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Abstract

This paper introduces a three-phase heuristic approach for a large-scale
energy management and maintenance scheduling problem. The problem
is concerned with scheduling maintenance and refueling for nuclear power
plants up to five years into the future, while handling a number of scenar-
ios for future demand and prices. The goal is to minimize the expected
total production costs. The first phase of the heuristic solves a simpli-
fied constraint programming model of the problem, the second performs
a local search, and the third handles overproduction in a greedy fashion.

This work was initiated in the context of the ROADEF/EURO Chal-
lenge 2010, a competition organized jointly by the French Operational
Research and Decision Support Society, the European Operational Re-
search Society, and the European utility company Électricité de France.
In the concluding phase of the competition our team ranked second in the
junior category and sixth overall.

After correcting an implementation bug in the program that was sub-
mitted for evaluation, our heuristic solves all ten real-life instances, and
the solutions obtained are all within 2.45% of the currently best known
solutions. The results given here would have ranked first in the original
competition.

1 Introduction

Électricité de France is the main supplier of electricity in France. The majority
of the electricity is produced by thermal — and in particular nuclear — power
plants. There are two types of thermal power plants in their portfolio: type 1
plants which can be supplied with fuel continuously and without interrupting the
production and type 2 plants (nuclear power plants) which must be taken offline
for refueling at regular intervals. While type 1 plants are more flexible than type
2 plants, the production cost incurred per unit of electricity is larger than for
type 2 plants. The process of taking a power plant offline for maintenance is
called an outage. Scheduling outages for type 2 plants should be done such
that the estimated demand for electricity is satisfied at the lowest possible cost.
A schedule for outages must satisfy a large number of constraints due to e.g.
limited resources and safety considerations.
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Some of the constraints are due to limits on fuel levels in connection with each
outage: There is a maximum feasible fuel level for the power plant, a maximal
allowed fuel level when a plant is taken offline, and a minimum refueling amount
for each outage. When planning future production, we have to decide the timing
of each outage, refuel amounts, and production levels.

The total production of electricity is not allowed to exceed the demand, and
therefore type 2 plants sometimes produce at less than their maximum produc-
tion level. This is called modulation, and due to technical reasons there is a
limit on the allowed modulation for each plant for each production campaign —
the period between two outages.

When a type 2 plant is taken offline for refueling and maintenance, the electricity
must instead be produced by alternative sources. This can either be done by one
of the other type 2 plants or by the more expensive type 1 power plants. The
future electricity demand and the price of fuel for production on type 1 plants
is uncertain. This uncertainty should be taken into account in the planning
of outages for type 2 plants. This is handled here by minimizing the expected
future production cost.

1.1 The ROADEF/EURO Challenge 2010

The described problem was the subject of the ROADEF/EURO Challenge 2010,
which ran from July 2009 through June 2010. In total 44 teams from 25 countries
signed up for the challenge, of these 21 qualified for the final round, and 16
submitted a program for the final evaluation. The submitted programs were
evaluated on ten problem instances, five known and five unknown. For each
instance the time limit imposed to the program was one hour. In the concluding
phase of the competition our team ranked second in the junior category and sixth
overall. A complete description of the competition and evaluation rules can be
found in [9].

The problem instances from the challenge have up to 75 type 2 plants, up to
120 scenarios for future prices and demand, and up to 5817 discrete time steps.
Outages always start at the beginning of a week and since the time horizon is
about five years there can be up to about 260 possible outage start dates. All
in all this leads to a large-scale energy management problem.

A solution to the problem can be divided in two parts: a scheduling part and a
production planning part. To give an indication of what a schedule for outages
looks like see Figure 1 which shows a schedule for 11 type 2 plants.

Figures 2 and 3 show production level and fuel level, respectively, for type 2
plant number 8 over time. Note the sudden decrease in production around time
step 2 200; this is modulation to ensure that there is no overproduction in the
specific timestep.

The following factors indicate that the problem is hard. First of all, it is NP-
hard in the strong sense, as we prove in Section 2.5. Furthermore, the problem
instances are large, as a single problem instance takes up to 262 megabytes of
harddisk space and contains more than 50·106 continuous decision variables just
to represent production levels for every plant, time step, and scenario. Finally,
there is a large number of constraints on production levels, fuel levels, refueling

2



0 1000 2000 3000 4000 5000 6000

0
2

4
6

8
10

Timestep

Ty
pe

 2
 p

la
nt

Figure 1: A sample outages schedule for 11 plants. For all time steps the state
of each plant is given. A light grey line is used for time steps with production,
a wide dark grey for outages, and a black is when the plant is out of fuel.
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Figure 2: The production level over time for plant 8 from Figure 1. The full
line is the current production level and the dashed line the maximum allowed
production level.

levels, and on the scheduling of outages.

The program we submitted contained an implementation bug which resulted in
infeasible solutions for two of the five unknown instances (feasible solutions were
found for all other instances). After correcting program we are able to solve all
instances, and the solutions are actually better than those of the winning team
(note that most teams are probably able to improve on their program after all
instances are made publicly available).

1.2 Related work

A problem similar to the one studied here has been considered in [4] by Four-
cade et al. in 1997. They consider roughly the same scheduling problem as
is handled here and formulate a mixed integer programming model. In their
model there is no decision variable concerning refueling amounts; this decision
is instead handled as a predefined fixed amount. There is also no uncertainty
of future demand or prices, and the demand is given per week, in contrast to
the competition where the electricity demand is given per time step, i.e., their
discretization is more coarse-grained.
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Figure 3: The fuel level over time for plant 8 from Figure 1.

They are able to solve small problems of up to 20 nuclear power plants with a
MIP solver. The authors also attempted to tackle a model with 40 power plants,
which yields a feasible solution after more than eight hours of computational
time, but with a significant gap to the LP lower bound. They report that
this model is almost the size of the complete model of France which has 54
nuclear plants. The performance of MIP solvers and hardware have increased
significantly since 1997, so modelling that particular problem as a mixed integer
programming problem might be feasible with state of the art solvers.

Besides the work by Fourcade et al. very little is published on the topic. Nuclear
maintenance and refueling is mentioned by Dunning et al. in [3], but the problem
considered is to minimize the environmental impact.

The scheduling part of this problem is quite similar to the Resource Constrained
Project Scheduling Problem (RCPSP), see e.g. [8]. In both problems, activities
(in this case outages) have to be be scheduled subject to temporal constraints
and limited resources. However, the problem at hand includes several con-
straints not found in common variants of RCPSP, such as temporal constraints
that are disjunctive and only apply if a pair of activities is scheduled in a spec-
ified interval (as described in Section 2.3).

