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Mutational analysis of PHEX, FGF23, DMP1,
SLC34A3 and CLCN5 in patients with
hypophosphatemic rickets

Signe S Beck-Nielsen1,2, Kim Brixen1,3, Jeppe Gram4 and Klaus Brusgaard1,5

This study aimed to identify the underlying genetic mutation in patients with hypophosphatemic rickets (HR). Genomic DNA

was analysed for mutations in PHEX, FGF23 and CLCN5 by polymerase chain reaction (PCR) followed by denaturing high-

performance liquid chromatography (dHPLC). Bi-directional sequencing was performed in samples with deviating

chromatographic profiles. DMP1 and SLC34A3 were sequenced, only. In addition, a multiplex ligation-dependent probe

amplification (MLPA) analysis was performed to detect larger deletions/duplications in PHEX or FGF23. Familial cases

accounted for 12 probands while 12 cases were sporadic. In 20 probands, mutations were detected in PHEX of which 12 were

novel, and one novel frameshift mutation was found in DMP1. Three PHEX mutations were identified by the MLPA analysis

only; that is, two large deletions and one duplication. No mutations were identified in FGF23, SLC34A3 or CLCN5. By the

methods used, a disease causing mutation was identified in 83% of the familial and 92% of the sporadic cases, thereby in

88% of the tested probands. Genetic analysis performed in HR patients by PCR, dHPLC, sequencing and in addition by MLPA

analysis revealed a high identification rate of gene mutations causing HR, including 12 novel PHEX and one novel DMP1

mutation.

Journal of Human Genetics (2012) 57, 453–458; doi:10.1038/jhg.2012.56; published online 14 June 2012

Keywords: DMP1; hypophosphatemic rickets; mutational analysis; PHEX; XLH; X-linked hypophosphatemic rickets

INTRODUCTION

Hypophosphatemic rickets (HR) comprises a group of rare inher-
ited diseases with an incidence of 3.9 per 100 000 live births and a
prevalence of 1:21 000.1 The first description of the disease was by
Albright in 1937.2 Characteristically, children present during the
first 1–2 years of age with bowing of the weight-bearing extremities
and growth failure. With increasing age, many patients experience
painful joints, arthrosis, enthesopaties (calcification of ligaments
and their attachment to bone) and recurrent spontaneous abscesses
of the teeth.3 The most common form is X-linked HR (XLHR;
MIM 307800), exhibiting a dominant trait of inheritance. The
causative gene coding for the phosphate-regulating endopeptidase
homologue, X-linked, (PHEX; MIM 300550) was identified in
1995.4 Today, 300 different mutations in PHEX are listed in the
PHEXdb (hhtp://www.phexdb.mcgill.ca/, accessed April 2012).
Subsequently, mutations in several other genes responsible for
rare forms of HR have been identified. In the year 2000, the
principal regulator of the phosphate homoeostasis, fibroblast
growth factor 23 (FGF23) was isolated and a mutation in FGF23
(MIM 605380) was associated with autosomal dominant HR

(ADHR; MIM 193100).5 In 2006, a mutation in the gene
encoding for the dentin matrix protein (DMP1; MIM 600980)
was identified in patients with autosomal recessive HR (ARHR1;
MIM 241520),6 and a mutation in ectonucleotide pyrophosphatase/
phosphodiesterase 1 (ENPP1; MIM 173335) was in 2010 shown to
cause autosomal recessive HR (ARHR2; MIM 613312).7,8 XLHR,
ADHR, ARHR1 and ARHR2 share identical biochemical charac-
teristics of excessive renal phosphate wasting and low-serum
phosphate associated with elevated levels of serum FGF23 and
accompanied by inappropriately low serum 1,25-dihydroxyvitamin
D (1,25(OH)2D).8,9 Two types of HR differ biochemically from the
four described types, as they are characterised by hypercalciuria:
Hereditary HR with hypercalciuria (HHRH; MIM 241530), where
the hypercalciuria is due to increased serum 1,25(OH)2D. The
inheritance is autosomal recessive and the disease is caused by a
mutation in the sodium-cotransporter gene (SLC34A3; MIM
609826), identified in 2006.10,11 The second type is X-linked
recessive HR (MIM 300554), characterised by proximal renal
tubulopathy and Fanconi syndrome caused by a mutation in the
gene coding for the chloride channel 5 (CLCN5; MIM 300008).12,13
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Current recommendations on medical treatment of the HR types
without hypercalciuria are intermittent oral phosphate supplementa-
tion in combination with alfacalcidol, carefully adjusted to avoid the
development of secondary hyperparathyroidism or nephrocalcino-
sis.14 Medical treatment improves the bowing of extremities and the
stunted growth in children, and prevents the recurring dental
abscesses and the dentin malformation, but early treatment onset is
crucial for obtaining sufficient efficacy.15–17 In the HR types
characterised by hypercalciuria, treatment is oral phosphate
supplementation alone.9

