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The article provides an overview over a new class of modal logics, namely “mem-
ory logics”, it investigates the expressive power of such logics, and surveys some
results concerning the decidability problems arising with them. A memory logic
is formulated within a language extending propositional logic by adding two
novel memory operators ©r (unary, “remember”) and ©k (0-ary, “know”). In
addition to these operators there may be a family of possibility operators 〈r〉
(with r from some fixed non-empty set rel of binary relation symbols) or a
family of corresponding “memorizing” possibility operators 〈〈r〉〉. Finally, there
may be additional memory operators such as the unary operators ©e (“erase”)
and ©f (“forget”). In order to interpret such a language, extended Kripke-
structures M = 〈D, I,M〉 are used. D is the set of possible worlds and the
interpretation function I assigns subsets of D to propositional variables and
binary relations I(r) ⊆ D×D to the relation symbols r ∈ rel. The component
M of M is a “memory” which can store worlds in the course of the evaluation
of formulas. In the simplest case M is just a set of possible worlds, however the
authors also consider the case that the memory is a stack. In that case operators
(push) and (pop) corresponding to the stack operations are used and a further
operator (top) checks whether the current world of evaluation is the top-most
element of the stack. In the simpler case of “set memories”, the ©r -operator
stores the current world of evaluation into the memory: 〈D, I,M〉, w |=©r ϕ iff
〈D, I,M ∪ {w}〉, w |= ϕ. The ©k -operator checks whether the current world is
in the memory: 〈D, I,M〉, w |= ©k iff w ∈ M . ©e empties the entire memory
whereas ©f removes the current world from it. The 〈r〉-operators are inter-
preted in the standard way and the 〈〈r〉〉-operators differ from them in that
they evaluate modal formulas and simultaneously remember the world of eval-
uation: 〈D, I,M〉, w |= 〈〈r〉〉ϕ iff there is a w′ ∈ D such that (w,w′) ∈ I(r) and
〈D, I,M ∪ {w}〉, w′ |= ϕ.

Different systems ML of memory logic (formulated in different languages)
are defined as sets of formulas valid in certain classes of models. If the models
in such a class are required to have an empty memory (which only becomes
filled in the course of an evaluation), this is marked by adding the index “∅” to
the name of the logic. The operators present in a logic beside the obligatory ©r
and ©k are marked in the logic’s name by adding a corresponding list. Thus,
for instance, ML∅(〈r〉) is the logic of those formulas which besides ©r and ©k
contain only operators 〈r〉 (if at all) and which are valid in the corresponding
models with empty memory. In contrast to this, ML(〈r〉) admits also models
whose initial memory is not void. If a stack is used as memory instead of a
simple set, this is marked by the superscript “st”, e.g.: MLst

∅ (〈r〉). Besides
memory logics proper the basic normal logic K and the hybrid logic HL(↓) are
considered by the authors as limiting cases. A logic L is defined to be at most as
expressive as a logic L′ (L ≤ L′) if there is a translation function Tr from L to L′

such that for each formula ϕ of L it holds true that M |=L ϕ iff M |=L′ Tr(ϕ).
L is strictly less expressive than L′ iff L ≤ L′ but L′ 6≤ L. The authors show the
following results: (1) The logics K, ML∅(〈〈r〉〉), ML∅(〈r〉), ML∅(〈r〉, ©e ), and
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ML∅(〈r〉,©e ,©f )) are strictly increasing in expressive power. (2)ML∅(〈r〉) <
ML∅(〈r〉,©f ) ≤ ML∅(〈r〉,©e ,©f ). (3)ML∅(〈r〉,©f ) 6≤ ML∅(〈r〉,©e ). (4) The
memory logic MLst

∅ (〈r〉) is expressively equivalent to the hybrid logic HL(↓)
and ML∅(〈r〉,©e ,©f ) is at most as expressive as these two equivalent logics.
(5) As regards decidability, it is shown that ML(〈〈r〉〉) is decidable whereas
ML∅(〈〈r〉〉) and ML(〈r〉) are not. Furthermore it is shown that ML(〈r〉) lies
on the edge of decidability. Adding one single nominal it—i.e., a propositional
symbol true in just one single possible world—renders this logic undecidable.
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