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Abstract On several classes of n-person NTU games that have at least one Shap-
ley NTU value, Aumann characterized this solution by six axioms: Non-emptiness,
efficiency, unanimity, scale covariance, conditional additivity, and independence of
irrelevant alternatives (IIA). Each of the first five axioms is logically independent
of the remaining axioms, and the logical independence of IIA is an open problem.
We show that for n = 2 the first five axioms already characterize the Shapley NTU
value, provided that the class of games is not further restricted. Moreover, we pres-
ent an example of a solution that satisfies the first five axioms and violates IIA for
two-person NTU games (N , V ) with uniformly p-smooth V (N ).
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1 Introduction

Several versions of Nash’s (1950) axiom independence of irrelevant alternatives (IIA)
have been employed and discussed in the literature in various fields of social sciences,
e.g., Sen (1970) has used it under the name Property α in social choice in the con-
nection with the theory of choice functions. In the context of NTU games, IIA (see
Axiom 2 in Sect. 2 for a formal definition) requires that, quoting Aumann (1985), “a
value y of a game W remains a value when one removes outcomes other than y (‘irrel-
evant alternatives’) from the set W (N ) of all feasible outcomes, without changing
W (S) for coalitions other than the all player coalition.” IIA is a natural generalization
of one of the four properties—weak Pareto efficiency, equal treatment of equals, and
scale covariance are the three others—in Nash’s (1950) definition of the “Nash” solu-
tion for bargaining problems. The NTU value introduced by Shapley (1969), called
“Shapley” NTU value, generalizes, on the one hand, the TU Shapley (1953) value and,
on the other hand, the Nash solution for bargaining problems. According to Aumann,
the Shapley NTU value is characterized by IIA and five further axioms whose TU
versions characterize the TU Shapley value. Hart (1985) characterizes the Harsanyi
NTU solution by suitably modified axioms. Thus, the open question1 whether IIA is
really needed when NTU games are considered, is of particular interest. For the case
of two-person games, we present a complete answer to the foregoing question in the
following sense: On an interesting feasible class of two-person games IIA is logically
independent of the remaining axioms, but if the class of games is rich enough, then
the remaining axioms already imply IIA.

The paper is organized as follows. In Sect. 2 the basic notation is provided and those
definitions and results due to Aumann (1985) that are relevant for our presentation
are recalled, including his characterizations of the Shapley NTU value by six axioms,
i.e., Theorem A and Theorem B.

Section 3 formulates our firstmain result: In the two-person case, IIA is not logically
independent of the remaining axioms employed inTheoremsAandB, if the considered
class of games is rich enough. For uniformly p-smooth two-person games however,
IIA is needed. The corresponding statement, Theorem 4.1, is our second main result,
and Sect. 4 is devoted to the proof of this result. Finally, in Sect. 5 we discuss and
show the logical independence of the remaining five axioms.

1 Indeed, using the symbol � for the Shapley NTU value, Aumann (1985) writes in his Footnote 8:
“A referee asked for an example to show that IIA is really needed, i.e., for a correspondence other than �

satisfying Axioms 0 through 5. We do not know of one. Thus at present, it is conceivable that Axioms 0
through 5 are already categoric.” (His additional axiom of “Closure Invariance” is not relevant for NTU
games with closed feasible sets.).
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2 Some notation and preliminaries

Let N be a finite nonempty set. We denote by R
N the set of all real functions on N . So

R
N is the |N |-dimensional Euclidean space. (Here and in the sequel, if D is a finite

set, then |D| denotes the cardinality of D.) If x, y ∈ R
N , then we write x � y if xi�yi

for all i∈N . Moreover, we write x > y if x�y and x �=y and we write x�y if xi > yi

for all i ∈ N . We denote R
N+ = {x ∈ R

N | x � 0} and R
N++ = {x ∈ R

N | x � 0}.
A coalition (in N ) is a nonempty subset of N and 2N denotes the set of all subsets of
N . For every S ∈ 2N and any x, λ ∈ R

N , the indicator function on S is denoted by
χ S ∈ R

N , i.e.,

χ S
j =

{
1, if j ∈ S,

0, if j ∈ N\S,

the scalar product
∑

i∈N λi xi is denoted byλ·x, λ∗x = (λi xi )i∈N , λS is the restriction
of λ to S, and 0S denotes the zero of R

S , i.e., 0S = 0λS . For A, B ⊆ R
N , t ∈ R, we

write A + B = {a + b | a ∈ A, b ∈ B}, t A = {ta | a ∈ A}, λ ∗ A = {λ ∗ a | a ∈ A},
and the boundary of A, cl(A)∩ cl(RN \A), is denoted by ∂ A, where “cl” means “clo-
sure”. If A is convex and closed, then we say that A is smooth if it has a unique
supporting hyperplane at each z ∈ ∂ A. We call A comprehensive if A = A − R

N+ .
A TU game on N is a mapping v : 2N → R with v(∅) = 0. An NTU game on N is

a mapping V that assigns to each coalition S in N a nonempty comprehensive closed
proper subset of R

S such that

(1) V (N ) is convex and smooth;
(2) V (N ) is non-leveled, i.e., if x, y ∈ V (N ) and x > y, then y /∈ ∂V (N );
(3) for each S ∈ 2N \ {∅, N } there exits x S ∈ R

N such that V (S) × {0N\S} ⊆
V (N ) + {x S}.