The aim of this study was to identify the underlying genetic
mutation in patients with HR by use of the traditional methods of
genetic analysis and in addition the recently introduced MLPA
method. The finding of a genetic diagnosis enables genetic counselling
and early diagnosis ensures early treatment of affected offspring.

MATERIALS AND METHODS

Patients
The HR patients were recruited from a cross-sectional study in Denmark.3 As

the study has been described in detail elsewhere, only a brief account of the

method of patient inclusion is given. Originally, the patients were identified in

the Danish National Patient Registry by a search based on the diagnosis codes

of vitamin D-resistant rickets. The inclusion area was Jutland and Funen,

covering approximately 3.0 million inhabitants and thereby 55% of the total

Danish population. The diagnosis was confirmed by review of the patients’

medical files. By contact to the treating doctors, patients with HR who did not

appear in the register were identified. Finally, family screening added

additional cases. The inclusion criteria were biochemically verified HR, and

in addition a history of childhood rickets or spontaneous dental abscesses was

required to exclude acquired HR, for example, Tumour-induced osteomalacia

(TIO). The biochemical criterion of HR was at least one of the following

parameters: serum phosphate below normal range, low renal threshold value

for reabsorption of phosphate in the urine (TPO4/GFR) or elevated serum

FGF23. Patients with secondary rickets due to malabsorption, TIO, or

hereditary vitamin D-dependent rickets type 1 (VDDR type 1) were excluded.

Genetic Analysis
Genomic DNA was extracted from full blood using a DNA purification robot

(Maxwell Promega, Ramcon, Denmark). All DNA samples from the probands

were initially analysed for mutations in PHEX. If no mutations were identified,

we proceeded with consecutive analyses of FGF23, then CLCN5 followed by

DMP1 and finally SLC34A3 was analysed if no mutations were found in the

previously analysed genes. For the analysis of PHEX, FGF23 and CLCN5,

polymerase chain reaction (PCR) was used covering all introns and intron/

exon-boundaries. This was followed by denaturing high-performance liquid

chromatography (dHPLC) (WAVE 3500HT High Sensitivity System; Transge-

nomic Inc, Elancourt, France) testing for small deletions, insertions or point

mutations in all exons and exon–intron boundaries of all genes. Samples with

deviating chromatographic profiles were sequenced in both directions using

the BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster

City, CA, USA) and analysed on a 3730XL DNA Analyser (Applied

Biosystems). Sequence analysis was performed using SeqMan Software (DNA

STAR, Madison, WI, USA). DMP1 and SLC34A3 were analysed by direct

bidirectional sequencing only. Mutational analysis of PHEX and FGF23 was

performed by use of the primers published by Goji et al.,18 and mutational

analysis of CLCN5 was performed by use of the primers published by Lloyd

et al.19 We designed primers using Primer Select Software (DNA STAR) for

mutational analysis of DMP1, FGF23 and SLC34A3. To detect larger deletions

of PHEX and FGF23, a Multiplex Ligation-dependent Probe Amplification

(MLPA) analysis was performed in patients with no mutations detected by

dHPLC. The MLPA procedure was performed according to the manufacturer’s

recommendations (Salsa MLPA, P223 PHEX, MRC-Holland, Amsterdam, the

Netherlands) and run on the 3730XL DNA analyser using GeneMarker

software (Softgenetics, State College, PN, USA) for the analysis.

The genetic analysis was first performed in the probands. When a PHEX

mutation was identified, DNA from all first-degree family members and

symptomatic second-degree family members were then screened for the

detected mutation. Due to the X-linked mode of inheritance, DNA from the

fathers of male probands was not analysed for the identified PHEX mutation.