Setting production levels for power plants is treated in the literature under the
term ‘economic dispatch’ — i.e., the problem of dispatching units to producing
power in an economic way to minimize production costs. While many different
settings are considered, see for example [2] by Chowdhury and Rahman, there
are new features in the production planning for nuclear power plants. The
new features concern special bounds on production levels when the fuel level
is low, which leads to nonlinear constraints. When a type 2 plant’s fuel level
drops below a given treshold, a decreasing power production level is imposed.
Without this constraint the production planning could be solved with linear
programming.

1.3 Our contribution

The purpose of this paper is to introduce a three-phase heuristic approach for
the problem sketched above. A constraint programming (CP) model of the
scheduling problem with approximated constraints for production levels and fuel
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consumption gives us a feasible maintenance schedule. From this first feasible
solution we apply a local search algorithm based on a simple neighborhood
structure. Two essential components in the local search algorithm are: a fast
feasibility check and a fast, but approximative, evaluation of the change in
solution cost. To guide the local search we embed it in a simulated annealing
metaheuristic. In the third and final phase we use a greedy algorithm to remove
overproduction, if any. The primary task of the algorithm is to make the given
solution feasible, and consequently it may not be optimal.

1.4 Overview

The paper is organized as follows. Section 2 gives a formal decription of the
optimization problem as well as a complexity proof. In Section 3 we describe
how to obtain a feasible solution using a CP model and a heuristic for production
planning. Our simulated annealing algorithm is described in Section 4. Section
5 describes how to handle overproduction. Computational analysis and results
are the topic of Section 6. Finally, we conclude and give directions for further
research in Section 7.

2 Problem description

Each type 2 plant goes through a number of cycles. A cycle is composed of
an outage followed by a production campaign. During an outage the plant can-
not produce electricity because of maintenance and reloading of fuel. During
a production campaign the plant is able to produce electricity. Having type 2
plants that produce at less than maximum capacity leads to wear of the equip-
ment involved and should thus be avoided if possible. The difference between
maximum capacity and actual production is called modulation.

The demand for electricity is not known with certainty at the time of planning.
This stochasticity is dealt with by introducing a number of scenarios, each of
which represents a realistic future demand profile for the planning horizon dis-
cretisized into a number of time steps. Optimizing for several realistic scenarios
instead of just one generally leads to more robust plans.

Decisions concerning scheduling of outages and refueling amounts are shared by
all scenarios, but production levels are determined for each individual scenario.
This creates a dependency between scenarios, since the outage schedule and
refueling amounts must be feasible with respect to every scenario’s production
plan.

A production plan specifies the production level of each plant for every time step
and every scenario. Furthermore, a maintenance plan specifies when outages of
type 2 plants are scheduled and the amount of fuel to reload at each outage.
The objective is to satisfy the demand for electricity at the lowest average cost
over all scenarios.

The cost must be minimized while satisfying a number of constraints, which can
be divided into four categories: i) bounds on production levels, ii) bounds on
refueling amounts, iii) different kinds of temporal constraints on the scheduling
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of outages, including constraints involving outages for different type 2 plants,
and iv) bounds on the outages’ simultaneous use of limited resources.

2.1 Decision variables and bounds

We use s = 0, . . . , S − 1 to index scenarios, t = 0, . . . , T − 1 to index time
steps, h = 0, . . . ,H − 1 to index weeks, j = 0, . . . , J − 1 to index type 1 plants,
i = 0, . . . , I − 1 to index type 2 plants, and k = 0, . . . ,K − 1 to index cycles. A
week consists of a number of time steps, i.e., two different discretizations of the
planning horizon are used. This is because outages are scheduled on a weekly
basis, whereas a higher resolution is required when determining productions
levels. The length of a time step in hours is denoted by D (all time steps have
the same length).

As in the original problem formulation [9], we index decision variables using
parentheses in order to distinguish them from parameters in the model. Let
p(`, t, s) ≥ 0 denote the production of plant ` (which may be of type 1 or 2) at
time step t in scenario s.

The length of outage k for type 2 plant i is denoted by DAi,k. Let ha(i, k) ∈ Z
denote the week that the k’th outage for type 2 plant i starts, and TOi,k and
TAi,k denote the lower and upper bound, respectively, on ha(i, k). Then we
have

TOi,k ≤ ha(i, k) ≤ TAi,k. (1)

The bounds TOi,k and TAi,k may be undefined, in which case the corresponding
inequality is trivially satisfied. If the upper bound is undefined for some outage,
the outage does not have to be scheduled. If outage k for plant i is not scheduled
then ha(i, k) = −1 and constraint (1) is not enforced. Outage k + 1 for some
plant cannot start before outage k for the same plant is finished.

The amount of fuel reloaded at type 2 plant i in outage k is denoted by r(i, k) ≥ 0
and must satisfy (2) if k is scheduled

RMINi,k ≤ r(i, k) ≤ RMAXi,k, (2)

where the bounds RMINi,k and RMAXi,k are input data. If k is not scheduled,
then r(i, k) = 0.

2.2 Auxiliary variables

In addition to the decision variables there is a number of auxiliary variables
which can be derived from the decision variables and thus do not increase the
size of the solution space.

The set of time steps composing the k’th outage of type 2 plant i is denoted
by ea(i, k), and the set of time steps composing the subsequent production
campaign is denoted by ec(i, k). For any k, the production p(i, t, s) of plant i
must be zero for every t ∈ ea(i, k) in every scenario s.

The fuel stock of type 2 plant i at time step t in scenario s is denoted by
x(i, t, s) ≥ 0. The initial fuel level of i (at time step 0) XIi is specified in the
input data. During a production campaign for plant i the decrease in fuel level
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from time step t to t+ 1 in scenario s equals the production multiplied by the
length of a time step D

x(i, t+ 1, s) = x(i, t, s)− p(i, t, s)×D. (3)

During an outage the fuel level at type 2 plant i increases because of refueling.
Due to technical reasons the new fuel level is not simply the sum of the old fuel
level and the amount reloaded. Formally, if t is the first time step in outage k
for plant i, then the new fuel level for i in scenario s is computed using

x(i, t+ 1, s) = Qi,k × x(i, t, s) + r(i, k) +Q′i,k, (4)

where Qi,k < 1 and Q′i,k are input data1

2.3 Constraints

The constraints can be divided into three groups, namely production level con-
straints, fuel level constraints, and scheduling constraints.