Moreover, we use the convention that V (∅) = ∅. Let γN and �N denote the set of all
TU games and NTU games on N , respectively. For any v ∈ γN the associated NTU
game Vv ∈ �N is defined by Vv(S) = {y ∈ R

S | y · χ S
S � v(S)} for all coalitions

S in N . Denote �T U
N = {Vv | v ∈ γN }. For T ∈ 2N \{∅}, the unanimity game on T,

uT ∈ γN , is defined by uT (S) = 1 for all S such that T ⊆ S ⊆ N and uT (S) = 0
for all S ⊆ N with T \S �= ∅. The NTU unanimity game UT is the NTU game asso-
ciated with uT . The set γN with coalition-wise operations is the real vector space of
dimension 2|N | −1 and the set of TU unanimity games forms a basis of γN . Moreover,
�N is closed under positive scalar multiplication, but, if U, V ∈ �N , then U + V
may not be a member of �N provided2 that |N | � 2. However, for any λ ∈ R

N++ and
V ∈ �N , λ ∗ V ∈ �N (for any coalition S, (λ ∗ V )(S) = λS ∗ V (S)). One further
notation is useful for the sequel. For any V ∈ �N let d(V ) ∈ R

N be defined by

di (V ) = max V ({i}) for all i ∈ N . (2.1)

2 If U = UN and V = λ ∗ U for some λ∈RN++, then U, V ∈�N , but U + V /∈ �N unless λi = λ j for all
i, j ∈ N .
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Let V ∈�N . By (1) and comprehensiveness of V (N ), for any x ∈ ∂V (N ), there
exists a unique λV,x ∈ R

N+ such that

χ N · λV,x = 1 and V (N ) ⊆
{
y ∈ R

N | λV,x · y � λV,x · x
}

. (2.2)

Moreover, by (2), λV,x � 0N and, by (3), for any S ∈ 2N ,

vV
x (S) = sup

{
λ

V,x
S · y | y ∈ V (S)

}
∈ R, (2.3)

with the convention that vV
x (∅) = 0, so that vV

x ∈ γN . Using this notation note that

if U, V, W = U + V ∈ �N , x ∈ U (N ), y ∈ V (N ), and z = x + y ∈ ∂W (N ),

then x ∈ ∂U (N ), y ∈ ∂V (N ), λU,x = λV,y = λW,z, and vU
x + vV

y = vW
z .

(2.4)

Now, the Shapley NTU value (the NTU value for short) of V introduced by Shapley
(1969), denoted by 	(V ), is defined by

	(V ) =
{

x ∈ ∂V (N ) | λV,x ∗ x = φ(vV
x )

}
,

where, for any v ∈ γN , the Shapley value [see Shapley (1953)] of v, denoted by
φ(v) ∈ R

N , is defined by

φi (v) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!
|N |! (v(S ∪ {i}) − v(S)) for all i ∈ N . (2.5)

Let � ⊆ �N . A solution on � is a mapping σ that assigns to each V ∈ � a subset
σ(V ) of V (N ). The following properties of a solution σ on � ⊆ �N are employed.

• Axiom 1 (Non-Emptiness, NE): σ(V ) �= ∅ for all V ∈ �.
• Axiom 2 (Efficiency, EFF): σ(V ) ⊆ ∂V (N ) for all V ∈ �.
• Axiom 3 (Conditional Additivity, CADD): IfU, V, W = U +V ∈ �, then σ(W ) ⊇

(σ (U ) + σ(V )) ∩ ∂W (N ).

• Axiom 4 (Unanimity, UNA): If UT ∈ �, then σ(UT ) =
{

χT

|T |
}
for T ∈ 2N \ {∅}.

• Axiom5 (ScaleCovariance, SCOV): IfV ∈�,λ∈R
N++, andλ∗V ∈�, thenσ(λ∗V ) =

λ ∗ σ(V ).
• Axiom 6 (Independence of Irrelevant Alternatives, IIA): If U, V ∈�, U (N ) ⊆

V (N ), and U (S) = V (S) for all S � N , then σ(U ) ⊇ σ(V ) ∩ U (N ).

