that:

“It will be observed that these solutions all proceed upon the assumption
that the extermination of small pox does not affect the mortality arising from
other causes. This must be proved before any reliance can be placed upon the
conclusions arrived at. I give the investigation merely as an illustration of the
comparative advantages of the different methods of solution.”

As formulated by Karn (1931):

“It is necessary to warn the reader that the theory of the life-table with a given
disease eliminated as developed by Bernoulli, d’Alembert, Tremblay and
Duvillard supposes that the mortality from the given disease is non-selective,
i.e. that the population after removal of disease A is as susceptible to dis-
eases B, C, D, etc. as it was before the elimination of that disease. This may
possibly be true of certain diseases, but if a disease like phthisis or small-
pox were eliminated the surviving population might be more subject to death
from other diseases.”

1128 http://www.demographic-research.org
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A careful demographic discussion of multiple causes of death was given by Man-
ton and Stallard (1984), who chose the laudable path of starting with a chapter on death
certificates, so that the reader could not possibly be ignorant of the tenuous nature of
classification of causes of death. Manton and Stallard basically presented the classical
‘cause-deletion’ approach but made the independence assumption very explicit and sug-
gested various elaborations of the underlying multi-state model to reduce the assumptions
to various forms of conditional independence. Preston, Heuveline, and Guillot (2001: pp.
78-79) took the following problematic viewpoint:

“Equation (4.4) says that the probability of remaining in the defined state
between x and x + n when many causes are operating ... is the product of
each of the probabilities of remaining in that state if individual decrements
were acting alone. (...) This multiplicative property pertains only when the
outcomes ... are statistically independent: when one outcome does not de-
pend on the others. Clearly, the assumption of independence ... entered at
the point where we defined members of the set of decrements to be mutually
exclusive and exhaustive. That is, the process of assignment of a cause to
each particular decrement created a set of wholly separate and ‘independent’
entities. That these statistical entities are independent - admit no overlap or
combinations or synergistic relations - does not mean that the underlying pro-
cesses that they represent are independent. For example, it is very likely that
an increase in the incidence of influenza in a population will raise death rates
from certain cardiovascular diseases as well as from influenza. But whatever
this synergistic relation among disease processes, the data will always come
to the analyst in a set of cause-of-death assignments in which influenza and
cardiovascular diseases are tidily separated; equation (4.4) will continue to
hold.”

In our view the independent competing risks model precisely assumes ‘that the un-
derlying processes that they represent are independent’. It is not enough that the risk
categories ‘come to the analyst as mutually exclusive and exhaustive’.

In his influential book, Chiang (1968, cf. 1961) summarized the current views of the
time with the independent competing risks model as starting point, but, in addition to the
‘net’ probability of death from cause ¢ in a hypothetical world where no other causes ex-
ist, he also described the ‘crude’ probability of death from cause ¢ in this world where all
other causes still operate. Cornfield (1957) preferred the terms ‘pure’ for net and ‘mixed’
for crude, while the Norwegian tradition (e.g., Sverdrup (1967), Hoem (1969), Andersen,
Borgan, Gill, and Keiding (1993)) used ‘partial’ for net and ‘influenced’ for crude. The
crude probability of death became the centre of attention in biostatistics and epidemiol-
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ogy, particularly through the influence of Prentice and Kalbfleisch in their important paper
(Prentice et al. 1978) and book (Kalbfleisch and Prentice 1980), in which they seem (pp.
168-169) to have introduced the term cumulative incidence. A later influential paper is by
Benichou and Gail (1990).

One basic argument for focusing attention on the cumulative incidence is that it is an
observable quantity in this world without counterfactual assumptions. Another is that it
satisfies a simple balance equation, as seen below.