Production level constraints Let DEM t,s denote the demand at time step
t in scenario s. The total production must equal the demand in every scenario
and every time step

∀s, t :

J−1∑
j=0

p(j, t, s) +

I−1∑
i=0

p(i, t, s) = DEM t,s. (5)

Let PMIN t,s
j and PMAXt,s

j denote the minimum and maximum, respectively,
allowed production of type 1 plant j at time step t in scenario s, then

∀s, t : PMIN t,s
j ≤ p(j, t, s) ≤ PMAXt,s

j . (6)

The bounds on production for a type 2 plant are more complex, since the depend
on the current fuel stock of the plant. If the fuel level is above a threshold BOi,k

that depends on the production campaign k, then the production is bounded
from above by PMAXt

i

∀s, t, i, k : t ∈ ec(i, k) ∧ x(i, t, s) ≥ BOi,k ⇒ 0 ≤ p(i, t, s) ≤ PMAXt
i . (7)

As long as the fuel level is above the threshold, there is no lower bound on the
production of type 2 plants in each individual time step, but modulation is un-
desirable and therefore there is an upper bound MMAXi,k on the accumulated
modulation of plant i in each production campaign k

∀s, i, k :
∑

t∈ec(i,k)∧
x(i,t,s)≥BOi,k

(PMAXt
i − p(i, t, s))×D ≤MMAXi,k. (8)

If the fuel level is below the threshold, the upper bound decreases and a lower
bound is also enforced. This is referred to as the declining power profile. How

1Equation (4) is a simplification of Equation (CT10) in the original model defined by
ROADEF, but the two formulas are equivalent when appropriate values for Qi,k and Q′

i,k are

used.
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much the upper bound decreases for type 2 plant i in production campaign k is
specified by a function PBi,k which maps fuel level to a real number between
zero and one. Formally, for all s, t, i, k, if t ∈ ec(i, k) and x(i, t, s) < BOi,k, then
the production must lie in a small interval centered around Px

Px = PBi,k(x(i, t, s))× PMAXt
i , (9)

(1− ε)× Px ≤ p(i, t, s) ≤ (1 + ε)× Px. (10)

However, if the plant will run out of fuel if it produces at Px, it cannot produce
at all. Thus, (10) applies only if inequality (11) holds. If (11) does not hold,
p(i, t, s) must be zero

x(i, t, s) ≥ Px ×D. (11)

Fuel level constraints There are upper bounds on the fuel level before and
after a type 2 plant outage. Let AMAXi,k denote the upper bound on the
fuel level at the time when outage k for plant i starts and SMAXi,k the upper
bound on the fuel level after outage k for plant i. If the k’th outage for plant i
starts at time step t in some scenario s, inequality (12) and (13) must hold

x(i, t, s) ≤ AMAXi,k, (12)

x(i, t+ 1, s) ≤ SMAXi,k. (13)

Scheduling constraints There are disjunctive temporal constraints between
outages. If a specified pair of outages (i, k) and (i′, k′) is scheduled such that
they both intersect a specified interval (this interval may be the entire planning
horizon), then constraint (14) must be satisfied

ha(i, k)− ha(i′, k′) ≥ Se ∨ ha(i′, k′)− ha(i, k) ≥ Se′, (14)

where the lower bounds Se and Se′ are input data.

Several types of temporal constraints are defined in the original problem defini-
tion from ROADEF [9], but they can be converted to the type in (14).

For every week h there is a collection of subsets of outages and for each subset
A in this collection, an associated natural number N . For every A and N , at
most N of the outages in A are allowed to be on outage in week h∑

(i,k)∈A

Φ(i, k, h) ≤ N, (15)

where Φ(i, k, h) equals 1 if outage (i, k) is active in week h and 0 otherwise.

There are limited resources available for carrying out maintenance. Thus, a
collection of subsets of outages is given. Each subset A in this collection has an
associated resource availability Q. For every A and Q, at most Q of the outages
in A can use resources in any week

∀h :
∑

(i,k)∈A

φ(i, k, h) ≤ Q, (16)
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where φ(i, k, h) equals 1 if outage (i, k) uses resources in week h and 0 otherwise.
Note that the weeks in which an outage uses resources are not necessarily the
same as the weeks in which it is active.

Finally, there is a lower bound on the online capacity at a given time. In other
words, an upper bound on the capacity that is allowed to be offline at the given
time. Thus, a collection of subsets of outages is given. Each subset C in this
collection has an associated upper bound IMAX and a subset of weeks IT . For
every C, IMAX, and IT , during any week in IT the total offline capacity of
plants in C cannot exceed IMAX

∀h ∈ IT : ∀t ∈ h :
∑

i∈C:∃k:
t∈ea(i,k)

PMAXt
i ≤ IMAX. (17)

Note that in (17) a week is considered as a set of time steps. The sum is simply
over all type 2 plants in C that are offline at time step t.

2.4 Objective function

The objective function is composed of three terms: the total cost of reloading
all type 2 plants, the average cost of type 1 production over all scenarios, and
the value of residual fuel at type 2 plants at the end of the planning horizon.
Let Ci,k denote the cost of fuel for type 2 plant i in cycle k, Cj,t,s the cost of
production for type 1 plant j at time step t in scenario s, and Ci the cost of
fuel for type 2 plant i at the end of the planning horizon. Then the objective
function to be minimized is

I−1∑
i=0

K−1∑
k=0

Ci,kr(i, k) +
1

S

S−1∑
s=0

T−1∑
t=0

J−1∑
j=0

Cj,t,sp(j, t, s)D −
S−1∑
s=0

I−1∑
i=0

Cix(i, T, s). (18)

2.5 NP-hardness

To prove the NP-hardness of the problem under consideration, we propose a
reduction from 1-in-3-SAT, which is proved to be NP-hard by Schaefer in [10].
Reductions directly from a scheduling problem might be possible but is compli-
cated by the exponentially (albeit pseudo polynominal) number of time steps
that often will arise.

Given a boolean formula β1 ∧ · · · ∧ βc where each clause βi, 1 ≤ i ≤ c, is the
disjunction of three boolean literals (or their negation) from the set {x1 . . . xn},
1-in-3-SAT asks for an assignment of true or false to x1 . . . xn such that exactly
one of the literals in each clause β1 ∧ · · · ∧ βc evaluates to true.