If the PHEX mutation was not detected in the DNA from the parents of the

proband, and both parents had no clinical or biochemical signs of HR, this

proband was classified as sporadic.

We determined a mutation to be disease causing: (1) when the mutation was

previously described in the PHEXdb (accessed April, 2012) or characterised in

publications, but not yet appearing in the PHEXdb;20–23 (2) when the

mutation identified was present in all family members with clinically and

biochemically verified HR, but not in any of the asymptomatic family

members; and/or (3) when the mutation type was predicted to cause a non-

functional protein as frameshift, deletion, duplication, nonsense or abnormal

splicing. Missense mutations were initially tested by the prediction software

PolyPhen (‘polymorphism phenotyping’, http://genetics.bwh.harvard.edu/pph/)

and SIFT (‘sorting intolerant from tolerant’, http://sift.jcvi.org/) to predict the

impact of missense mutations on protein structure and function based on

sequence alignments. PHEX belongs to the M13 subfamily of mammalian

metallopeptidases further including ECE1, ECE2, KELL and NEP. The overall

sequence homology of these metallopeptidases is sufficiently high to indicate a

common origin and a similar folding pattern.24 Clustal W (MegAlign, DNA

STAR) was used to test the evolutionary conservation of the substituted amino

acid in the missense mutations by alignment to the mammalian M13 subfamily

of membrane metallopeptidases.25 Additionally, the molecular visualisation

software PyMol 0.99rc6 (www.pymol.org) was used to predict the functional

consequence of the missense mutation on the tertiary structure at the

site of the mutation. The 3D structure of NEP was described by

Oefner et al.26

Mutations fulfilling criteria two and/or three only were considered novel.

Biochemical Analyses
Serum FGF23 (reported as mean±s.d.) was analysed by enzyme-linked

immunosorbent assay (Kainos Laboratories, Tokyo, Japan). Further details of

the biochemical analyses performed have been described previously.3

RESULTS

A total of 59 patients with biochemically and clinically confirmed HR
were included. They originated from 12 families comprising 47
patients, and 12 sporadic patients. Thus, a total of 24 probands were
included in this report. Patients of Danish decent accounted for 23
probands, while one proband originated from Lebanon.

We identified 20 different PHEX mutations, of which 12 were novel
(Figure 1). In addition, one novel frameshift mutation in exon
5 DMP1 (c.247_248delGG) was identified in the Lebanese family
exhibiting a recessive trait (Figure 2). Table 1 lists a complete
description of the mutations identified. Overall, gene mutations were
identified in 10 of 12 familial probands (83%), and in 11 of 12
sporadic probands (92%); that is, in 21 of the 24 total probands
(88%). The PHEX mutations were six abnormal splicing (30%), five
frameshifts (25%), four nonsense (20%), two missense (10%), two
deletions (10%), and one duplication (5%). Three PHEX mutations
were identified by the MLPA analysis only; that is, two large deletions
and one duplication. No mutations were identified in FGF23,
SLC34A3 or CLCN5.

The mean S-FGF23 level in patients with a PHEX mutation was
198±401 pg ml�1, range 46 to 2430 pg ml�1. Two patients from two
different families with proven PHEX mutation had normal S-FGF23
levels of 46 and 49 pg ml�1, respectively. The S-FGF23 value for the
sporadic probands and the mean (s.d.) for families are provided in
Table 1.
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The proband homozygous for the DMP1 mutation was the child of
clinically and biochemically healthy parents, both heterozygous for
the DMP1 mutation identified. The parents were immigrants from
Lebanon and reported being non-consanguineous. At the age of 1.5
years the patient complained of painful legs and had genu varus. Due
to complete renal calcium retention he was primarily suspected of
nutritional rickets and was treated as such from the age of 2.3 until
the diagnosis of HR was established at the age of 3.5 years, where after
treatment with phosphate and Alphacalcidol was commenced. The
patient was 6.2 years of age when examined for this study. He was
short statured with a height s.d. of �1.4, showed a disproportioned
sitting height ratio of 3.8 s.d., and had genu varus of 5 cm (3.3 s.d.).
He had no history of dental problems. Biochemically, his S-phosphate
was 0.9 mmol l�1 (normal range: 1.16–1.81 mmol l�1), S-FGF23 was
71 pg ml�1 (10–50 pg ml�1), the tubular reabsorption of phosphate
per glomerular filtration rate was 0.67 nmol ml�1 (1.16–1.81), and
S-parathyriod hormone was 1.9 pmol l�1 (1.1-6.9 pmol l�1).