In order to recall Aumann’s characterization of	, the following definition is useful.

Definition 2.1 Let N be afinite nonempty set and�⊆�N . Then� is a feasible domain
if

(1) 	(V ) �= ∅ for all V ∈ �;
(2) �T U

N ⊆ �;
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(3) If V ∈ � and λ ∈ R
N++, then λ ∗ V ∈ �;

(4) IfV ∈ �, then the game that is obtained by replacingV (N ) by any of its supporting
half-spaces is an element of �, i.e., if x ∈ ∂V (N ), and if W ∈ �N is the game that
may differ from V only inasmuch as W (N ) = {y ∈ R

N | λV,x · y � λV,x · x},
then W ∈ �.

Let N be a finite nonempty set. We remark that �	
N = {V ∈ �N | 	(V ) �= ∅} is a

feasible domain.

Theorem 2.2 (Aumann (1985, Theorem A)) Let � ⊆ �N be a feasible domain. Then
the Shapley NTU value is the unique solution on � that satisfies Axioms 1 through 6.

Axiom6, the IIAaxiom, in the foregoing theoremmaybe replacedby “maximality”:

Theorem 2.3 (Aumann (1985, Theorem B)) Let � ⊆ �N be a feasible domain. Then
the Shapley NTU value is the maximum solution on � that satisfies Axioms 1 through
5; i.e., 	 satisfies Axioms 1 through 5 on �, and if the solution σ on � satisfies Axioms
1 through 5, then σ(V ) ⊆ 	(V ) for all V ∈ �.

3 The class of two-person games with a Shapley value

The main result of this section is the following theorem.

Theorem 3.1 If |N | = 2, then the Shapley NTU value on �	
N is characterized by

Axioms 1 through 5.

We postpone the proof and present several preparatory remarks and lemmas.
Throughout this section, let |N | = 2, say N = {1, 2}.
Remark 3.2 Let V ∈�N . If d(V )∈ V (N ), then |	(V )|=1. If d(V )∈ ∂V (N ), then
	(V ) = {d(V )}.

For any function g : R → R ∪ {−∞} let dom(g) = {x ∈ R | g(x) ∈ R},
i.e., dom(g) denotes the effective domain of g. We say that g : R → R ∪ {−∞} is
differentiable if g′(x) exists for any x ∈ dom(g). Let

�0 = {V ∈ �N | d(V ) = 0} and

G = {g : R → R ∪ {−∞} | g is concave and differentiable, dom(g)

�= ∅, g′(x) < 0 for all x ∈ dom(g)}.

Note that, for any g ∈ G, by concavity of g, the derivative of g on dom(g) is continuous.
The mapping that assigns to each V ∈ �0 the function gV : R → R∪{−∞} defined

by

gV (x) = sup{y ∈ R | (x, y) ∈ V (N )},

where sup ∅ = −∞, is a bijection from �0 to G. Hence, for each V ∈ �0,

{(x, gV (x)) | x ∈ dom(gV )} = ∂V (N ).
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Let V ∈ �0 and g = gV . It is well-known (see, e.g., Maschler et al. (1988, (1))) that

(x, y) ∈ 	(V ) ⇔ x ∈ dom(g), y = g(x), g′(x)x = −g(x). (3.1)

It is useful to use another parametrization of ∂V (N ). Substituting any (x, g(x)), x ∈
dom(g), by (t − f (t),−t − f (t)) yields g′(x)(1 − f ′(t)) = −1 − f ′(t) so that

f ′(t) = −1 − g′(x)

1 − g′(x)
(3.2)

and hence −1< f ′(t)< 1 and f : R → R is convex. We have deduced that the
mapping that assigns to each V ∈ �0 the convex differentiable function fV := f is a
bijection from �0 to F , where

F = { f : R → R | f is a convex C1 function, − 1 < f ′(t) < 1 for all t ∈ R}.

Lemma 3.3 Let V ∈ �0. For all t ∈ R, (t − fV (t),−t − fV (t))∈ 	(V ) iff t = fV (t)
fV

′(t).

Proof Let f = fV , g = gV , x ∈ dom(g), and t = x−g(x)
2 . By (3.2),

f (t) f ′(t) − t =
(−x − g(x)

2

) (−1 − g′(x)

1 − g′(x)

)
− x − g(x)

2
= g′(x)x + g(x)

1 − g′(x)
.