To solve an instance of 1-in-3-SAT by using the problem under consideration,
we construct an instance with a single scenario as follows. A type 2 plant i
with a single outage with a duration of one week is created for each clause βi.
Furthermore, a week is created for each variable xh and its negation ¬xh, in such
a way that the variable and its negation occupy successive weeks. Scheduling
an outage in the week that corresponds to xh (or ¬xh) is interpreted as forcing
xh to be true (or false).

9



x1 ¬x1 x2 ¬x2 x3 ¬x3 x4 ¬x4

Figure 4: A representation of the formula (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x4).
There is one row per clause in the formula. Dark gray weeks are disallowed
using constraint (17). Outages can be scheduled in light gray and white weeks,
but the light gray weeks for x1 and ¬x1 cannot both be used for outages due to
a constraint of type (14)

All outages must be scheduled in order for the 1-in-3-SAT instance to be satisfi-
able. A constraint of type (1) with bounds set to include all 2n weeks for every
outage ensures this.

To ensure that the single outage for plant i can only be scheduled in one
of the three weeks corresponding to literals in βi, a constraint of type (17)
which restricts the amount of offline capacity is added for the outage. We set
PMAXt

i = 1 for all t and IMAX = 0. Furthermore, we let C contain plant
i’s single outage and let IT contain all weeks except the three corresponding to
literals in the βi. Constraint (17) is enforced on timesteps rather than weeks, so
the number of time steps is set to 2n such that there is one time step per week.

Constraints of type (14) are added to ensure that outages are not scheduled
in both the week corresponding to xh and ¬xh. For each pair of clauses that
contains the literal xh and ¬xh respectively, a constraint of type (14) is defined
on the two weeks corresponding to xh and ¬xh (which are consecutive by con-
struction). Forcing a separation of two weeks between the corresponding plants’
outages prevents these outages from being scheduled in the weeks corresponding
to xh and ¬xh, respectively.

See Figure 4 for an example of a simple boolean formula encoded as a mainte-
nance scheduling problem.

The construction described above is polynomial in the input size, as we have
c clauses, giving rise to c outages, which each has three valid weeks in which
it can be scheduled. For each of these weeks, we need less than c constraints
to restrict it from conflicting with the other outages. The conversion is thus
bounded from above by 3c2.

A single type 1 plant can be used to cover any demand we decide on. We set the
demand DEM t,0 = I for each time step t, and choose PMAXt

i = 1, PMIN t
i =

0 for each type 2 plant i and time step t. The initial fuel stock is set large
enough to allow every type 2 plant to produce in all 2n weeks without outages.
Minimum and maximum bounds on refueling of the type 2 plants are set such
that they do not constrain the solution, i.e., RMINi,k = 0, RMAXi,k = 0. To
ensure that AMAXi,k and SMAXi,k do not become constraining, they are set
to the initial fuel stock.

Having scheduled all outages, truth values are assigned to literal in the given 1-
in-3-SAT instance as follows. A literal is set to true if some outage is scheduled
in the corresponding week and to false otherwise. Thus, any instance of 1-in-3-
SAT can be solved by scheduling outages. As menioned above, the size of the
reduction’s output is polynomial in the size of the 1-in-3-SAT instance and can
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obviously be constructed in polynomial time, and therefore the optimization
problem in this paper is NP-hard in the strong sense, i.e., it is NP-hard even if
the numerical parameters are encoded with unary base.

3 Initial solution construction

The maintenance scheduling part of the problem is NP-hard, and our experience
is that finding non-trivial feasible solutions to this problem is challenging in
practice as well. Our initial approach included different directions: an attempted
local search, a set of construction heuristics, and a CP approach. The CP
approach turned out to be the best approach. Our overall setup thus starts by
making a first feasible maintenance schedule using CP.

3.1 Constraint programming

An exact representation of the problem would result in a large number of vari-
ables since it requires modelling of every time step. Furthermore, concepts such
as modulation, the decreasing power profile, and the cost of type 1 produc-
tion would have to be included in the model. Instead we focus only on finding
a feasible maintenance schedule and introduce a surrogate objective function
that approximates the real objective function, thereby leaving the rest of the
optimization to the subsequent local search.

A CP model is used to find a feasible maintenance schedule.2 For every out-
age, the CP model has three decision variables in the model: A binary variable
σ(i, k) deciding if outage k for type 2 plant i is scheduled or not, an integer
variable determining the starting week for the outage, and an integer variable
determining the refueling level. Refueling levels are continuous in the problem
formulation, but are discretized because most CP solvers cannot handle contin-
uous variables. To reduce the domain of the refuel variables in the CP model
the discretisization is into segments of 1000 fuel units.

We model the scheduling constraints (1) and (14)-(17) exactly. But the fuel
level constraints (12) and (13) are approximated because an exact representation
requires exact modeling of fuel consumption of type 2 plants, which leads to a
too large model.

3.1.1 Fuel level approximation

To estimate the fuel level we introduce a set of variables, FU(i, k), which de-
notes the fuel used during a the production campaign preceeding outage (i, k)
assuming maximal production. This is used to calculate FB(i, k) which denotes
how much fuel remains before the outage (i, k), and (4) is then used to calculate
the amount of fuel that is available in the plant after the outage (FA(i, k)).

To compute these values two additional functions are introduced: Let β(i, h)
denote the accumulated fuel usage for type 2 plant i in the first h− 1 weeks of

2For a general introduction to CP, see the textbook [1] by Apt.
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the planning horizon, assuming production at maximum capacity:

β(i, h) = D

h−1∑
h′=0

∑
t∈h′

PMAXt
i . (19)

The β(i, h) values allows us to easily estimate the fuel usage FU(i, k) during
the production period preceeding outage k for type 2 plant i:

FU(i, k) =

{
σ(i, k)β(i, ha(i, k)), if k = 0

σ(i, k)(β(i, ha(i, k))− β(i, ha(i, k − 1) +DAi(k−1))), if k > 0

(20)
An initial estimate FI(i, k) of the fuel level at type 2 plant i the time of outage
k, which is subsequently adjusted to a better estimate FB(i, k), is obtained as
follows

FI(i, k) =

{
XIi − FU(i, k), if k = 0

FA(i, k − 1)− FU(i, k), if k > 0
(21)

where FA(i, k− 1) is the estimated fuel level after outage k− 1 for type 2 plant
i, computed from FB(i, k− 1) and the refuel amount r(i, k− 1) using (4). XIi
is the initial fuel level for plant i.

