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W’ and Z’ limits for Minimal Walking Technicolor

Jeppe R. Andersenr,∗ Tuomas Hapolar,† and Francesco Sanninor‡
r CP3-Origins & the Danish Institute for Advanced Study DIAS,

University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.

We interpret the recent data on non-observation of Z’- and W’-bosons, reported by CMS, within
Minimal Walking Technicolor models and use them to constrain the couplings and spectrum of the
theory. We provide the reach for both exclusion and possible observation for the LHC with 5 fb−1 at 7
TeV in the centre of mass energy, and 100 fb−1 at 13 TeV.
Preprint: CP3-Origins-2011-16 & DIAS-2011-02

I. INTRODUCTION

Recently the CMS [1] and ATLAS [2] collaborations have reported limits on the masses of possible new spin one
resonances, appearing in several Standard Model extensions. These studies are performed using 36-40 pb−1 of data
collected during the year 2010. We interpret these results within Minimal Walking Technicolor (MWT) models, where
the new spin zero resonances emerge as composite states of the fundamental degrees of freedom.

The electroweak symmetry can naturally break through the formation of a chiral condensate, caused by the existence
of new strong dynamics [3, 4]. Theories under the mechanism of dynamical electroweak symmetry breaking (DESB)
are called Technicolor. Due to the recent progress [5–18, 18–30] in the understanding of near conformal (walking)
dynamics [31, 32] various phenomenologically viable models have been proposed. Primary examples are: the SU(2)
gauge theory with two techniflavors in the adjoint representation, known as Minimal Walking Technicolor (MWT)
[5]; the SU(3) theory with two flavors in the two-index symmetric representation which is called Next to Minimal
Walking Technicolor (NMWT) [5] and the SU(2) theory with two techniflavors in the fundamental representation
and one techniflavor in the adjoint representation known as Ultra Minimal Technicolor (UMT) [33]. These gauge
theories possess remarkable properties [5, 10–13] and have the smallest effects on precision data when used for
Technicolor [5, 13, 34–39]. We have also shown in [40] that the effects of the extensions of the Technicolor models,
needed to give masses to the SM fermion, cannot be neglected and lead to models of ideal walking of which MWT
technicolor models are prime examples. The use of fermions in the fundamental representation of the underlying
Technicolor gauge group ensures minimal corrections to the precision data [37–39]. A simple way to achieve this is
to gauge, at most, one doublet of techniquarks, as done for the UMT model. More generally these models are known
as the partially gauge Technicolor models and were introduced in [10, 13]. The theories underlying the models above
are being subject to intensive numerical investigations via lattice simulations [41–65]. The important progress of
understanding the phase diagram has led to models where the walking dynamics arises with the minimal matter
content serving a natural way to go beyond the Standard Model without fundamental scalars. To motivate better
the paradigm of complete absence of fundamental scalars, the authors of [66] have shown that also a successful
description of the inflation can be achieved using strong dynamics featuring solely fermionic matter.

II. THE MODEL

In order to respect the triumph of the Standard Model, the extensions have to accommodate the following chiral
symmetry breaking pattern:

SU(2)L × SU(2)R → SU(2)V. (1)

An example of a walking technicolor model embodying just this pattern for the breaking of the global flavor symmetry
is the Next to Minimal Walking Technicolor model (NMWT). Any other minimal extension contains the symmetries
of NMWT and therefore the common sectors are simultaneously constrained. Here the three technipions produced
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in the breaking of the symmetry are eaten by the W and Z bosons. The low energy spectrum of the theory is described
by the spin one vector and axial-vector iso-triplets V±,0, A±,0 and the lightest iso-singlet scalar state H. The scalar
state can be naturally as light as the SM Higgs [6, 10, 13, 14, 67–69].

The effective Lagrangian [87], given in the Appendix, contains the following set of parameters:

• g and g′, the SU(2)L ×U(1)Y gauge couplings;

• µ and λ, the parameters of the scalar potential;

• g̃, the strength of the spin one resonances interaction;

• m2, the SU(2)L × SU(2)R invariant vector-axial mass squared;

• r2, r3, s, the couplings between the Higgs and the vector states;

It is convenient to express three of the parameters in terms of GF, MZ and α, fixed by the experiments. The
parameters r2, r3 and m can be written in terms of the bare axial and vector masses MA, MV as follows:

m2 =
(
M2

A + M2
V − g̃2v2s

)
/2 , (2)

r2 = 2(M2
A −M2

V)/g̃2v2 , (3)

r3 = 4M2
A

(
1 ±

√
1 − g̃2S/8π

)
/g̃2v2 . (4)