We conclude that f (t) f ′(t) = t if and only if g′(x)x = −g(x). The proof is complete
by (3.1). ��
Corollary 3.4 Let U 0 ∈ �0 satisfy

fU0(0) > 0, (3.3)

fU0(t) fU0
′(t) > t for all t > 0, (3.4)

fU0(t) fU0
′(t) < t for all t < 0. (3.5)

Then, for any U ∈ �0 that satisfies

fU (0) = fU0(0), (3.6)

fU
′(t) � fU0

′(t) for all t > 0, (3.7)

fU
′(t) � fU0

′(t) for all t < 0, (3.8)

the following two properties are satisfied:

fU
′(R) = ] − 1, 1[, (3.9)

	(U ) = {(− fU (0),− fU (0))}. (3.10)
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Proof In order to show (3.9), by (3.7) and (3.8), it suffices to verify that
supq∈R fU0

′(q)= 1 and that infq∈R fU0
′(q)= − 1. However, by (3.4) and (3.5),

fU0(t) > t for all t > 0 and fU0(t) < t for all t < 0 so that the foregoing equations
are implied by

fU0 (t) � t sup
q∈R

fU0
′(q) + fU0 (0) and fU0 (t) � t inf

q∈R
fU0

′(q) + fU0 (0) for all t ∈ R.

By (3.3) – (3.8), t = fU (t) fU
′(t) iff t = 0. Thus, (3.10) follows from Lemma 3.3.

��
We now construct, for any α > 0, a game U 0 ∈ �0 that satisfies (3.4), (3.5), and

fU0(0) = α. Secondly, a useful technical Lemma is proved.
For ε > 0 and c ∈ R, let V ε,c ∈ �0 be defined by

V ε,c(N ) =
{

x ∈ R
N

∣∣∣x1 < 0, x1x2 � ε2
}

−
{

cχ N
}

. (3.11)

Remark 3.5 It is straightforward to verify that, for any t ∈ R,

fV ε,0(t) =
√

t2 + ε2 (3.12)

so that, by Lemma 3.3, 	(V ε,0) = ∂V ε,0(N ). By Definition of V ε,c, for any c ∈ R,
fV ε,c(t) = fV ε,0(t) + c. Again by Lemma 3.3, {(c, c)} = 	(V ε,c) for all c ∈ R\{0}.
Furthermore, for any c > 0, U 0 = V ε,c satisfies (3.3) – (3.5) and fU0(0) = ε + c.

Lemma 3.6 Let g, h : R+ → R+ be continuous and nondecreasing functions such
that g(0) = h(0) = 0 and g(t) � h(t) for all t ∈ R+. Then there exist continuous
and nondecreasing functions h̃, s : R+ → R+ such that

h̃(0) = 0, h̃(t) � h(t) for all t ∈ R+, (3.13)

h̃(R+) = h(R+), (3.14)

h̃(s(t)) = g(t) for all t ∈ R+, (3.15)

s(0) = 0 � s(t) − s(t ′) � t − t ′ for all t, t ′ ∈ R+, t ′ � t. (3.16)

Proof In order to construct h̃ : R+ → R, we introduce, for any q ∈ R+, the auxiliary
function gq : R+ → R defined by gq(t) = g(t + q) for all t � 0. Moreover, let
f : R+ → R+ ∪ {∞} be defined by f (q) = inf{t ∈ R+ | gq(t) = h(t)} for all q � 0
(with the convention that inf ∅ = ∞). Note that “inf” is in fact “min”, because g and
h are continuous. Now, define

h̃(t) = sup
({h(t)} ∪ {gq(t) | q � 0, f (q) � t}) for all t ∈ R+.

By construction, h̃ is nondecreasing and satisfies (3.13).
Let t ∈ R+. If there existsq with f (q)� t and gq(t)> h(t), then {q ∈ R+ | f (q)� t}

is a compact interval so that “sup” is, in fact, “max” in any case. Consequently, the
continuities of h and g imply the continuity of h̃ and, hence, (3.14).
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For γ ∈ g(R+) denote

αg(γ ) = min {t ∈ R+ | g(t) = γ } , αh̃(γ ) = min
{
t ∈ R+ | h̃(t) = γ

}
,

βg(γ ) = sup {t ∈ R+ | g(t) = γ } , βh̃(γ ) = sup
{
t ∈ R+ | h̃(t) = γ

}
.

We may now define s : R+ → R+ as follows. For t � 0 let s(t) =
min{αh̃(γ )+ t −αg(γ ), βh̃(γ )}, where γ = g(t). By construction, s is nondecreasing
and satisfies (3.15). As βh̃(γ ) − αh̃(γ ) � βg(γ ) − αg(γ ) (note that βg(γ ) = ∞ is
just possible if maxt g(t) exists and γ = maxt g(t)), s is continuous, and it satisfies
(3.16). ��

Now, we are prepared for the proof.

Proof of Theorem 3.1: By Aumann’s Theorem B we only have to show uniqueness.
Let σ be a solution on�	

N that satisfies NE, PO, CADD, UNA, and SCOV, let V ∈ �	
N .