DISCUSSION

We identified 20 PHEX mutations of which 12 were novel, and in
addition one novel frameshift mutation in DMP1 in HR probands.
The addition of the MLPA analysis ensured a high detection rate of
gene mutations, and revealed three novel PHEX mutations.

The frequency of the different types of mutations identified in this
study differs slightly from the frequencies reported by PHEXdb (in
brackets): abnormal splicing 30% (23%), frameshifts 25% (25%),
nonsense 20% (18%), missense 10% (22%), deletions 10% (8%), and
duplications 5% (0%). We identified fewer missense mutations, but

the overall frequency of mutation types identified by the MLPA
analysis (that is, deletions and duplications) was higher in our study.

We report two missense mutations, the Pro534Leu also reported by
several other groups,27–32 and a novel Leu438Trp mutation. Pro534 is
conserved between the related mammalian M13 subfamily of
membrane metallopeptidases KELL, ECE1, ECE2 and PHEX. In
NEP this position is substituted by an Alanine. Pro534 is in
immediate juxtaposition to the active site of the enzyme
(Figure 3A). The alignment using Clustal W predicts a conforma-
tional change caused by the substitution p.Pro534Leu due to its close
proximity to Y478 in the linker between b-strand II1 and a-helix D3.
This conformational change involves the highly conserved VNA motif
of the ligand-binding domain situated immediate juxtaposed to
b-strand III1 (Figure 3B). Leu438 is conserved between KELL,
ECE1, NEP and PHEX. In ECE2 this position is substituted by a
Methionine (Figure 3C). The alignment depicts the position
of Leu438 relative to the consensus C1 a-helical structure. Substitut-
ing Leu438 with an aromatic Tryptophane is not compatible with the
a-helical structure and possible detrimental to protein function
(Figure 3D). As evident from this illustration, the substitution
p.Leu438Trp will result in a conformational change relocating the
HEITH motif caring a-helix F1. This is predicted to influence
Zn binding and probably abolish the protein function. This
novel missense mutation was present in three members of a family
where the proband (male), his mother and his daughter, all
had biochemically and clinically confirmed HR. A clinically and
biochemically unaffected sister of the proband did not carry the
missense mutation.

We report a novel DMP1 mutation identified in one proband from
a Lebanese immigrant family living in Denmark and exhibiting a
recessive trait of inheritance. Including this novel frameshift mutation,
a total of seven mutations to date has been reported in DMP1
(Figure 2).6,33–36

As ENPP1 was not yet detected as a gene causative of autosomal
recessive HR when this study was performed, we did not analyse
this gene for mutations. Of the two familial probands without a
genetic diagnosis, one originated from a large family comprising 12
patients exhibiting an X-linked dominant trait and a genome-wide
linkage scan has revealed strong evidence of linkage to the PHEX
locus.3 The second family, which also showed a dominant
trait, consists of a mother and her son, both of which have disease.
The analysis of ENPP1 was therefore only relevant for the one
sporadic proband in whom no mutations were found in the five genes
studied.

1 5 6Exon

c.1A>G
c.1484-1490delc.362delCc.55-1G>C

c.98G>A

c.247_248delGG
IVS5-1G>A

c.485delTNon-coding region

Coding region

2 3 4

Figure 2 The figure depicts the six exons of DMP1 and the approximate

location of the mutations previously identified (c.1A4G,6,33 c.55-1G4C,6

c.98G4A,34 IVS5-1G4A,35 c.362delC,6 c.485delT,36 c.1484-1490del33).

The novel DMP1 mutation identified in our study, c.247_248delGG is in

bold/italics.