S is the S-parameter obtained using the zeroth Weinberg Sum Rule (0th WSR). The effective Lagrangian and the
features of the theory were first introduced in [34, 70] and efficiently summarized in [79]. Furthermore, MV and S can
be related using the 1st WSR and S is set to 0.3, naively estimated from the underlying Technicolor theory [34, 70].
Thus we are left with the MA, g̃, MH and s as parameters we can vary at the effective Lagrangian level. First principle
lattice simulations should be able to determine these parameters in the near future. The walking dynamics nature
is associated to the modification of the second WSR according to the discovery made in [71]. The following caveats
apply when matching the low energy effective theory to the underlying gauge theory using the modified WSRs [71]
as clearly stated in the original paper: One assumes the narrow width approximation; the spectrum is approximated
at very low energies by a few resonances while the walking dynamics is modeled using dynamical mass for the
technifermions respecting the Schwinger-Dyson scaling behavior.

The new vector and axial-vector states mix with the SM gauge eigenstates yielding the ordinary SM bosons and
two triplets of heavy mesons, R±,01 and R±,02 , as mass eigenstates. The couplings of the heavy mesons to the SM
particles are induced by the mixing. Momentous for this study is how the heavy vectors couple to the fermions. In
the region of parameter space where R1 is mainly an axial-vector and R2 mainly a vector sate, the dependence of the
couplings to the SM fermions as a function of g̃ is very roughly

gR1,2 f f̄ ∼
g2

g̃
(5)

where g is the electroweak gauge coupling. The full coupling constant is also a function of MA, but this dependence
is very weak.

III. SLICING THE PARAMETER SPACE

To constrain the parameter space of the model we use the recent CMS results [1], which report limits for a W′

boson decaying to a muon and a neutrino at
√

s = 7 TeV in the mass range 600 - 2000 GeV for the resonance. ATLAS
results are comparable, but the CMS limits are slightly more stringent in the lower mass region, as shown in figure 5
of [2]. Also, the existing data for the dilepton final state can be used to perform this analysis, but currently the limits
are weaker than for the lepton plus missing energy final state.

The relevant calculations are performed using MadGraph [80], using the CTEQ6L parton distribution functions
[81], and the implementation for the NMWT model [82]. [1] reports experimental limits for the muon channel
together with a combined analysis with the electron channel [83]. Slightly different cuts are used for the electron
and muon channel. We simplify the analysis slightly, using the most limiting combination of cuts for the theoretical
predictions (this leads to insignificant differences). Because of the missing energy in the final state, the invariant mass
of the resonance cannot be reconstructed, and the following transverse mass variable is utilized

MT =
√

2 · pTEmiss
T · (1 − cos ∆φµ,ν). (6)
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When considering only two-to-two processes with zero mass final state particles, the angle between the lepton and
neutrino is fixed and this definition of the transverse mass reduces to MT = 2 · pT. In the experimental analysis, the
cut on the transverse mass is adjusted in bins of the mass of the sought after resonance. The minimum transverse
mass cuts and the physical masses of the vector mesons for three different values of g̃ are given in Table I. The decay
widths of the vector mesons are given in Table II. In addition to the transverse mass cut, the lepton acceptance
|η| < 2.1 is used. The resulting cross section is then compared with the limits reported in the experimental analyses.

Exploring the signal from the process pp → R1,2 → lν we are able to limit the possible values for the parameters
MA and g̃. The theoretical limits as well as the limits from the Tevatron are described in [84]. The MA, g̃ plane of the
parameter space is presented in Fig. 1 for MH = 200GeV and s = 0.

The uniformly shaded region on the left is excluded by the CDF searches of the resonance in the the pp̄ → e+e−
process. The striped region in the lower left corner is excluded by the measurements of the electroweak W and
Y parameters [85] adapted for models of MWT in [35]. Avoiding imaginary decay constants for the vector and
axial-vector sets an upper bound for the g̃, i.e. excludes the uniformly shaded in the upper part of the figure. The
near conformal (walking) dynamics modifies the WRS’s, compared to a running case like QCD, as explained above
[71]. Imposing these modified sum rules excludes the lower right corner of the parameter space. The CDF exclusion
limit is sensitive, indirectly, to the mass of the composite Higgs and the coupling s via properties of the new heavy
spin one states. However, the edge of the excluded area varies only very weakly as a function of s and MH. The
CMS search imposes a 95 % CL exclusion bound described with the thick solid (red) line. The thick dashed and
dotted lines (blue) are three and five sigma exclusion limits for 7 TeV and 5 f b−1. The thin dotted and dashed lines
describe the reach of the LHC with 100 f b−1 at 13 TeV. The three and five sigma exclusion limits are calculated using
poisson distribution, following [86]. Due to the effective description, we have not employed the K-factors when
calculating the exclusion limits. In Table III we report the explicit values of the signal cross section for given points
in the parameter space.