It should be mentioned that the cumulative incidence has been a well-integrated com-
ponent also of demographic multiple decrement methodology for a long time. Thus the
multiple decrement table in Box 4.1 of the above mentioned text by Preston, Heuveline,
and Guillot (2001) contains a column £ describing how those who will ultimately die
from cause i (neoplasms) will die out, the cumulative incidence being 1 — ¢¢ /¢§. Inter-
estingly, Farr (1841) already had similar columns in his ‘nosometrical table’ describing
the fate of a synthetic cohort of ‘lunatics’ according to time since admission into an asy-
lum, the two competing events being death in the asylum and discharge from the asylum.
Farr’s calculation was in principle the same as that of today.

Demographers frequently apply methods for decomposing change in life expectancy
over time and corresponding life years lost to account for the age and cause of death
contribution. Methods to calculate such contributions have been developed by a United
Nations (1982) report, Pollard (1982, 1988), Arriaga (1984), Pressat (1985) and Andreev
(1982), see also Andreev et al. (2002), who focused on the difference in life expectancy
between two periods of time. Keyfitz (1977, 1985) considered continuous change and
derived a formula that relates the time-derivative of life expectancy to the entropy of life
table survivorship, although not as a general method of decomposition. More recently,
efforts have also been taken to calculate cause-decomposition considering continuous
change (Vaupel and Canudas-Romo 2003, Beltran-Sanchez et al. 2008).

The purpose of the present paper is to propose a more descriptive concept of life
years lost based only on the directly observable cumulative incidences and to compare
this with some of the above-mentioned proposals in demography. A central property of
the cumulative incidence is the simple balance equation

Prob.(still alive) + Prob.(have died of cause 1) + - - - 4+ Prob.(have died of cause k) = 1,
which holds when there are in total k£ mutually exclusive causes of death. From this a

similar simple balance equation holds for the proposed measure of life years lost

Years lost to cause 1 + - - - + Years lost to cause k = Years lost to all causes.

1130 http://www.demographic-research.org
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In Section 2 the new definition of life years lost due to specific causes is discussed fol-
lowing Andersen (2013), with computational details in Section 3 (and in the Appendix).
Thus, Andersen (2013) introduced the quantity given in equation (3) below, discussed its
mathematical properties in a biostatistical context, and showed how regression analysis
targeting cause-specific years lost can be performed. The purpose of the present paper
is to compare current methods from the demographic literature which are reviewed in
Section 4 and all methods are illustrated in Section 5 using published life-tables from
Denmark and Russia. A brief discussion is found in Section 6.

2. A new definition of life years lost by cause of death

We consider the standard multiple decrement life-table as in Preston, Heuveline, and Guil-
lot (2001: Section 4.3) and denote the mortality rate at age a by p(a). This is the sum of
the cause-specific mortality rates y?(a) for causes i = 1,. .., k, which are assumed to be
mutually exclusive and exhaustive:

pla) = 3" (o).
The probability at birth of surviving past age x is then
zPo = eXp(—/ M(a)da‘)a
0

and the life expectancy at birth is

w
w€o = / apOdaa
0

where w is the maximally attainable age. The temporary life expectancy between birth

and age x is
x
z€0 = / aPoda,
0

e.g., (Arriaga 1984). In biostatistics this quantity is known as the restricted mean life time,
e.g., (Irwin 1949). The probability at birth of dying from cause ¢ before age z, that is the
cause ¢ cumulative incidence as introduced in Section 1, is

x
200 = / apopt' (a)da
0

http://www.demographic-research.org 1131
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and it follows that the balance equation

holds, since at age x every member of the population is either alive or has died from one
of the k causes ¢ = 1, ..., k. Integrating equation (1) from 2 = 0 to x = a we get another
balance equation,

a
ot Y [ adide=a
— Jo
2

saying that a, the maximum number of life years at birth before age a, can be decomposed
into 4eq, the temporary life expectancy between birth and age a, plus the sum

ado =D aAi )

where u
a 6 = / mqédx (3)
0

In this respect 4 A\q is the expected number of life years lost before age a and it was shown
by Andersen (2013) that each term a)\é defined in equation (3) can be interpreted as the
expected number of life years lost before age a due fo cause i.

