Supplementary Information

Peptide-LNA Oligonucleotide Conjugates

I. Kira Astakhova, $*^{1,\dagger}$ Lykke Haastrup Hansen, [‡] Birte Vester, [‡] and Jesper Wengel[†]

[†]Nucleic Acid Center and the Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55 DK-5230 Odense M, Denmark

^{*}Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55 DK-5230 Odense M, Denmark

Contents

Analysis of oligonucleotides ON1-ON3 (Table S1)	S2
IE HPLC retention times and MALDI-MS of POC1-POC6 (Table S2, Figures S1-S2)	S2-S3
Representative $T_{\rm m}$ curves (Figure S3)	S4
Effect of single mismatches on binding affinities of modified POCs and reference oligonucleotides (Tables S3–S4)	S5-S6
Representative CD curves (Figure S4)	S7
Gel electrophoresis of 5'- ³² P-labeled oligonucleotides incubated with HS (Figure S5)	S8
Molecular model of duplex POC2:DNA (Figure S6)	S9

¹ Corresponding author. E-mail: <u>ias@sdu.dk</u>

#	Sequence, $5' \rightarrow 3'$	Ret. time, min	MALDI-MS		
			Found m/z [M-H] ⁻	Calc. m/z [M-H] ⁻	
ON1	TGC ACT CTA TG <u>M</u> ¹ CTG TAT CAT	24.04	6467	6468	
ON2	TGC ACT CTA <u>M</u> ¹ GT C <u>M</u> ¹ G TAT CAT	22.14	6575	6575	
ON3	TGC AC \underline{M}^1 CTA TGT CTG TA \underline{M}^1 CAT	24.18	6572	6575	

Table S1. IE HPLC retention times and MALDI-MS of purified oligonucleotides.

Table S2. IE HPLC retention times and MALDI-MS of POC1-POC6.

#	Sequence, $5' \rightarrow 3'$	Ret. time, min	MALDI-MS		
			Found m/z [M-H] ⁻	Calc. m/z [M-H] ⁻	
POC1	TGC ACT CTA TG <u>M</u> ² CTG TAT CAT	22.91	7550	7551	
POC2	TGC ACT CTA <u>M</u> ² GT C <u>M</u> ² G TAT CAT	21.13	8748	8741	
POC3	TGC AC \underline{M}^2 CTA TGT CTG TA \underline{M}^2 CAT	21.19	8745	8741	
POC4	TGC ACT CTA TG <u>M</u> ³ CTG TAT CAT	23.54	7533	7533	
POC5	TGC ACT CTA <u>M</u> ³ GT C <u>M</u> ³ G TAT CAT	21.25	8708	8705	
POC6	TGC AC \underline{M}^3 CTA TGT CTG TA \underline{M}^3 CAT	23.24	8706	8705	

Figure S2. Representative MALDI-MS spectrum of peptide-oligonucleotide conjugate POC2.

Figure S3. Representative $T_{\rm m}$ curves.

The melting curves were recorded in a medium salt (A–C) and low salt (D) phosphate buffer using 0.5 μ M concentration of complementary strands.

Table S3. Effect of single mismatches on binding affinities of single-labeled **ON1**, **POC1** and **POC2** to DNA/RNA targets in a medium salt phosphate buffer.^a

		$T_{\rm m}$ (°C)							
Conjugate: Target DNA ta			A target RNA target				target		
	X =	А	С	Т	G	А	С	U	G
(ON1) 5´ - TGC ACT CTA TG M ¹ CTG TAT CAT 3´ - ACG TGA GAT A X A GAC ATA GTA		50.5	62.0 ^{cc}	53.5	53.0	54.5	65.0 ^{cc}	56.0	57.0
(ON1) 5′ - TGC ACT CTA TG M ¹ CTG TAT CAT 3′ - ACG TGA GAT AC X GAC ATA GTA		62.0 ^{cc}	53.0	54.0	54.0	65.0 ^{cc}	54.5	55.0	58.0
(ON1) 5' - TGC ACT CTA TG M ¹ CTG TAT CAT 3' - ACG TGA GAT ACA X AC ATA GTA		49.0	49.0	49.0	62.0 ^{cc}	54.0	50.0	50.0	65.0 ^{cc}
(POC1) 5′ - TGC ACT CTA TG M ² CTG TAT CAT 3′ - ACG TGA GAT A X A GAC ATA GTA		51.0	60.0 ^{cc}	55.0	53.0	53.0	63.5 ^{cc}	56.0	55.0
(POC1) 5′ - TGC ACT CTA TG M ² CTG TAT CAT 3′ - ACG TGA GAT AC X GAC ATA GTA		60.0 ^{cc}	52.0	52.0	53.0	63.5 ^{cc}	54.0	55.0	57.0
(POC1) 5´ - TGC ACT CTA TGM ² CTG TAT CAT 3´ - ACG TGA GAT ACA XAC ATA GTA		50.0	50.0	51.0	60.0 ^{cc}	52.5	49.0	49.5	63.5 ^{cc}
(POC2) 5′ - TGC ACT CTA TG M ³ CTG TAT CAT 3′ - ACG TGA GAT A X A GAC ATA GTA		45.0	62.0 ^{cc}	43.0	40.0	53.0	64.5 ^{cc}	55.0	55.5
(POC2) 5′ - TGC ACT CTA TG M ³ CTG TAT CAT 3′ - ACG TGA GAT AC X GAC ATA GTA		62.0 ^{cc}	55.0	50.0	52.0	64.5 ^{cc}	55.0	55.0	57.5
(POC2) 5′ - TGC ACT CTA TG M ³ CTG TAT CAT 3′ - ACG TGA GAT ACA X AC ATA GTA		52.5	51.0	53.0	62.0 ^{cc}	52.0	50.0	50.5	64.5 ^{cc}