Again by Theorem B, σ(V ) ⊆ 	(V ) so that it suffices to prove that 	(V ) ⊆ σ(V ).

If 	(V ) is a singleton, then the proof is finished by NE. Hence, by Remark 3.2 we
may assume that d /∈ V (N ), where d = d(V ). Let x̂ ∈ 	(V ). It remains to show that
x̂ ∈ σ(V ). By SCOV we may assume that x̂ = d − 2χ N .

By CADD and Remark 3.2 it suffices to construct U, W ∈ �	
N such that 	(U ) =

{−2χ N }, d = d(W ) ∈ ∂W (N ), and V = U + W .
In order to construct U , an auxiliary game U 1 ∈ �	

N is constructed. Let U 1 be
the NTU game defined by U 1(N ) = 1

2 (V (N ) − {d}) − {χ N } and d(U 1) = 0. Then
U 1 ∈ �	

N and −2χ N ∈ 	(U 1). By Remark 3.5 there exists U 0 ∈ �0 that satisfies
(3.3) – (3.5) and fU0(0) = 2. Let fi = fUi for i = 0, 1. Recall that f ′

0(R) =] − 1, 1[.
Let F̃ : R →] − 1, 1[ be any continuous and strictly increasing function that satisfies

F̃(t)

{
� maxi∈{0,1} f ′

i (t), if t � 0,
� mini∈{0,1} f ′

i (t), if t < 0.

By the aforementioned properties of the functions f ′
i , F̃(R) =]−1, 1[ and F̃(0) = 0.

Applying Lemma 3.6 to g, h : R+ given by g(t) = f ′
1(t) and h(t) = F̃(t) (or given

by g(t) = − f ′
1(−t) and h(t) = −F̃(−t), respectively), for all t � 0, guarantees the

existence of continuous nondecreasing functions F : R →] − 1, 1[ and s : R → R

that satisfy

F(t) � F̃(t), F(−t) � F̃(−t) for all t ∈ R+, (3.17)

F(s(t)) = f ′
1(t) for all t ∈ R+, (3.18)

s(0) = 0 � s(t) − s(t ′) � t − t ′ for all t, t ′ ∈ R, t ′ � t. (3.19)

Let f : R → R be the unique function defined by f ′ = F and f (0) = 2. Then f is a
convex C1 function. Let U be the zero-normalized NTU game defined by

U (N ) =
{

x ∈ R
N | x � (t − f (t),−t − f (t)) for some t ∈ R

}
.

123



SERIEs (2012) 3:143–156 151

As f ′(t) � f ′
0(t) for all t > 0 and f ′(t) � f ′

0(t) for all t < 0,	(U ) = {−2χ N } by
Corollary 3.4 so that U ∈ �0.

By (3.19), the real function ŝ : R → R defined by ŝ(t) = 2t − s(t) for all t ∈ R is a
monotonic continuous bijection that satisfies ŝ(0) = 0. Hence there exists a unique C1

function g that satisfies g(0) = 2 and g′(t) = f ′
1(̂s

−1(t)). Then g is convex, g′(0) = 0,
and g′(t) ∈] − 1, 1[ so that the NTU game W defined by W ({i}) = V ({i}) for i ∈ N
and

W (N ) = {x ∈ R
N | x � (t − g(t),−t − g(t)) for some t ∈ R} + {2χ N + d}

satisfies (1) and (2) of Sect. 2. As d = d(W ) ∈ ∂W (N ),	(W ) = {d} by Remark 3.2.
Let h = f ◦ s + g ◦ ŝ. We claim that

h′(t) = 2 f ′
1(t) for all t ∈ R. (3.20)

In order to show (3.20) define D f , Dg : R
2 → R by

D f (t, t ′) =
{

f (t)− f (t ′)
t−t ′ , if t �= t ′,
f ′(t), if t = t ′,

and Dg(t, t ′) =
{

g(t)−g(t ′)
t−t ′ , if t �= t ′,
g′(t), if t = t ′,

and note that D f , Dg are continuous. Hence, for any t ∈ R,

h′(t) = lim
t ′→t

f (s(t)) − f (s(t ′)) + g(̂s(t)) − g(̂s(t ′))
t − t ′

= lim
t ′→t

D f (s(t), s(t ′))
(
s(t) − s(t ′)

) + Dg (̂s(t), ŝ(t ′))
(̂
s(t) − ŝ(t ′)

)
t − t ′

= lim
t ′→t

(
D f (s(t), s(t ′)) − Dg (̂s(t), ŝ(t ′))

) (
s(t) − s(t ′)

) + Dg (̂s(t), ŝ(t ′))(2t − 2t ′)
t − t ′

As f ′(s(t)) = f ′
1(t) = g′(̂s(t)) for all t ∈ R, we may conclude from (3.19) and the

continuities of s and ŝ that

lim
t ′→t

(
D f (s(t), s(t ′)) − Dg (̂s(t), ŝ(t ′))

