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Abstract:We introduce novel extensions of the Standard Model featuring a supersymmet-

ric technicolor sector (supertechnicolor). As the first minimal conformal supertechnicolor

model we consider N = 4 Super Yang-Mills which breaks to N = 1 via the electroweak in-

teractions. This is a well defined, economical and calculable extension of the SM involving

the smallest number of fields. It constitutes an explicit example of a natural superconformal

extension of the Standard Model featuring a well defined connection to string theory. It

allows to interpolate, depending on how we break the underlying supersymmetry, between

unparticle physics and Minimal Walking Technicolor. We consider also other N = 1 exten-

sions of the Minimal Walking Technicolor model. The new models allow all the standard

model matter fields to acquire a mass.
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1. Introducing Minimal Super Technicolor

The Standard Model (SM) of particle interactions passes a large number of experimental

tests. Yet we know that it cannot be the ultimate model of nature since it fails to explain

the origin of matter-antimatter asymmetry and the abundance of cold dark matter. Several

extensions of the SM have been proposed, and two stand out in the quest of a better theory:

Supersymmetry and Technicolor.

The appeal of Supersymmetry resides in its higher level of space-time symmetries as

well as in its often praised natural link to string theory. The most investigated route

to introduce supersymmetry has been to supersymmetrize the SM and then invoke some
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mechanism to break supersymmetry again, given that no sign of the superpartners has yet

been observed in experiments. We do not know why the scale of supersymmetry breaking

is higher than the electroweak one; this is simply an experimental input.

Technicolor declares the Higgs sector of the SM to be a low energy effective theory (see

[1, 2] for up-to-date reviews and [3] for a review of the older models), in which the Higgs

is not elementary but composite. The main appeal of technicolor is that we have already

encountered this phenomenon in nature. Superconductivity is a time honored example

while the relativistic version is ordinary Quantum Chromodynamics (QCD), both in the

vacuum and at high quark matter density. Technicolor predicts the existence of a tower

of massive states whose mass is of the order of the electroweak scale, although pseudo-

Goldstone bosons can be lighter. This fact naturally explains why we have not detected

technicolor yet. To give masses to the SM fermions one must, however, resort to another

unknown sector.

In this article we would like to fuse the basic features of both models to construct novel

explicit examples of supertechnicolor models possessing several interesting theoretical and

phenomenological features. The supertechnicolor idea was put forward in [4], though the

phenomenological viability of these early models seemed difficult to achieve. An important

difference in our approach is that the underlying supersymmetric and technicolor theories,

which can be resumed by decoupling, respectively, the technicolor fields or the superpart-

ners by sending their masses to infinity, are both phenomenologically viable1. Examples are

the minimal supersymmetric standard model (MSSM) and/or the minimal walking techni-

color (MWT) model [5, 6, 7, 8, 9]. The latter constitutes the backbone of the technicolor

theory here.

The basic properties of the models we are about to introduce are:

• The models possess the highest degree of four-dimensional space-time symmetry com-

patible with experiments.

• The models can interpolate between already studied extensions of the SM at the TeV

scale, such as unparticle physics [10, 11], MWT [5, 7] and traditional technicolor

[12, 13] or supersymmetry (see [14] for a review). Hence the models can be used as

a well defined laboratory to investigate different theoretical ideas.

• The technicolor models, even before being supersymmetrized, pass the precision elec-

troweak tests.

• The models possess a clear and direct link to string theory in such a way that

AdS/CFT techniques [15] are readily applicable to realistic extensions of the SM.

We start with the observation that the recently proposed minimal model of near conformal

technicolor, i.e. MWT, is constituted by an SU(2) gauge theory with four Weyl (two

Dirac) fermions transforming according to the adjoint representation of the gauge group

[5, 6, 7, 8, 9]. The SU(2)L×SU(2)R ⊂ SU(4) chiral symmetry of the model is then gauged

1Though, in case we give up supersymmetry, we should introduce a kind of extended technicolor sector

to generate the SM fermion masses.
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under the electroweak interactions. The MWT model is interesting both theoretically

[5, 16, 17, 18, 1, 2] and phenomenologically [19, 20, 21, 22]. It has also triggered a large

lattice activity [23, 24, 25, 26, 27, 28, 29, 30, 31, 32].