The problem with FI(i, k) is that the declining power profile, constraint (10),
is ignored and there is no modulation. This will often underestimate the actual
fuel level because the plant usually produces at less than PMAX at the end
of the production campaign and consequently uses less fuel. Experiments show
that it often leads to situations where no feasible solution can be found. Thus,
in order to take the declining power profile into account, we adjust FI(i, k) if
it is low enough that the power profile is activated in the end of the production
campaign. More precisely, if FI(i, k) < BOi,k, we assume that i would have
run out of fuel when FI(i, k) = −BOi,k and make a linear interpolation, see
Figure 5. The decision to choose −BOi,k is heuristic.

The adjusted fuel level estimate FB(i, k) is computed as:

FB(i, k) = σ(i, k) max(0, F I(i, k) +
1

2
max(0,min(2BOi,k, BOi,k − FI(i, k))))

(22)

This relation between FB(i, k) and FI(i, k) is also shown in Figure 5. This
approximation implies that a feasible solution might be infeasible in the CP
model and vice versa, but in practice the approximated constraints give solutions
that are feasible, also in the sense that there exists a feasible production plan
for all scenarios.

3.1.2 Surrogate objective function

The scheduling problem is primarily concerned with minimizing the use of type
1 plants, which is equivalent to maximizing the amount of available type 2
capacity, so the surrogate objective function is to minimize the average offline
type 2 capacity. A formal specification of the objective function requires some
notation. Let αi denote the average maximal production per week for type 2
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−BO BO

BO

Initial fuel level estimate

Adjusted fuel level estimate

Figure 5: The linear function mapping an initial fuel level estimate FI(i, k)
to an adjusted estimate taking the power profile into account. The adjusted
estimate is never negative, and for any FI(i, k) ≥ BO, the function acts like
the identity function.

plant i:

αi =

∑T−1
t=0 PMAXt

i

H
D. (23)

Furthermore, the auxiliary decision variable k′i denotes the index of the last
scheduled outage for type 2 plant i:

k′i =

K−1∑
k=0

σ(i, k)− 1. (24)

Then, the surrogate objective function to be minimized is:

I−1∑
i=0

αi

(
max

(
0, ha(i, 0)− XIi

αi

)
+

K−1∑
k=1

σ(i, k) max
(
0, ha(i, k)− (ha(i, k − 1) +DAi(k−1))−

FA(i, k − 1)

αi

)
+ max

(
0, H − (ha(i, k′i) +DAik′

i
)− FA(i, k′i)

αi

))
The first term in the surrogate objective function is the estimated offline capacity
before the plant’s first outage, the second term is estimated offline capacity
before each of the plant’s subsequent outages, and the third term is the estimated
offline capacity after the plant’s last outage.

3.1.3 Search strategy

A CP solver finds a solution to an optimization problem by searching a tree
which is pruned by applying constraint propagation and branch and bound
strategies. Two decisions are crucial for making this pruning effective, namely
variable selection (choosing the next variable to branch on) and value selection

13



(choosing a value for the chosen variable). Variable and value selection strate-
gies are generally chosen according to the first-fail principle, which says that
if no feasible solution exists, then the search should determine this as early as
possible. Furthermore, finding a good solution early in the search is desirable
because it improves the efficiency of branch and bound pruning.

Our variable selection strategy is to make decisions that concern outages which
are scheduled closely as close together in the search tree as possible. This is
achieved by branching on variables grouped by outage in the following way.
The plants are randomly permutated, and index i then corresponds to index
ρ(i) after the permutation. We go through all cycles k ∈ {0, . . . ,K−1}, and for
each k through all type 2 plants i ∈ {0, . . . , I − 1}. For each outage ρ(i), k the
variables are fixed in the following order and with the specified value selection
strategy:

Determine whether (ρ(i), k) is scheduled, i.e., whether σ(ρ(i), k) = 1 or 0. The
σ(ρ(i), k) = 1 ie. ha(ρ(i), k) > −1 branch is considered first, since this
leads to more scheduled outages.

Determine the starting week ha(ρ(i), k). The earliest possible week is consid-
ered first, since this leaves more room for subsequent outages for plant
ρ(i).

Determine the refuel amount r(ρ(i), k). The maximal amount is considered
first, since this leads to more type 2 capacity.

Preliminary experiments showed that this branching strategy works well. De-
tails about the CP solver softwre are given in Section 6.3.

3.2 Aggregating scenarios

The solution found by the CP solver specifies starting time and refueling amount
of each outage but no production levels since the latter are scenario specific. The
large number of scenarios with different demands and type 1 costs complicates
computations. In all feasibility computations that come after the CP solver we
therefore use a minimum demand scenario where DEM t

min = mins(DEM
t,s)

for all t. By using the minimum demand scenario we ensure feasibility of all
scenarios while only checking a single one.

The only way the demand influences feasibility is by making modulation neces-
sary to get the type 2 production low enough to match demand in constraint (5).
As type 2 powerplants according to [9] delivers an average of 87% of the com-
bined power, such situations arise sparingly, and the minimum demand scenario
can be modulated to feasibility in all instances used in the competition.

When evaluating the objective function, an average type 1 cost over all scenarios
is used. If total type 2 production does not cover the demand in some time step,
the uncovered demand is met using type 1 plants that have a fixed cost per unit
of power produced. This gives rise to a piecewise linear function for the cost
in each scenario, mapping type 2 production to the cost of covering the slack
using type 1 plants. These piecewise linear functions are then aggregated into
a new piecewise linear function that maps type 2 production to type 1 cost of
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covering the slack averaged over all scenarios. The new function will have up to
J · S breakpoints, which may be a large number. We explain how we cope with
this issue in in Section 4.3.

3.3 Greedy production level planning

We set the production levels p(i, t, s) and refuel amount r(i, k) of a feasible
solution returned by the CP solver by means of a greedy algorithm which we call
production planner. Only constraint (5) concerning demand binds production
across different type 2 plants. The production planner ignores the demand and
therefore all computations can be done for each type 2 plant independently.
Ignoring the demand may lead to overproduction which is fixed by modulation
in a final phase which is described in Section 5.

The algorithm starts with the first time step and goes through all time steps
in the schedule. It uses the initial fuel level to produce at maximum capacity
until no more fuel remains or the next outage is encountered. If a plant runs
out of fuel in some production campaign, it cannot produce in the rest of the
production campaign.