)
(s(t) − s(t ′))

t − t ′
= 0,

lim
t ′→t

Dg (̂s(t), ŝ(t ′))(2t − 2t ′)
t − t ′

= 2g′(̂s(t))

so that our claim follows.
Now, h(0) = 4 = 2 f1(0) so that h = 2 f1. By definition of f1,

U 1(N ) = {x ∈ R
N | x � (t − f1(t),−t − f1(t)) for some t ∈ R}
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so that

∂V (N ) − {d + 2χ N }
= 2∂U 1(N )

= {(2t − 2 f1(t),−2t − 2 f1(t)) | t ∈ R}
= {(2t − h(t),−2t − h(t)) | t ∈ R}
= {(s(t) − f (s(t)) + ŝ(t) − g(̂s(t)),−s(t) − f (s(t)) − ŝ(t) − g(̂s(t))) | t ∈ R}

so thatV (N ) ⊆ U (N )+W (N ) is shown. Inorder to show thatU (N )+W (N ) ⊆ V (N ),
as U (N ) + W (N ) ⊆ {d} + {x ∈ R

N | x(N ) � −4}, it suffices to show that any ele-
ment of ∂(U (N ) + W (N )) belongs to V (N ). Let x ∈ ∂(U (N ) + W (N )). Then
there exist y ∈ ∂U (N ) and z ∈ ∂W (N ) such that x = y + z. Let t, α ∈ R such that
x − d − 2χ N = (t − α,−t − α). By the definition of U and W there exist t ′, t ′′ ∈ R

such that y = (t ′ − f (t ′),−t ′ − f (t ′)) and z − d − 2χ N = (t ′′ − g(t ′′),−t ′′ − g(t ′′)).
As the supporting hyperplane to U (N ) at y is parallel to the supporting hyperplane to
W (N ) at z [see (2.4], f ′(t ′) = g′(t ′′). As s(t/2)+ ŝ(t/2) = t , there exists β ∈ R such
that t ′ = s(t/2) + β and t ′′ = ŝ(t/2) − β. As f ′(s(t/2)) = g′(̂s(t/2)) and f ′ and g′
are nondecreasing functions, f ′(t ′) = f ′(s(t/2)) = g′(t ′′) and α = 2 f1(t/2). ��
Remark 3.7 As pointed out by one anonymous referee, Theorem 3.1 may be attacked
on the grounds that the definition of the Shapley NTU value is used in the character-
ization in the following sense: Each of the considered games must have at least one
Shapley NTU value and Axiom 1 requires non-emptiness of the solution. However,
it should be remarked that, for |N | = 2, say N ={1, 2}, and V ∈ �N there is a nec-
essary and sufficient condition for non-emptiness of 	(V ): If d(V ) ∈ V (N ), then
V ∈ �	

N (see Remark 3.2). If d(V ) /∈ V (N ), then V ∈ �	
N if and only if there exists

y � d(V ) such that y ∈ ∂V (N ) and λV,y = λW,y, where W is the NTU game such
that d(W )= d(V )= d and ∂W (N ) is the hyperbola

{z ∈ R
N | z � d(W ), (z1 − d1)(z2 − d2) = (y1 − d1)(y2 − d2)}.

Indeed, 	(W ) = ∂W (N ) by Remark 3.5.

4 The class of uniformly p-smooth two-person games

In order to state the main theorem of this section, the following definition is needed.
Let N be a finite nonempty set and let V ∈ �N . Then V is called uniformly p-smooth if
there exists ε > 0 such that λV,x � εχ N for all x ∈ ∂V (N ) (for the definition of λV,x

see (2.2)). Note that Maschler and Owen (1992) introduced uniform p-smoothness in
order to receive a quite general existence result for their “consistent Shapley value”.

Theorem 4.1 If |N | = 2 and � ⊆ �N is the set of uniformly p-smooth NTU games,
then � is a feasible domain and Axiom 6 (IIA) is logically independent of the remaining
axioms in Theorem A.
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This section is devoted to the proof of Theorem 4.1 by means of an example of an
appropriate subsolution of the Shapley NTU value.

Throughout this section, let |N | = 2, say N = {1, 2}, and let �ups denote the set of
uniformly p-smooth games in �N . Clearly, �ups satisfies (2) – (4) of Definition 2.1.
In order to show that �ups is a feasible domain in �N , it suffices to construct, for any
V ∈ �ups , a nonempty subset of 	(V ). To this end let V ∈ �ups and define

σ0(V ) =
{

	(V ), if d(V ) ∈ V (N ),

argmax{(d1(V ) − x1)(d2(V ) − x2) | x ∈ ∂V (N )}, if d(V ) /∈ V (N ).