Another aspect that has not been emphasized enough is that, de facto, this model has

the same number of degrees of freedom as N = 4 Super Yang-Mills (4SYM) except for the

absence of the associated three complex scalars. Once the missing scalars, transforming

according to the adjoint representation of the SU(2) gauge group are added to the theory,

and taken to transform according to the two-index antisymmetric representation of the

SU(4) global symmetry, one recovers the 4SYM. This is the supertechnicolor model before

embedding the electroweak symmetry. Note that the count of the number of degrees of

freedom is a necessary but not sufficient condition for achieving 4SYM. One must also

construct the supertechnicolor Lagrangian respecting N = 4 symmetry. In this article we

spell out the basic 4SYM Lagrangian in superfield notation and in terms of the physical

component fields in Appendix A.

Besides symmetry arguments another equally relevant reason to look for a supertech-

nicolor extension of the SM is linked to the fact that the generation of the SM fermion

masses is less involved than in models with total absence of scalars, although still natural.

A recent analysis showing, at the effective Lagrangian level, how this can be achieved has

appeared in [33]. This model makes use of fundamental scalars without the protection from

supersymmetry and hence it belongs to the class of unnatural models.

We will hence construct a specific version of supertechnicolor, which we define as Mini-

mal N = 4 Supersymmetric Technicolor (M4ST). This model looks particularly appealing,

in that it allows an N = 4 supertechnicolor sector, which is broken down to N = 1 su-

persymmetry only by weak and hypercharge interaction terms. It has a number of very

interesting properties which we will elucidate below. Above all it allows for a direct link

between a realistic model of nature and string theoretic model building and techniques. In

fact one can explore several different regimes which will be only schematically described

in the following sections. We summarize the M4ST Lagrangian written in terms of the

component fields in Appendix B. In this way the model can readily be used for collider

phenomenology and cosmological applications. This model could equally be termed Mini-

mal Superconformal Technicolor (MCT) and hence MSCT=M4ST.

We also consider, in detail, other N = 1 supersymmetric extensions of MWT for

two specific choices of the hypercharge of the technifermion matter. We call this extension

Minimal Super Technicolor (MST). This extension is less economical in the number of fields

needed but has other interesting properties such as the natural presence of a gauge singlet

superfield, which can be used to solve the µ problem of the MSSM, and a Higgs candidate

already within the spectrum of MWT superpartners. The associated MST Lagrangian in

terms of the component fields is summarized in Appendix C.

2. Minimal N = 4 Super Technicolor (M4ST)

The earliest models of technicolor are known to have problems with the electroweak pre-

cision data. The simplest models of technicolor shown to pass the precision tests were put
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forward recently [5, 6, 7]. In particular, as s a starting point of our theory we will use the

MWT [2] extension of the SM.

2.1 Minimal Walking Technicolor review

The gauge group is SU(2)TC × SU(3)C × SU(2)L × U(1)Y and the field content of the

technicolor sector is constituted by four techni-fermions and one techni-gluon all in the

adjoint representation of SU(2)TC . The model features also a pair of Dirac leptons, whose

left-handed components are assembled in a weak doublet, necessary to cancel the Witten

anomaly [34] arising when gauging the new technifermions with respect to the weak in-

teractions. Summarizing, the fermionic particle content of the MWT is given explicitly

by

Qa
L =

(

Ua

Da

)

L

, Ua
R , Da

R, a = 1, 2, 3 ; LL =

(

N

E

)

L

, NR , ER . (2.1)

The following generic hypercharge assignment is free from gauge anomalies:

Y (QL) =
y

2
, Y (UR,DR) =

(

y + 1

2
,
y − 1

2

)

,

Y (LL) =− 3
y

2
, Y (NR, ER) =

(−3y + 1

2
,
−3y − 1

2

)

. (2.2)

The global symmetry of this technicolor theory, per se, is SU(4) which breaks explicitly to