We use the production planner in two settings: it is used with an initial main-
tenance schedule from the CP solver, and later it is used repeatedly in the local
search. When applied to a solution from the CP solver the production planner
initially sets refuel amounts to the minimum allowed amount RMINi,k for every
outage. When called from local search the current refuel amounts are reused.
Subsequently, the production planner first tries to achieve feasibility, see the
next section, and then to increase the refueling amount as described in Section
3.3.2.

3.3.1 Reducing refuel amounts

Infeasibility with respect to fuel levels can occur if constraint (12) is violated
because of a too high fuel level before an outage, or constraint (13) is violated
because of a too high fuel level after an outage. If either of these situations
is encountered the production planner backtracks to the previous outage and
reduces the amount of refueling done there - this change is subject to con-
straint (2). This is done recursively, and if the backtracking reaches the start
of the planning horizon without resolving the problem, the planner declares the
maintenance schedule infeasible. If this happens and the production planner is
called from the local search, the infeasible neighbor is simply skipped. It has
never happened to the initial solution from the CP solver, but in this case our
algorithm is unable to solve the given instance.

3.3.2 Increasing refuel amounts

After having decreased refueling amounts wherever necessary to the point where
constraints (12) and (13) are satisfied, we try to increase the refuel amounts as
much as possible in order to maximize type 2 production. This is done for
each production campaign k in turn, starting with the last. If plant i is able to
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produce at PMAXt
i for all t ∈ ec(i, k′) where k′ ≥ k, then there is no need to in-

crease refuel amounts. Otherwise, we try to increase the refueling amount in 2%
increments of the difference between the maximum allowed amount RMAXi,k

and the current refuel amount r(i, k).

The production planner is used to evaluate feasibility, and if infeasibility is
detected, the increment of refuel amount is undone and the next production
campaign is considered.

4 Improvement by local search

The first complete solution obtained by applying greedy production planning to
the initial CP scheduling solution is of relatively low quality, since the strategy
used in the CP model is to place outages mainly to ensure a feasible solution and
to a lesser extent to minimize production costs. This leaves room for improving
the temporal placement of outages.

Moving outages can reduce the total cost of production in two ways: first, it
can increase the amount of electricity produced by type 2 plants and thereby
decrease the production of the more expensive type 1 plants. Second, it can
move outages to a time period where the alternative type 1 production costs
are low.

A limitation of the following local search procedure is that the number of outages
is not changed. The local search only tries to reoptimize the placement of the
already scheduled outages, not remove outages or introduce new ones. The effect
of this is that the CP model is trusted with deciding the number of outages for
each power plant.

The basic idea in the local search is to choose a random outage and move it a
few weeks forward or backward. After each move the scheduling constraints (1)
and (14) to (17) are checked for feasibility. If the constraints are satisfied the
production planner calculates updated refueling amounts and production levels
in order to check feasibility with respect to fuel levels. If a move is feasible, the
change in cost must be evaluated in an efficient way in order for the search to
visit a large number of solutions.

4.1 Neighborhood

Formally, given a schedule for outages, ha(i, k), i ∈ I, k ∈ K, a neighboring
scheduling solution ha′ obtained by applying the move (i′, k′,m) is:

ha′(i, k) =

{
m, if i = i′ and k = k′

ha(i, k), otherwise
(25)

The valuem is chosen in the interval [TOi′,k′ , TAi′,k′ ], so only neighboring sched-
ules that satisfy constraint (1) are considered. A move (i′, k′,m) corresponds to
selecting outage k′ of plant i′ and moving it to start in week m.

The size of the neighborhood is bounded from above by I ·K ·H, but the bounds
in (1) reduce the number of neighbors significantly. The length of the interval
[TOi,k, TAi,k] is usually between 20 and 30 weeks in average (including outages

16



where TOi,k or TAi,k are undefined, in which case the interval is everything to
the left of TAi,k or everything to the right of TOi,k). In two instances where very
few outages have constraints of this type, the average is around 150 weeks. The
size of the neighborhood is further reduced by only considering moves (i, k,m)
where the outage is moved less than n weeks forward or backward, i.e.,

|hai,k −m| < n. (26)

Experiments have shown that a good value for n is 20. The feasibility of a
neighbor can be checked effectively because each outage is involved in a relatively
low number of constraints. It is straightforward to precompute a matrix that
maps an outage to its corresponding set of scheduling constraints, and this
matrix can be used to check if some constraint in this set is violated after the
starting time of the outage has been changed. If the feasibility check detects
a violated constraint, the evaluation is terminated immediately and the move
is discarded. This means that the local search never moves to an infeasible
maintenance schedule.

4.2 Delta evaluation

Calculating the change in solution cost is more complicated. First it is necessary
to replan the production levels for the type 2 power plant that had an outage
moved. As described in Section 3.2 only a single scenario of production levels
for each type 2 plant is maintained. The production levels and implied fuel
levels must be recalculated after an outage has been moved to ensure that we
still have a feasible production plan. The new production plan is calculated
by the production planner described in Section 3.3. If the production planning
fails, the move is discarded.

After the greedy production planner has calculated new production levels, the
delta value ∆ = ∆refuel + ∆type1 − ∆remainder is calculated, where ∆refuel

is the change in cost of type 2 refueling, ∆type1 is the change in cost of type
1 production, and ∆remainder is the change in value of remaining fuel at the
end of the planning horizon. Computation of these three numbers is described
below.

The change in refuel cost is

∆refuel =

K−1∑
k=0

Ci,k(r′(i′, k)− r(i′, k)), (27)

where r′(i′, k) is the refuel amount in the neighboring solution.

The change in remaining fuel at the end of the planning horizon can be esti-
mated. This can vary from scenario to scenario, but here we estimate the cost
using a special scenario s∗ in which every type 2 plant has full production

∆remainder = S · Ci(x
′(i, T, s∗)− x(i, T, s∗)), (28)

where x′(i, T, s) is the fuel level in the neighboring solution. This estimate is
therefore a lower bound on the actual value.

The change in total cost of type 1 production ∆type1 is more complicated and
described in Section 4.3.
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Figure 6: Linear approximation of total type 1 costs for a single time step t

4.3 Estimating cost of type 1 production

To calculate ∆type1, we consider the change in production by the moved type 2
plant in each time step, and from this update a list of total type 2 production
for each time step. In scenarios where the demand is higher than the total type
2 production, the difference must be covered by type 1 plants.