Note that σ0 is well-defined. Indeed, if d(V ) /∈ V (N ), then ∂V (N )∩ ({d(V )} − R
N+
)

is a nonempty compact set by uniform p-smoothness of V (N ) so that
sup{(d1(V ) − x1)(d2(V ) − x2) | x ∈ V (N )} is attained by some x ∈ ∂V (N ), x �
d(V ).

By Remark 3.2, σ0 satisfies NE. Moreover, it satisfies SCOV and UNA. In order
to show that σ0(V ) ⊆ 	(V ), we may assume that d(V ) /∈ V (N ). Let x ∈ σ0(V ),
t = (d1(V ) − x1)(d2(V ) − x2), and λ = λV,x (see (2.2)). Then the hyperplane
{z ∈ R

N | λ · z = λ · x} is a tangent to the hyperbola

{z ∈ R
N | z � d(V ), (d1(V ) − z1)(d2(V ) − z2) = t}

so that x ∈ 	(V ) by (3.1) and the well-known translation covariance of 	.
We now show that σ0 satisfies CADD.

Lemma 4.2 The solution σ0 on �ups satisfies CADD.

Proof For i ∈ {1, 2}, let V i ∈ �ups, xi ∈ σ0(V i ) such that, with V = V 1 + V 2 and
x = x1+ x2, V ∈ �ups and x ∈ ∂V .By CADD of	, x ∈ 	(V ). It remains to show that
x ∈ σ0(V ). If d = d(V )∈ V (N ), then the proof is finished. Hence, wemay assume that
d � ∈ V (N ). As x ∈ ∂V (N ), λV i ,xi = λV,x for i = 1, 2, by (2.4). By (2.5), there exists
c ∈ R such that (d2−x2)= c(d1−x1), where di = d(V i ) for i = 1, 2. As d = d1+d2,
Remark 3.2 implies that x1 � d1 or x2 � d2. Without loss of generality we may
assume that x1 � d1. By definition of σ0,

V 1(N ) ⊇
{

z ∈ R
N | z � d1,

(
d1
1 − z1

) (
d1
2 − z2

)
�

(
d1
1 − x11

) (
d1
2 − x12

)} =: Z1

(4.1)

Let Z = {
z ∈ R

N
∣∣z � d,

∏
i∈N (di − zi ) �

∏
i∈N (di − xi )

}
. Two cases may occur:

(1) x2 � d2. By (4.1), V (N ) ⊇ {x2} + Z1. Let z ∈ Z and define z1 = z − x2. It
suffices to show that z1 ∈ Z1. Now, z1 � d1, because x2 � d2 and z � d. The
statement immediately follows from:

a, b ∈ R
N++, a1a2 � b1b2, α � 0 �⇒ (a1 + αb1)(a2 + αb2)

� (b1 + αb1)(b2 + αb2) = (1 + α)2b1b2. (4.2)
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In order to show (4.2)wemay assume that a1a2 = b1b2, i.e., a2 = b1b2/a1. Define

f (a1) = (a1 + αb1)
(

b1b1
a1

+ αb2
)
. Then f is a convex function and f ′(a1) = 0

iff a1 = b1.
(2) x2 � d2. Let

Z2 =
{

z ∈ R
N | z � d2,

(
d2
1 − z1

) (
d2
2 − z2

)
�

(
d2
1 − x21

) (
d2
2 − x22

)}
.

By definition of σ0, V 2(N ) ⊇ Z2. As Z1 + Z2 ⊇ Z , the proof is finished.

��
Example 4.3 shows that σ0 �= 	.

Example 4.3 Let X = {x ∈ R
N | x � 0, x1x2 = 1} and U ∈ �N be defined by

U (N ) = X − R
N+ and d(V ) = 0N . If Y = {y ∈ X | xi � −3}, then Y �= ∅ so that

W (N ) :=
{

z ∈ R
N | λU,y · z � λU,y · y for all y ∈ Y

}

is uniformly p-smooth. Let d(W ) = 0N . We may easily deduce that 	(W ) = Y . Let
d = χ N and V ∈ �ups be defined by V (N ) = W (N ) and d(V ) = χ N . By symmetry
of V,	(V ) � −d. Define x by x1 = −3 and x2 = − 1

3 and observe that x ∈ ∂V (N ).
However, (d1 − x1)(d2 − x2) = 16/3 > 4 so that −d /∈ σ0(V ).

5 The logical independence of the remaining axioms

The following examples show that even in the case |N | = 2 each of the Axioms 1
through 5 are logically independent of the remaining axioms in Theorem A and in
Theorem B. As far as we know, the logical independence of these axioms was only
checked for Theorem A and the case |N | � 3 (see Peleg and Sudhölter (2007)) so
that, in particular, the solution σ1 defined below reveals some additional insight in the
proof of Theorem B.