Thus, in summary we have shown that the total number of years, a between birth and
age a, can be written as the temporary life expectancy before age a plus the sum over
causes of death, ¢, of the expected number of life years lost due to cause i before age a:

a=qe0+ Y oM )

Note that all quantities can be defined conditionally on survival untill age . This is
described in the Appendix. Also, note that there is an obvious age-decomposition of both
the cumulative incidence, the temporary life expectancy, and the number of life years lost.

This is because splitting the age interval from ay = 0 to a,,, = a into sub-intervals, say
[0,a1), [a1,a2),. .., [@m—1, Gm), We have

) LAY )
alh = / wpop’ (x)dz, )
=17 a5

m aj
a0 =Y / zpod, (6)
j=17%-1
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and .
o= / 2o, (7)
j=1"%=1

This will be used when computing life-table based estimates for these quantities in
Section 3.

3. Calculation of life years lost

The temporary life expectancy and the number of life years lost can be estimated based on
data collected in a multiple decrement life-table. To do this, consider a single age interval,
say from x to = 4+ n. The data needed for the calculations include:

e /., the fraction of survivors at age x, (so that we assume ¢, = 1). This estimates
zP0-

e ., L., the average number of person-years lived between ages x and x + n. This
estimates the contribution f;+n «Poda to the temporary life expectancy from the
interval, cf. equation (6).

° ndfﬁ the fraction of deaths from cause ¢ and the total fraction of deaths ,,d, =
> ndi between ages x and x + n. Thus, ,d% estimates the contribution

f:+n aPopti(a)da to the cumulative incidence from the interval, cf. equation (5).
These values may have been calculated from raw counts of age- and cause-specific deaths
and age-specific person-years at risk as described by Preston, Heuveline, and Guillot
(2001: Ch. 3).

The average number of years, ,, L, lived between ages = and x +n can be represented
as the area under the survival curve; see Figure 1. Likewise, the average number of years

lost in the age interval from x to x+mn, say ,, 1., is the area above the curve and, obviously,

Here, ,, T, estimates the contribution Zi f o

- «gbda to the years lost from the age inter-
val from z to x + n, cf. equation (7).

http://www.demographic-research.org 1133
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Figure 1: Life table survival curve, /., and number of life years lost between
ages r and x + n,

|

gl

¥

The person-years lived can be divided into contributions from those remaining alive
during the interval (area 4 in Figure 1) and those who die (area 3), leading to

where ,, A, is the average number of person-years lived in the interval by those dying
in it (e.g., Preston, Heuveline, and Guillot (2001: Ch. 3), where it was denoted ,,a,).
Similarly, the years lost are composed of contributions from those who had died prior to
age x (area 1) and from those who die in the interval (area 2):

To subdivide the lost years into contributions from each cause, the latter expression is
modified, as follows:

where . f{ is the life-table based estimate of the probability at birth of dying from cause ¢
before age «x (that is, the cumulative incidence) and nRi = %;. If the age interval from
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0 to z is divided into sub-intervals [a;_1, a;), as described in Section 2, we have
Jo= mdi
J

where n; = a; —a;_1 is the width of interval j = 1,..., m. Not all published life-tables
include the quantities ,, A,,, however, equation (9) may be solved for ,, A, and substituted
into the expression for ,,7T¢, leading to

Note that both the quantities ,\} and their estimates based on the life-table data

1) are additive: ;Ao = >, o Aj and ,, T, = >, ,, 1%, and thereby do a “book keeping”
of where the years lost go in the population,

2) together with the temporary life expectancy add to the total number of life years:
w0+ aro = aand , L, + , 1z = n, cf. equations (4) and (8).

