Supporting Information

for

On the bromination of the dihydroazulene/vinylheptafulvene photo-/thermoswitch

Virginia Mazzanti^{1,2}, Martina Cacciarini^{1,3}, Søren Lindbæk Broman¹, Christian R. Parker¹, Magnus Schau-Magnussen¹, Andrew D. Bond⁴ and Mogens Brøndsted Nielsen^{1*}

Address: ¹Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark, ²Sino-Danish Center for Education and Research (SDC), Niels Jensens Vej 2, DK-8000 Aarhus C, Denmark ³Department of Chemistry, University of Florence, via della Lastruccia 3-13, I-50019, Sesto F.no, Italy and ⁴Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark

Email: Mogens Brøndsted Nielsen - mbn@kiku.dk

*Corresponding author

1D and 2D NMR spectra of all new compounds. Table of bond lengths for VHF 2 (X-ray crystallographic data). Exponential fit of the decay over time of the VHF 7 absorbance at the longest-wavelength absorption maximum.

Content

NMR spectra of compounds 8, 10, 12, 14, 15, 17, 19, 22	S2
X-ray crystallographic data for VHF 2	S14
UV-vis absorption spectra of DHA 8 and VHF 7	S15

Figure S1: Compound 8, ¹H NMR (500 MHz, CDCl₃).

Figure S2: Compound 8, APT (125 MHz, CDCl₃).

Figure S3: Compound 8; left: COSY (CDCl₃), right: HSQC (CDCl₃).

Figure S4: Compound 10; ¹H NMR with minor impurities (300 MHz, CDCl₃).

Figure S5: Compound 10; ¹H NMR of pure compound (500 MHz, CDCl₃)

Figure S6: Compound 10; APT (125 MHz, CDCl₃)

Figure S7: Compound 10; COSY (left) and HSQC (right) in CDCl₃.

Figure S8: Compound 12; ¹H NMR (300 MHz, CDCl₃).

Figure S9: Compound 12; APT (125 MHz, CDCl₃).

Figure S10: Compound 12; left: COSY (CDCl₃), right: HSQC (CDCl₃).

Figure S12: Compound 14; APT (125 MHz, CDCl₃).

Figure S13: Compound 15; ¹H NMR (500 MHz, CDCl₃).

Figure S14: Compound 15; APT (125 MHz, CDCl₃).

Figure S16: Compound **17**; ¹³C NMR (125 MHz, CDCl₃).

Figure S17: NOESY1D (500 MHz, CDCl₃) of compound **17** with irradiation on H-6 (a), OMe (b) and on the aromatic protons of ring A (c).

Figure S18: Compound 19; ¹H NMR (500 MHz, CDCl₃).

Figure S19: Compound 19 left: COSY (CDCl₃), right: HSQC (CDCl₃).

Figure S20: Compound **19**; ¹³C NMR (125 MHz, CDCl₃).

Figure S21: Compound 22; ¹H NMR (300 MHz, CDCl₃).

S13

X-Ray Crystallography – VHF 2

Single-crystal X-ray diffraction data were collected at 122 K by using a Nonius Kappa CCD area-detector diffractometer with Mo K α radiation ($\lambda = 0.71073$ Å) equipped with an Oxford Cryostreams low-temperature device. The structure was solved by using direct methods (SHELXS97) and refined with the SHELXL97 software package [1]. All nonhydrogen atoms were refined anisotropically. All hydrogen atoms were located in the difference Fourier map but refined at the calculated positions. Supplementary crystallographic data (CCDC-866016) can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Table 1: Bond lengths (Å) (VHF 2).

N1-C1	1.1476 (15)
N2-C2	1.1561 (16)
C1—C3	1.4366 (15)
C2—C3	1.4289 (16)
C3—C4	1.3840 (15)
C4—C5	1.4276 (15)
C4-C13	1.4898 (14)
C5-C6	1.3918 (15)
C6-C12	1.4452 (15)
C6—C7	1.4461 (16)
C7—C8	1.3591 (16)
C8—C9	1.4318 (18)
C9-C10	1.351 (2)
C10-C11	1.4247 (19)
C11-C12	1.3626 (16)
C13-C18	1.3982 (15)
C13-C14	1.3990 (16)
C14-C15	1.3917 (15)
C15-C16	1.3929 (17)
C16-C17	1.3892 (18)
C17-C18	1.3915 (15)

Table 2: Crystallographic data (VHF 2).

Compound reference	CCDC-866016
Chemical formula	$C_{18}H_{12}N_2 \cdot 0.5(C_6H_6)$
Formula Mass	295.35
Crystal system	Monoclinic
a/Å	16.8614 (9)
b/Å	6.2465 (11)
$c/\text{\AA}$	30.679 (3)
$\alpha /^{\circ}$	90.00
$\beta/^{\circ}$	96.345 (11)
$\gamma/^{\circ}$	90.00
Unit cell volume/Å ³	3211.4 (7)
Temperature/K	122(1)
Space group	C2/c
No. of formula units per unit cell, Z	8
Radiation type	Μο Κα
Absorption coefficient, μ/mm^{-1}	0.072
No. of reflections measured	47476
No. of independent reflections	7621
R _{int}	0.0560
Final R_I values $(I > 2\sigma(I))^a$	0.0644
Final $wR(F^2)$ values $(I > 2\sigma(I))^{b}$	0.1522
Final R_l values (all data) ^a	0.0901
Final $wR(F^2)$ values (all data) ^b	0.1669
Goodness of fit on F^2	1.110

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|. {}^{b}wR = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w (F_{o}^{2})^{2}]^{1/2}$

Absorption spectra

Figure S23: Absorption spectra of DHA 8 and VHF 7 in cyclohexane. The broken curve shows the absorption spectrum after one light–heat cycle (DHA \rightarrow VHF \rightarrow DHA).

Thermal conversion of VHF 7 to DHA 8

Figure S24: The decay in the VHF absorption maximum at 453 nm over time was fitted by an exponential function (first-order kinetics). Solvent, cyclohexane; temperature, 50 °C.

References

[1] Sheldrick, G. M., Acta Cryst., 2008, A64, 112-122.