Throughout this section, let N be a finite set such that |N | � 2. Let � ⊆ �N be
a feasible domain. We are now going to define, for i = 1, . . . , 5, a solution σi on
� that exclusively violates Axiom i in Theorem A as well as in Theorem B, even if
“maximum” is replaced by “unique maximal”.3

In order to define σ1, note that, as mentioned in Sect. 2, any TU game v on N is
a linear combination of unanimity games, that is, there exist unique cT (v)= cT ,∅ �=
T ⊆ N , such that v = ∑

∅�=T ⊆N cT uT . As |N | � 2, there exist 2|N | − 1 � 3

coalitions. Select any two distinct coalitions T 1 and T 2 and define
γ +

N = {v ∈ γN | cT 1(v), cT 2(v) � 0} and γ ++
N ={v ∈ γN | cT 1(v), cT 2(v) > 0}.

3 A solution σ is the unique maximal solution that satisfies certain axioms, if (a) σ satisfies the axioms, (b)
σ is maximal under (a) (i.e., any solution that satisfies the axioms and contains σ coincides with σ ), and
(c) there exists no further maximal solution that satisfies the axioms.
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For any V ∈ � define

σ1(V ) =
{

x ∈ ∂(V ) | vV
x ∈ γ ++

N

}
∪

{
x ∈ 	(V ) | vV

x ∈ γ +
N

}
. (5.1)

Clearly, σ1 satisfies EFF, SCOV, and IIA. As any unanimity TU game is an element of
γ +

N \ γ ++
N , σ1 satisfies UNA. CADD follows from (2.4). As σ1

(
V−uN

) = ∅, σ1 �= 	.
Regarding the aforementioned modification of Theorem B, it remains to show that σ1
is a maximal solution that satisfies the remaining axioms, i.e., Axioms 2 through
5. Assume, on the contrary, there exists a solution σ that satisfies EFF, CADD,
UNA, SCOV, and contains σ1 as a proper subsolution. Let V ∈� such that there
exists x ∈ σ(V )\σ1(V ). By EFF, x ∈ ∂V (N ). Let v = vV

x , λ = λV,x , λ̂ = (1/λi )i ∈ N ,
and cT = cT (v) for T ∈ 2N \ {∅}. Let W be the NTU game associated with

w =
∑

R∈2N \{∅,T 2}
(−cR)u R + (1 + |cT 2 |)uT 2 .

Two cases may occur:

(1) cT 1 < 0or cT 2 < 0, say cT 1 < 0.Thenw ∈ γ ++
N so that ∂(̂λ∗W )(N ) = σ1(̂λ∗W ) ⊆

σ (̂λ∗ W ). Now, V + λ̂∗ W = λ̂∗ (1+|cT 2 |)UT 2 so that, by SCOV, σ(V + λ̂∗ W )

is a singleton. On the other hand, by CADD, ∂(V + λ̂ ∗ W )(N ) ⊆ σ(V + λ̂ ∗ W )

so that the desired contradiction has been obtained.
(2) cT 1, cT 2 � 0, cT 1cT 2 = 0, and λ ∗ x �= φ(v), say cT 1 = 0. Then V + λ̂ ∗ W =

λ̂ ∗ (1+ cT 2)UT 2 so that, By SCOV and UNA, σ(V + λ̂ ∗ W ) = 	(V + λ̂ ∗ W ).
As w ∈ γ +

N \ γ ++
N in this case, σ (̂λ ∗ W ) = 	(̂λ ∗ W ) so that CADD, applied to

x and the unique element of σ (̂λ ∗ W ) yields the desired contradiction.

In order to define the solution σ2 that exclusively violates EFF and contains 	 as a
subsolution, we distinguish two cases: If |N | > 2, then let σ2 be the solution defined
by Peleg and Sudhölter (2007, Sect. 13.3, p 242), denoted by σ 2. If |N | = 2, then
define

σ2(V ) =
{

	(V ), if d(V ) /∈ V (N ) or d(V ) = 0,
	(V ) ∪ {d(V )}, otherwise.

(5.2)

Clearly, σ2 satisfies NE and SCOV, and it violates EFF. By (2.4), σ2 inherits CADD
from 	. Moreover, UNA and IIA are easily deduced using Remark 3.2.

The straightforward proofs that, for an arbitrary |N | � 2, the following solutions
satisfy the desired properties, are left to the reader.

σ3(V ) = 	(V ) ∪ {x ∈ ∂V (N ) | x � d(V )};
σ4(V ) = ∂V (N );
σ5(V ) = 	(V ) ∪

{
x ∈ ∂V (N )

∣∣∣∣λV,x �= χ N

|N |
}

.
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