Finally, the years lost contribution by age and cause of death can also be used to
compare life expectancies between two populations. Life expectancy can be expressed as
a function of the total number of years and number of years lost, for example for country
Cy:

c1 __ C1
260" =T — g

and then the difference between the life expectancies of two populations can be obtained
by looking at their years lost as

C1 C2 __ C2 Cc1
2€0" — 2€0> = 2y — 2o -

We can now calculate both the age- and cause-contribution to the number of years lost by
calculating those terms in each of the populations and then subtracting them. A similar
strategy can be applied if the interest is to calculate the change over time in the number of
years lost in one population. In that case c¢; and co will correspond to the first and second
time respectively.

In the Appendix we show how the calculations can, alternatively, be based on a “mod-
ified life-table” with constant mortality rates in each age interval.

http://www.demographic-research.org 1135
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4. Comparison with other cause-specific measures of years lost

In this section we show two alternative methods which are related to the cause-specific
measure of years lost introduced in Section 2. The first is the life expectancy decompo-
sition suggested by Beltran-Sanchez et al. (2008) and the second is the average number
of life-years lost as a result of death presented by Vaupel and Canudas-Romo (2003). To
introduce the former, note that we can always write

1% kx
zP0 = zPo " zPo >

where .
o5 = exp(— / 15 (a)da),
0

e.g., Preston, Heuveline, and Guillot (2001: Section 4.3). If causes are “independent”
then, as mentioned in Section 1, ,py " = Hi' £i 200" i§ the z-year survival probability at
birth when cause ¢ is eliminated and ,e;, " = fox aPg da the corresponding temporary
life expectancy. Another definition of cause-specific years lost is then

w)\é)* :weai* — z€0, (10)

(Beltran-Sanchez et al. 2008).

This measure is 1) not additive 2) requires (as mentioned in Section 1) “independence”
of causes, i.e., it refers to a hypothetical population where cause 7 is no longer operating
and where (by independence) the mortality rates from causes i’ # 4 are still given by
,ui/ (a). Note that the question of what would happen if certain causes were eliminated is
not addressed via , A}, for which all computations are performed in “this world” where all
causes operate.

A final definition of years lost is

x
:z:>\2L) = /0 (z—a)€a - apOM(a)da

(see Vaupel and Canudas-Romo (2003) who called it ef). This is the average temporary
life expectancy between age at death and age x and in the language of Gardner and San-
born (1990) it is a measure of “years of potential life lost”. It leads to a third measure of
cause-specific years lost

it fom (z—a)€a apop'(a)da
x/\o - S
x4

1136 http://www.demographic-research.org
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where the average temporary life expectancy at death is only taken among those who die
from cause ¢ before age =. This measure

1) is not additive

2) does not require “independence”.

However, redefining m/\é’r without division by mqé, that is, as

wAZ)T = /0 (z—a)€a - apO:ui(a’)da (11)

additivity is obtained though the years lost do not add to = — ,eg . It can be shown that if
we further replace (,_q)eq by © — a in equation (11) (which Vaupel and Canudas-Romo
(2003) did not do) we get a measure of “premature (to x) years of potential life lost”
(Gardner and Sanborn 1990), which is identical to ,\} defined in equation (3).

5. Anillustration: Danish and Russian national mortality data

Life-tables and cause of death data from 2005 from Denmark and Russia were extracted
from the Human Mortality Data base (HMD) and from the World Health Organisation
(WHO). Based on these example data we will illustrate the different measures of cause-
specific numbers of life years lost before different ages. Tables 1-2 show the results
and Figures 2-3 show the survival curves including the cumulative incidences (,¢j) on
which the suggested calculations of years lost rely. Four competing causes of death are
considered: cancer, cardio-vascular diseases (CVD), external causes (accidents, suicides,
homicides), and other causes.

http://www.demographic-research.org 1137
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Figure 2: Life table distribution of survivors and death by cause of death,
males from Denmark 2005

< |
o
=
External
B Others
m CVD
o B Cancer
@
mn
5
=
Fa
|
@0
=+
[
[4N)
N
o 5
ST 55: 70. 85:
T T T T T
0 20 40 g0 80

Ages

Source: HMD and WHO.
Note:  Green: cancer, red: CVD, light blue: external, dark blue: others.