The type 1 plants can be preordered by increasing production costs, and thus
the exact change in total type 1 cost given a change of total type 2 production
can be computed in O(J) time for a single time step and scenario. Summing
this exact change over all time steps and scenarios is of complexity O(T · S · J)
which is too high for local search. Thus, we approximate the change in cost. The
approximation removes the need to consider all scenarios and the list of type 1
plants but not the need to consider all time steps, and thus the complexity of
the approximation is O(T ).

To estimate the change in type 1 cost for a single time step, we precompute
a piecewise linear function which maps total type 2 production to total type 1
cost for each time step. The solid line in Figure 6 shows an example of such
a function. The function is shown smooth but is actually a piecewise linear
function with many breakpoints. As the total type 2 production increases the
need for type 1 production diminishes, and when total type 2 production reaches
the maximum demand over all scenarios, the total type 1 cost is zero.

The many breakpoints make evaluation of the function computationally expen-
sive because one must go through the breakpoints in order to find the interval
containing the current total type 2 production (a binary search speeds up this
proces but is still too slow). Therefore we approximate it with another precom-
puted piecewise linear function with fewer breakpoints which are chosen on the
x-axis in an equidistant way. The dashed line in Figure 6 shows an example of
this approximation. Since the actual type 1 cost is convex, the approximation
is an upper bound on the actual cost. Experiments show that this approxima-
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tion is relatively good: For 3 · I breakpoints the approximation error has been
sampled on all instances, and if absolute type 1 production demands under 100
units are ignored, the worst average deviation over an instance was ≈ 3.36 ·10−4

percent per measurement. This is significantly less than the differences in cost
encounted during local search.

Using the precomputed approximation we can perform a constant time evalua-
tion of the total type 1 cost for a certain total type 2 production in a single time
step. No search for the stored breakpoint closest to a given total type 2 pro-
duction is required, because the breakpoints are equidistant. If the total type 2
production falls between two stored breakpoints, we use linear interpolation to
get the total type 1 cost. Formally, if F (t, i) is the cost of type 1 production in
time step t at breakpoint i, the interpolation is done between the indices:

ilow =

⌊
P total
2

Int

⌋
, ihigh =

⌈
P total
2

Int

⌉
(29)

where P total
2 is the sum of type 2 production in time step t, and Int is the size

of the interval between two breakpoints.

Despite this approximation of the change in total type 1 cost, the evaluation
is slow compared to the scheduling constraint violation check because it must
be computed for every time step. However, the evaluation of changes in cost is
only performed if all the scheduling constraints are satisfied.

4.4 Simulated annealing

A typical simulated annealing metaheuristic is used to guide the local search.
For a general introduction to simulated annealing in optimization, see e.g. Kirk-
patrick ét al [7]. The simulated annealing algorithm accepts a move with change
in cost ∆c with probability

p = min

(
1, exp

(
−∆c

τ

))
, (30)

where τ is the current temperature. This implies that an improving move is
always accepted since exp(x) > 1 for any positive x.

The initial temperature is dynamically set such that about half of the considered
moves are accepted at the beginning of the search. This is done by evaluating
neighbors of the initial solution and adjusting the temperature until half of
these neighbors are accepted. The cooling scheme is geometric with plateaus
(sometimes called piecewise constant), which means that the temperature is not
lowered in every iteration. Johnson et al. (see [5] and [6]) show experimentally
that plateaus in the cooling scheme lead to better solutions when using simulated
annealing to solve graph partitioning and graph coloring problems. The cooling
ratio c and the number of moves nplateau at each temperature are given as
parameters. When midle moves in a row have been considered without any
move being accepted, a restart is performed. When the search is restarted,
the current temperature is set to krestart times the starting temperature of the
previous annealing run. This is done to help the local search move away from
previous local optima.
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5 Modulation

The local search creates a solution where the cost of covering demand by type 1
power plants is minimized. This may lead to solutions with overproduction at
the type 2 plants in some time step t in some scenario s:

I−1∑
i=0

p(i, t, s) > DEM t,s.

Such overproduction can be eliminated in two ways: modulation can be used
to decrease the power output of a type 2 plant in the affected time steps, or
refueling can be decreased such that a type 2 plant runs out of fuel before that
time step. Making a power plant run out of fuel will limit the plant’s fuel level
in the next campaign. Furthermore, it eliminates the rest of its production
for the rest of the campaign in all scenarios, since refuel amounts are shared
among all scenarios. This method thus becomes a last resort, i.e., modulation
is used whenever possible and is capable of eliminating overproduction on all
the examined instances.

There are two constraints on the amount of modulation that can be performed
on a single power plant: constraint (8) restricts the amount of modulation that
can be performed in the current campaign, and constraints (12) and (13) enforce
an upper limit on the fuel level before and after refueling. The latter can be
handled by adjusting the refueling of the power plant, but this will affect all
scenarios.

Since refuel amounts for a plant are shared among all scenarios, we use a two-
step procedure to eliminate overproduction. First, we ensure that there exists
a refueling scheme that is feasible for all scenarios using the minimum demand
scenario defined in Section 3.2. Second, we determine modulation for each
individual scenario.

5.1 Modulation for the minimum demand scenario

A modulation and refueling scheme is created for the minimum demand scenario,
thus ensuring that the refueling is feasible for all scenarios. This is done by
running through the time steps in increasing order. When a time step with
overproduction is detected, a target plant i is selected among the type 2 plants.
Plant i has its production lowered as much as possible with respect to the
amount of remaining modulation capacity in that campaign as given in equation
(8). Subsequently we repair refuel values on plant i using the greedy production
level planner on plant i. If this fails, the modulation on plant i is undone, and
another plant is selected.

As the cost of modulating each type 2 plant is the same, modulation can be seen
as an available resource, which expires when a production campaign ends. Thus,
the target plant selection strategy iterates through plants in non-descending
order of their current campaign’s end date.

A refuel plan may be infeasible for the minimum demand scenario but still be
feasible for all scenarios. Our method is unable to cope with this situation

20



and will therefore declare a schedule infeasible, but it never happened in the
instances of the competition.

5.2 Modulation per scenario

After completing modulation for the minimum demand scenario, we fix refuel
amounts and apply the same modulation algorithm on each scenario. In some
cases this step will decrease the objective value by more than 1%.

6 Computational analysis and results

In this Section we describe the problem instances used for computational tests,
tuning of the parameters in the simulated annealing algorithm, how much time
is spent in different components of the heuristic, and finally the results we
obtained.