^a Sequences of DNA target variants are presented; cc = complementary complex.

Table S4. Effect of single-base mismatch on binding affinity of **ON2–ON3** to DNA/RNA targets in a medium salt phosphate buffer.^a

$T_{\rm m}$ (°C)									
ON:TARGET		DNA target			RNA target				
	X =	А	С	Т	G	А	С	U	G
5´ - TGC ACT CTA M ¹ GT C M ¹ G TAT CAT 3´ - ACG TGA GAT ACA GAX ATA GTA		54.0	63.5 ^{cc}	57.0	54.0	57.0	69.0 ^{cc}	61.0	59.0
5′ - TGC ACT CTA M ¹ GT C M ¹ G TAT CAT 3′ - ACG TGA GAT ACA G X C ATA GTA		63.5 ^{cc}	50.0	57.0	57.0	69.0 ^{cc}	61.0	60.0	64.0
5´ - TGC ACT CTA M¹GT CM¹G TAT CAT 3´ - ACG TGA GAT X CA GAC ATA GTA		63.5 ^{cc}	55.0	56.0	57.0	69.0 ^{cc}	62.0	62.0	65.0
5′ - TGC ACT CTA M¹GT CM¹G TAT CAT 3′ - ACG TGA GA X ACA GAC ATA GTA		55.5	55.0	63.5 ^{cc}	59.5	62.0	60.0	69.0 ^{cc}	65.0
5′ - TGC AC M ¹ CTA TGT CTG TA M ¹ CAT 3′ - ACG TGA GAT ACA GA ATA X TA		54.0	53.0	55.0	63.0 ^{cc}	59.0	55.0	60.0	68.0 ^{cc}
5′ - TGC ACM ¹ CTA TGT CTG TAM ¹ CAT 3′ - ACG TGA GAT ACA GA ATX GTA		63.0 ^{cc}	53.0	54.0	55.0	68.0 ^{cc}	60.0	60.0	62.0
5′ - TGC AC M ¹ CTA TGT CTG TA M ¹ CAT 3′ - ACG TGA GAT AC X GA ATA BTA		63.0 ^{cc}	52.0	53.0	55.0	68.0 ^{cc}	58.8	58.8	63.0
5´ - TGC AC M ¹ CTA TGT CTG TA M ¹ CAT 3´ - ACG TGA XAT ACA GA ATA BTA		50.0	52.0	50.0	63.0 ^{cc}	55.0	53.0	56.0	68.0 ^{cc}

^a Sequences of DNA target variants are presented; cc = complementary complex.

Figure S4. Representative CD spectra of single-stranded (ss) POCs and their duplexes with complementary DNA/RNA.

Figure S5. Gel electrophoresis of 5'-³²P-labeled oligonucleotides incubated with HS.

B) POC4

D) POC5

A) POC3

Time, min h 0 2 5 10 30 1 4

C) **ON2**

Assay conditions: (A–B) 90% HS in HBSS buffer; (C–D) 90% HS pre-treated with 1 mM paraoxon-ethyl, HBSS buffer.

S8

Figure S6. Molecular model of duplex POC2:DNA.

White, red, pink, blue and yellow balls represent carbon, oxygen, phosphorus, nitrogen and sulphur atoms, respectively; hydrogen atoms are not shown.