1 2 3 4 5 6 7 8 9 10 11 12 14 18 20 22
Exon

13 15 17 21

c.-14_8delinsTGGGAGCAGCGTGG
c.350-?_1899+?delc.15_16delAG c.958_960delAAG

c.1103G>A

c.1313T>G
c.1331G>A

c.1404+2_5delTAAGG
c.1522C>T

c.1586 + 3_6delGAGT
c.1587-1G>C

c.1601C>T
c.1645+1G>A 

c.1646-?_2453+?del
c.1646-?_2070+?dup

c.1728_1731
dupAATT c.2008delG

c.2071-2A>G
c.2148-1G>T

c.2239C>T

16 19

Figure 1 Distribution of mutations identified in PHEX in this study. The numbers in the boxes indicate the 22 exons in PHEX. The novel mutations are in

bold/italics. Abnormal splicing, missense and nonsense mutations are represented above the gene, frameshift, deletions and duplications below. Thick,

black lines indicate the large deletions and duplication identified by MLPA.
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Our detection rate of 88% of gene mutations causing HR was
high and only exceeded by the recent study by Morey et al.,37 where
the MLPA analysis was also performed. The detection rate in familial
probands of 83%, and especially our detection rate in probands with
sporadic HR of 92% were prominent. The overall median detection
rate of gene mutations reported in previous studies comprising 15 or
more HR probands was 66% (range 43–100%),20,27–32,37–41 in familial
probands 66% (44–100%), and in sporadic probands the detection
rate was 50% (29–100%).20,27–30,32,37,38 In our study, the MLPA
analysis added three PHEX mutations not identified by PCR, dHPLC
or sequencing, thus increasing our overall detection rate from 78 to
88%, in familial probands from 67 to 83% and in sporadic probands
from 83 to 92%. Our high detection rate of gene mutations, especially

among the sporadic patients, may also be due to the robust inclusion/
exclusion criteria of this study.

S-FGF23 may be used as a biochemical marker distinguishing the
FGF23-mediated types of HR (XLHR, ADHR, ARHR1 and ARHR2)
from the non-FGF23-mediated types (HHRH, and X-linked recessive
HR).42 In our study population only FGF23-mediated types of HR
were identified, but two patients with proven XLHR displayed
levels slightly below the upper limit of the normal range of 10–
50 pg ml�1.43 Normal S-FGF23 levels in genetically verified XLHR has
been published in a few cases43,44 but in the vast majority of HR
patients, S-FGF23 levels are elevated, and this significantly more in
patients receiving medical treatment.45,46 Patients with TIO display
even higher values of S-FGF23 than the XLHR patients in this study,

Table 1 The PHEX mutations and one DMP1 mutation identified in HR patients in this study

Gene Method Kindred

Gender,

proband

S-

FGF23a Location DNA-level

Nucleotide

change Protein level Type Mutation

Amino acid

change

PHEX dHPLC/

sequencing

F-1 Male 69

(±22)

Ex 01 c-14_8delinsTGG

GAGCAGCGTGG

Substitution p.? Frameshift Novel No transcript

PHEX dHPLC/

sequencing

S-4 Female 128 Ex 01 c.15_16delAG Deletion p.5ThrfsX44 Frameshift Not

novel

Truncated protein

PHEX MLPA F-5 Male 112

(±42)

Ex 04–18 c.350-?_1899þ ?del Deletion p.Lys118_655del Deletion Novel Truncated protein

PHEX dHPLC/

sequencing

F-8 Female 95

(±27)

Ex 09 c.958_960delAAG Deletion p.Lys320del Frameshift Novel Truncated protein

PHEX dHPLC/

sequencing

S-15 Female 103 Ex 10 c.1103G4A Substitution p.Trp368X Nonsense Not

novel

Trp to Ter

PHEX dHPLC/

sequencing

F-3 Male 51 (±6) Ex 12 c.1313T4G Substitution p.Leu438Trp Missense Novel Leu to Trp

PHEX dHPLC/

sequencing

S-23 Male 180 Ex 12 c.1331G4A Substitution p.Trp444X Nonsense Novel Trp to Ter

PHEX dHPLC/

sequencing

S-28 Female 67 Inv 12 and

Ex 12b

c.1404þ2_5delTAAGG Deletion p.? Abnormal

splicing

Novel Splice donor

PHEX dHPLC/

sequencing

S-19 Female 98 Ex 14 c.1522C4T Substitution p.Gln508Ter Nonsense Not

novel

Gln to Ter

PHEX dHPLC/

sequencing

S-22 Male 73 Inv 14 c.1586 þ 3_6delGAGT Deletion p.? Abnormal

splicing

Not

novel

Splice donor

PHEX dHPLC/

sequencing

F-14 Female 331

(±368)