6.1 Problem instances

We have tested our algorithm on ten real-life instances supplied by Électricité
de France. Table 1 shows various figures as well as the best known objective
value for each of the instances, which are taken from the ROADEF website [9].
Note that the B and X instances are pairwise very similar, e.g. B6 and X11,
B7 and X12 and so on. This similarity is due to the fact that they are based
on the same data, but they differ in that different filters have been applied to
the demand.

Instance File size T Weeks S J I Best solution
B6 140 5 817 277 50 25 50 83 424 716 217
B7 144 5 565 265 50 27 48 81 174 243 138
B8 262 5 817 277 121 19 56 81 926 206 073
B9 262 5 817 277 121 19 56 81 750 858 197
B10 252 5 565 265 121 19 56 77 767 024 999
X11 140 5 817 277 50 25 50 79 116 772 289
X12 143 5 523 263 50 27 48 77 589 910 940
X13 262 5 817 277 121 19 56 76 449 207 715
X14 262 5 817 277 121 19 56 76 172 998 633
X15 250 5 523 263 121 19 56 75 101 398 439

Table 1: Overview of the ten instances showing for each instance file size in
megabytes, number of time steps (T), number of weeks, number of scenarios
(S), number of type 1 plants (J), number of type 2 plants (I), and the objective
value of the best known solution.
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6.2 Tuning the simulated annealing

To achieve a set of parameters that perform well for all problem instances we
performed the following comparison of different parameter settings. All the
following combinations of parameters were run for all ten instances in sets B
and X and for ten different random seeds. In order to reduce the number of
configurations, we decided after preliminary testing to fix the number of moves
at each tempature to 100 and that the initial temperature after a restart should
be twice the initial temperature of the previous run.

Cooling ratio c = 0.95, 0.96, 0.97, 0.975, 0.98, 0.985, 0.99, 0.995

Start acceptance ratio = 0.25, 0.5, 0.75

Stop criterium = 25, 50, 75, 100, 125, 150, 175, 200, 300, 500, 800

Number of moves per temperature plateau nplateau = 100

Reheat constant krestart = 2

Number of moves without acceptance midle = 50

The highest average solution quality comes from setting the cooling ratio to
0.995, the start acceptance ratio to 0.5 and the stop criterium to 125 non-
accepted neighbors in a row. This setting also have a reasonably low variance
compared to other settings.

6.3 Implementation details

The algorithms are implemented in Java, and the scheduling problem is solved
using the Gecode CP solver (see [11]). The version of our program that was
submitted for the qualifying phase used ILOG’s CP solver instead of Gecode,
but the former was unable to solve the large problem instances used in the
final round. The Gecode solver allows the user large control over the applied
branching strategy, and the strategy described in Section 3.1 was used to find a
feasible scheduling solution after less than two minutes in all instances, as seen
in Table 2.

B6 B7 B8 B9 B10 X11 X12 X13 X14 X15
CP (s) 84 67 11 22 28 13 8 13 9 15

Mod (s) 7 7 48 43 43 8 10 70 71 49
Total (s) 167 153 256 237 263 108 94 315 366 242
% gap 12.17 6.73 16.26 19.79 9.80 9.09 5.80 14.97 15.52 7.37

Table 2: The time in seconds needed to produce the first feasible - but not
returned - solution (CP), modulating it (Mod) and total time including reading
from and writing to disk (Total). The last row is the percentwise gap from best
known objective value.

On the basis of preliminary observations, we decided to stop the CP solver
after ten minutes of the total time available and then return the best solution
found. If no feasible solution has been found after ten minutes, we let the solver
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CP 17%

I/O 7%Other 6%

SA Delta 53%

SA Check 12%

SA Other 6%

Figure 7: How one hour of wall clock time is spend when solving instance B10.

run until the first feasible solution is found. Letting the solver continue after
having found a feasible solution results in more scheduled outages for each type
2 plant, which is important since the subsequent local search does not change
the number of scheduled outages. Preliminary tests indicated that ten minutes
for the CP solver and the remaining 50 minutes for local search and other tasks
is a reasonable distribution of the one hour available. Letting the CP solver
run longer in order to further improve the surrogate objective function is not
the best time utilization because the correlation between the surrogate and real
objective function is not that strong.

The pie chart in Figure 7 shows how much time is usually spent in different
parts of the program. Not surprisingly, most time is spent on the simulated
annealing algorithm, whose delta evaluation alone accounts for more than half
of the total running time. This is due to the fact that evaluation of a neighbor
requires replanning of production levels which is very time consuming, even
when applying the approximation described in Section 4.2. Somewhat unusual
is the 7% of the total running time spent on reading an instance from and
writing a solution to the harddisk, which is caused by the very large instance
and solution files. The latter takes up to 950 megabytes of harddisk space.

6.4 Results

Table 3 shows, for all teams participating in the competition, percentage wise
deviation from best known solution for each instance. The last column shows the
teams’ final score which determined the outcome of the competition. This score
is the sum of all ten percentages. If a team was unable to find a feasible solution
for an instance, their score for this instance was set to twice the objective value
of the worst found solution.

Our team id is J06 which is ranked seven in the table. The first row in the table
shows the objective values obtained by our program after fixing the mentioned
bug. The results from the table indicate that our new corrected program would
win the competition, however note that team S24 would win the competition if
they are able to correct their program so it also solves instance X15 to similar
quality.

The difference in solution quality between our corrected and uncorrected version
of the algorithm, is mainly due to the use of modulation per scenario described
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in Section 5.2.

7 Conclusion and future work

We have described our approach for solving a large-scale real-life optimization
problem using a combination of CP and greedy and local search heuristics. A
proof of the NP-hardness of the problem is also given. The solutions obtained
are competitive when compared to those found by other teams participating in
the ROADEF/EURO Challenge 2010. Other teams achieve better solutions,
but the difference between the best known solution and our solution is in the
worst case 2.45% on all instances used in the competition. After fixing the
implementation bug in the modulation procedure, our approach is robust in the
sense that it is always able to find a feasible solution.

Our approach can be extended in different ways. One possibility is a new local
search neighborhood relation which is allowed to change the number of scheduled
outages for a type 2 plant, as opposed to the currently used neighborhood which
only moves outages. However, it is not easy to fit in additional outages without
violating the temporal constraints (constraint (14)), so the local search would
probably need to go through a number of infeasible solutions after adding an
outage. Another possibility is to modulate when type 1 production is cheap in
order to save fuel which can then be used in subsequent time steps where type
1 production is more expensive.

Acknowledgments We would like to thank Marco Chiarandini and Mette
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