1138 http://www.demographic-research.org



Demographic Research: Volume 29, Article 41

Figure 3: Life table distribution of survivors and death by cause of death,
males from Russia 2005
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Table 1: Three different measures of years lost, Danish males 2005

Years lost .\, equation (3)
Age,x  zeo zA0 Cancer CVD External Other Sum

55 53.83 1.17 011  0.06 0.16 084 1.17
70 66.55 345 054 032 0.56 203 345
85 74.54 1046 2.00 149 1.81 5.16 10.46

Cause-eliminated . \}", equation (10)
Age,x  zeo zA0 Cancer CVD External Other Sum

55 53.83 1.17  0.19 0.16 0.45 0.63 1.42
70 66.55 345 084 0.56 0.79 1.36  3.55
85 74.54 1046 275 2.01 1.04 291 870

m/\ff, equation (11)
Age,z = — .\, Al Cancer CVD External Other Sum
55 5093 407 092 056  1.00 1.58  4.07

70 61.90 810 256 1.71 1.13 2770 8.10
85 72.68 1232 3.68 3.32 1.26 406 1232

Source: HMD and WHO.

From Tables 1-2 it follows that, no matter which measure of years lost is used, there
are large differences between the two countries. Thus, for any age x, the total number of
years lost before x is considerably larger in Russia. Also, patterns in differences between
causes are captured by all methods: Cancer is a major cause of years lost only in Denmark,
whereas external causes and CVD dominate in Russia.

Looking at the finer details, however, we do consider it advantageous that cause-
specific measures of years lost add up to the corresponding total, as it is the case for both
the suggested measure ,\} and for m)\ET but not for the cause-eliminated number , \}*.
Further, the suggested , A} has a simple and useful relationship with the curves in Figures
2-3. Thus, the cause-specific years lost are simply the colored areas above the survival
curve up to the given threshold age z.

1140 http://www.demographic-research.org
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Table 2: Three different measures of years lost, Russian males 2005

Years lost . \}, equation (3)
Age,rz  ep zAo Cancer CVD External Other Sum

55 49.11 589 021 0.62 2.00 3.06 5.89
70 56.11 13.89 0.69 2.01 4.43 6.75 13.89
85 58.62 2638 143 438 8.13 12.45 26.38

Cause-eliminated z)\é*, equation (10)
Age,x  zeo z o Cancer CVD External Other Sum

55 49.11 5.80 024 097 2.58 1.81 5.60
70 56.11 1389 0.77 3.20 4.29 3.15 11.39
85 58.62 2638 140 6.89 5.09 4.01 17.39

.T/\ff, equation (11)
Age,x = —,\) .\ Cancer CVD External Other Sum
55 4297 1203 081 3.06  4.66 3.49 12.03

70 5449 1551 147 5.11 4.95 3.99 1551
85 68.29 1671 1.62 598 4.98 4.14 16.71

Source: HMD and WHO.

The method, as explained in Section 4, lends itself to be used for other decompo-
sitions, e.g. by country and by age. Thus, in Table 3 the difference in temporary life
expectancy between Denmark and Russia has been decomposed by age and cause and it
can be seen, for example, that a main component in the 10.44 year difference in temporal
life expectancy at age 70 comes from external causes (3.88 years). On the other hand, by
age 85 more years lost are due to cancer in Denmark than in Russia. This might be due
to the early deaths in Russia from other causes of death, a fact that highlights the rele-
vance of competing causes of death. The age-specific contributions used for calculating
the decomposition in Table 3 are displayed graphically in Figures 4-5.
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Table 3: Decomposition of the male life expectancy gap between Denmark
and Russia in 2005
Age, €0 <o Difference Cause-contribution to difference
Denmark Russia Cancer CVD External Other Sum
55 53.83 49.11 4.72 0.11 0.56 1.83 222 472
70 66.55 56.11 10.44 0.15 1.69 3.88 472 10.44
85 74.54 58.62 1592 -0.58 2.89 6.32 729 1592

Source: HMD and WHO.