Inv 14 c.1587-1G4C Substitution p.? Abnormal

splicing

Novel Intron retention/exon

skipping

PHEX dHPLC/

sequencing

F-9 Female 310

(±331)

Ex 15 c.1601C4T Substitution p.Pro534Leu Missense Not

novel

Pro to Leu

PHEX dHPLC/

sequencing

F-6 Female 91

(±59)

Inv 15 c.1645þ1G4A Substitution p.? Abnormal

splicing,

Not

novel

Splice donor

PHEX MLPA S-20 Female 56 Ex 16–22 c.1646-?_2453þ ?del Deletion p.Gly590_Trp749del Deletion Novel Truncated protein

PHEX MLPA F-10 Female 68

(±20)

Ex 16–20 c.1646-?_2070þ ?dup Duplication p.Val634_H690dup Duplication Novel Truncated protein

PHEX dHPLC/

sequencing

S-18 Male 321 Ex 17 c.1728_1731dupAATT Duplication p.Ile577fsX5 Frameshift Novel Truncated protein

PHEX dHPLC/

sequencing

S-34 Female 246 Ex 20 c.2008delG p.Glu679FsX17 Frameshift Novel Truncated protein

PHEX dHPLC/

sequencing

S-16 Female 72 Inv 20 c.2071-2A4G Substitution p.? Abnormal

splicing

Not

novel

Splice acceptor

PHEX dHPLC/

sequencing

S-13 Male 2430 Inv 21 c.2148-1G4T Substitution p.? Abnormal

splicing

Novel Splice acceptor

PHEX dHPLC/

sequencing

F-12 Female 70

(±13)

Ex 22 c.2239C4T Substitution p.Arg747X Nonsense Not

novel

Arg to Ter

DMP1 dHPLC/

sequencing

F-21 Male 71 Ex 5a c.247_248delGG Deletion p.G82FsX2 Frameshift Novel Truncated protein

Abbreviations: Ex, exon; F, familial; dHPLC, denaturing high-performance liquid chromatography; HR, hypophosphatemic rickets; Inv, intervening sequence; MLPA, multiplex ligation-dependent
probe amplification; S, sporadic.
aS-FGF23 (pg ml�1), mean (±s.d.), normal values (10–50pgml�1).
bInv 12 and Ex 12: overlap between intron 12 and exon 12.
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mean 934±1115 pg ml�1 vs 198±401 pg ml�1.47 Thus, if patients
suspected to have HR display S-FGF23 levels exceeding approximately
4–500 pg ml�1, one should bear the differential diagnosis of TIO in
mind. One patient in this study had a markedly elevated S-FGF23 of
2430 pg ml�1. He was treated with very-large doses of phosphate
ranging from 100–200 mg kg�1 per day as the age of 1.8 years and
nephrocalcinosis and hyperparathyroidism were demonstrated at the
age of 10. He developed tertiary hyperparathyroidism demanding
surgical removal of the glandulae parathyroidea at the age of 17 years.
He had a decreased creatinine clearance glomerular filtration rate most
likely contributing to the markedly elevated S-FGF23 as demonstrated
in patients with chronic kidney disease.48 TIO was not suspected due to
the clinical history and the finding of a PHEX mutation.

Identification of the causative gene mutation in HR patients is
not mandatory for the diagnosis of HR, but it reveals the
underlying disease mechanism and confirms the clinical and bio-
chemical diagnosis of HR. If no mutation in the known HR genes is
identified, differential diagnoses implying renal phosphate
wasting should be considered. Furthermore, a genetic diagnosis
allows early detection of affected offspring. This enables early
intervention with medical treatment, which is important for optimal
therapy.

In conclusion, we extend the spectrum of mutations in PHEX and
DMP1 causing HR. Our high detection rate of gene mutations was
achieved by addition of the MLPA analysis and also by robust
inclusion/exclusion criteria. We encourage testing HR patients for
gene mutations as this allows early detection of affected offspring and
ensures early treatment intervention.
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