Comparing the three sets of lines for the LHC, the increase in the horizontal direction follows roughly the increase
in luminosity. The small role of the center of mass energy can be understood by exploring the behavior of the cross
section as a function of the center of mass energy and comparing it with the scaling with g̃, obtained from equation
(5). The Tevatron exclusion line behaves completely differently compared to the lines calculated for the LHC. This
follows from the two distinct feature between the machines: In the relevant kinematic, the pdf’s are highly gluon
dominated at the LHC energies, and the LHC is a proton-proton collider, which further suppresses the portion of the
anti-quarks inside the colliding protons compared to the Tevatron.

IV. CONCLUSIONS

We have interpreted experimental bounds from the LHC on new resonances in the e, νe and µ, νµ-channel within
the sector common to all the Minimal Walking Technicolor models. We demonstrated that the data from the LHC
are already excluding new regions of the parameter space of strongly coupled extensions of the SM. However much
of the parameter space is still allowed, and will be probed by the data arriving in the near future.

TABLE I: Minimum MT values for different values of the MA.The last six columns give the physical masses of the
MR1,2 as a function of MA, for three different values of the g̃.

g̃ = 2 g̃ = 4 g̃ = 6
MA (GeV) MT (GeV) MR1 (GeV) MR2 (GeV) MR1 (GeV) MR2 (GeV) MR1 (GeV) MR2 (GeV)

600 400 612 704 603 887 601 1142
700 500 714 794 704 945 701 1174
800 500 814 888 804 1008 801 1210
900 500 913 983 905 1075 902 1250
1000 530 1012 1081 1005 1145 1002 1293
1100 590 1111 1180 1106 1218 1102 1339
1200 650 1209 1280 1206 1294 1202 1387
1300 675 1307 1382 1306 1371 1302 1438
1400 675 1404 1484 1406 1450 1402 1491
1500 680 1502 1586 1505 1532 1502 1546
2000 690 1991 2102 1940 2013 1842 2003
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Appendix A: Effective Lagrangian

The composite spin-1 and spin-0 states and their interaction with the SM fields are described via the following
effective Lagrangian we developed in [34, 70]:

Lboson = −
1
2

Tr
[
W̃µνW̃µν

]
−

1
4

B̃µνB̃µν −
1
2

Tr
[
FLµνF

µν
L + FRµνF

µν
R

]
+ m2 Tr

[
C2

Lµ + C2
Rµ

]
+

1
2

Tr
[
DµMDµM†

]
− g̃2 r2 Tr

[
CLµMCµRM†

]
−

i g̃ r3

4
Tr

[
CLµ

(
MDµM† −DµMM†

)
+ CRµ

(
M†DµM −DµM†M

)]
+

g̃2s
4

Tr
[
C2

Lµ + C2
Rµ

]
Tr

[
MM†

]
+
µ2

2
Tr

[
MM†

]
−
λ
4

Tr
[
MM†

]2
(A1)

where W̃µν and B̃µν are the ordinary electroweak field strength tensors, FL/Rµν are the field strength tensors associated
to the vector meson fields AL/Rµ [88], and the CLµ and CRµ fields are

CLµ ≡ ALµ −
g
g̃

W̃µ , CRµ ≡ ARµ −
g′

g̃
B̃µ . (A2)

The 2×2 matrix M is

M =
1
√

2
[v + H + 2 i πa Ta] , a = 1, 2, 3 (A3)

where πa are the Goldstone bosons produced in the chiral symmetry breaking, v = µ/
√
λ is the corresponding VEV,

H is the composite Higgs, and Ta = σa/2, where σa are the Pauli matrices. The covariant derivative is

DµM = ∂µM − i g W̃a
µ TaM + i g′ M B̃µ T3 . (A4)

When M acquires its VEV, the Lagrangian of Eq. (A1) contains mixing matrices for the spin one fields.
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FIG. 1: Bounds in the (MA, g̃) plane of the NMWT parameter space: (i) CDF direct searches of the neutral spin
one resonance excludes the uniformly shaded area in the left, with MH = 200 GeV and s = 0. (ii) The 95 %
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