Figure 4: Contribution to years lost by age for males from Denmark 2005
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Figure 5: Contribution to years lost by age for males from Russia 2005
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6. Discussion

Cause-specific decomposition of mortality is an old theme in demography and public
health, as hinted in Section 1. Much of that literature involves counterfactual assumptions
about what would happen if some cause were eliminated. More recently, there has been
considerable interest in using years lost to particular causes of death as a measure of
disease burden, both at the global (e.g., Lopez et al. (2006) and the local (e.g., Aragon et
al. (2008)) levels. In these applications it is common to attach various weighting schemes
to the lost years, thereby generating concepts such as disability-adjusted life years; see
Gardner and Sanborn (1990) for an early concise and critical survey. Furthermore, the
actual mortality experience is often related to some standard mortality regime.

All proposals, including ours, make the same assumption, namely that there exists an
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unequivocal classification of causes of death. This issue is not always discussed in depth
in methodological expositions, although we refer to Manton and Stallard (1984) for their
exemplary discussion related to the USA. As an example from the applied literature we
may mention the detailed description by Lopez et al. (2006) of the formidable problems
in obtaining comparable cause-of-death data for world-wide comparisons.

Our proposal in this paper is to focus on the basic, directly observable data and to
develop a concept of life years lost from the classical concept of crude probability of
cause-specific death (going back at least to Farr (1841)) or cumulative cause-specific in-
cidence of death, as the concept is now usually termed in biostatistics and epidemiology.
In contrast to many other proposals, this measure is additive in the sense that it satisfies
the obvious balancing equation that the sum of years lost to a set of mutually exclusive
and exhaustive causes equals the total years lost, and as seen in Figs. 2-3 this may be
attractively illustrated in simple survival graphs. Also, the measure lends itself to further
decompositions, e.g. according to age or according to country, as illustrated using life-
tables from Denmark and Russia in Section 5.
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Appendix

First, note that all quantities presented in Section 2 can be defined conditionally on sur-
vival untill age . Thus, the probability of surviving past age x 4+ n among those who
survived until age x is

T+n
nPx = eXp(_/ M(a)da)a

the temporary life expectancy between ages z and x + n is

z+n
n€x = / abzda,
x

and, among those still alive at age x, the probability of dying from cause i before age
T+ nis

nly = / aPatt' (@)da.
xT

We still have the balance equation
nPz + Z nq; =1

Furthermore,
nAy = / odpda
xT

is the expected number of life years lost before age x +n due to cause ¢ among those alive
at age x and it follows that
n€x + Z nAy = M.
i

Second, as an alternative to the life-table estimates presented in Section 3, all quan-
tities may be estimated from age- and cause-specific mortality rates. To this end, the
interval [0,w) is split into disjoint age intervals [ax_1,ax),k = 1,..., K with ag =
0, ax = w and we assume that the mortality rates u(a) are piecewise constant, i.e.

p(a) = pk whena € [ag—1,ar),k=1,..., K.

In this case, the survival function ,pg = exp(— foa p(x)dx) evaluated at age ay, is:

k
axPo = exp(— ij(aj —a;—1)),k=1,... K,
j=1
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and for a € [ag, ar4+1)

aP0 = a;P0 eXP(*MkH(a - ak))-
Further, we have

k

(ax—am)Pam = €XP(— Z pila; —aj—1)),k=1,..., K,k >m,
Jj=m+1

and, more generally, for a € [a;_1,a;) and € [an,—1, am)

(z—a)Pa = exp(—pj(a; — a)) * (a1 —a;)Pa; * €XP(—m (T — @m—1)).

It follows that the temporary life expectancy between ages a,, and aj, (with a,, < ax) is

ag k aj
(ar—am)Cam :/ (afam)pamda = Z / (afam)pamda
a j—1

m j=m+1 a
k a)
= > (aj_ram)Pam/ exp(—p;(a —aj—1))da
j=m+1 aj-1
k 1
= > (ajo1—am)Pan — (1 — exp(—p;(a; — a;_1))),
j=m+1 Hi

and, fora € [a;_1,qa;)

aj Qg
(ar—a)€a :/ (m—a)padx+/ (;c—a)padx

J

1
= ;(1 —exp(—pj(a; —a))) +exp(—p;(a; — a))(a,—a,)€a,-
J

The conditional probability of death from cause ¢ before age ay, given survival untill

age a,, is

k
. ak .
(ak—am)q(lj,m :/ (a—am)pam:u’l(a)da = Z

m j=m+1

/ (a_anl)pawz/‘l'i(a)da
aj—1

k

aj X
=) <aj717am>pam/ exp(—pj(a — a;_1))pida
aj_1

j=m+1 Ji=
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1149



Andersen, Canudas-Romo & Keiding.: Cause-specific measures of life years lost

k 7

/’L-

= > (aj1—am)Pam (1 — exp(—p;(a; — a;j_1)))
j=m+1 Hi

and, thereby, for a € [ag, ag+1):

a

(a—am) i, = (ar—an) e, + / ()P 410
a

k

i
Hit1
Hk+1

It follows that the number of years lost due to cause ¢ between ages a,, and ay, is:

(ak*am)AZLm :/ (a,am)qzmda = Z / (afam)qumda
a aj—1

m j=m+1
k a;j ) ,Ui-
= Z / ((aj71—am)q¢lzm + (aj—1—am)Pam ’LTj(l - exp(_:uj (a - a’jfl))))da
J

j=m+1Y -1

= (ak—am)qim + (ak—am)Pam (1 - eXP(*Nk+1(a - ak)))-

k
= Y (4= 1) (0, 1—am) e,
j=m+1
" 1
+(ay_1—am)Pam — (@5 — aj—1) — — (1 —exp(—p;(a; — aj—1)))).
Hj Hj

Note that (as it should be!)
Z (ak*am))‘zm + (ax—am)Pam, = Ak — Qm.

Finally, we look at

ag
(a5 —am) Moy = / (ak—a)€a * (a—ay)Pay, (a)da
a

m

or the corresponding cause-specific measure

. ak .
(akfam))‘gfm = / (akfa)ea . (afam)pa,ul(a’)da'

m
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We have, for the all-cause quantity

(ar— am) am Z (ak—a)ea ’ (a_a7n)pa7nlu'jda
j=m+1 a;

Z / 1 — exp( uj(aj - a))) + eXp(—Mj(aj - a))(ak*a]‘)eai)

j=m+1 leJJ

x exp(—;(a = a5-1))(a;_1—am)Panm Hida
k 1
= > [<aj,17am)pa,n(;(1—exp( pj(aj—a;—1)))—(aj—aj_1) exp(—p;(a;—a;-1)))

j=m+1 J

+:u]( — Qj— 1)exp( /’(‘J( — Q- 1))(041“*!1]‘)60«]' .(aj—lfam)pam]
k

= Z (aj,lfam)pam

j=m+1

1
X (;(PGXP( pi(a;—aj_1)))+(a;—aj_1)exp(—p;(a;—a;-1)) (1) (ap—a;)€a; — 1))
J
For the cause-specific quantity (4, — am))\ each term should be multiplied by 4.’ g
If, in the expression for (ak,am))\at” we replace (4, —q)€q by ax — a, i.e.

Y / (ak — @) - a—apyPan o' (a)da

m

we simply (by partial integration) get (ak_am)Agm
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