SU(2)L × U(1)Y by the natural choice of the electroweak embedding [5, 7]. The vacuum

choice is stable against the SM quantum corrections [35]. The latter leads also to splitting

of the technibaryons allowing them to be natural candidates for cold dark matter of iTIMP

type, i.e. isotriplets Technicolor Interacting Massive Particles [19, 36]. These dark matter

candidates are of asymmetric type and require no fine-tuning of any of the parameters of

the theory nor modification of the standard cosmological expansion model. The model is,

however, sufficiently interesting to lead to several other kind of dark matter candidates

[37, 38, 39, 40, 41, 42, 43, 44]. The first studies of collider phenomenology appeared in

[45, 22, 21, 46, 20, 47] while the interesting topic of the finite temperature electroweak

phase transition and its impact on the subsequent detection of gravitational waves have

been investigated respectively in [48, 49] and [50]. These models can feature very light

composite Higgs states as advocated in [6, 7, 8, 16] and supported by the recent analysis

performed by Natale’s group [51, 52, 53, 54, 55, 56].

An explicit construction of an extended technicolor type model addressing the problem

of giving mass to the third generation of quarks and the new generation of leptons appeared

in [9]. A less natural model introducing a novel scalar mimicking the effects of the extended

technicolor interactions has also been introduced in [33, 57] following the pioneering work

of Simmons [58], Kagan and Samuel [59], and Carone [60, 61]. More recently this type

of models have been investigated also in [62, 63, 57]. Interesting related work can be also

found in [64, 65].

Another interesting feature is that this model leads to a better unification of the

SM couplings than the SM with an ordinary Higgs as shown in [66]. There we introduced
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fermionic matter in the adjoint representation of the weak SU(2)L gauge group, and showed

that, at the one loop level, a higher degree of unification of the SM couplings than in the

MSSM can be achieved.

The dynamics of the MWT model is either near conformal or conformal as recent

lattice simulations indicate [23, 24, 25, 26, 27, 28, 29, 30, 31, 32].

We want to investigate now the supersymmetrized version of this model. It will provide

a natural ultraviolet completion of the model introduced in [33].

2.2 Upgrading MWT to N = 4 Super Yang Mills

We start with the simple observation that the fermionic and gluonic spectrum fits perfectly

in an N = 4 supermultiplet, provided that we also include three scalar superpartners. In

fact the SU(4) global symmetry of MWT is nothing but the well known SU(4)R R sym-

metry of the 4SYM theory. This is the global quantum symmetry that does not commute

with the supersymmetry transformations.

Having, at hand, already a great deal of the spectrum of 4SYM we explore the pos-

sibility of using this theory as a natural candidate for supertechnicolor. For the reader’s

convenience we have summarized the 4SYM Lagrangian in terms of the N = 1 super-

fields, and in physical components in Appendix A. We refer to this appendix for the basic

properties of the 4SYM theory, Lagrangian and notation.

We gauge part of the SU(4)R global symmetry of the supertechnicolor theory in order

to couple the new supersymmetric sector to the weak and hypercharge interactions of

the SM. We choose to do this in such a way that the model can still preserve N = 1

supersymmetry. To this end one of the four Weyl technifermions is identified with the

techni-gaugino and should be a singlet under the SM gauge group. The only possible

candidates for this role are ŪR and D̄R, for y = ∓1 respectively: we arbitrarily choose

y = 1 and identify D̄R with the techni-gaugino. With this choice the charge assignments

of the particles in eq.(2.1) under SU(2)TC × SU(3)C × SU(2)L × U(1)Y are

QL ∼
(

3,1,2,
1

2

)

, ŪR ∼ (3,1,1,−1), D̄R ∼ (3,1,1, 0),

LL ∼
(

1,1,2,−3

2

)

, N̄R ∼ (1,1,1, 1), ĒR ∼ (1,1,1, 2). (2.3)

Based on these assignments we then define the scalar and fermion components of the N = 4

superfields via

(

ŨL, UL

)

∈ Φ1,
(

D̃L, DL

)

∈ Φ2,
(

˜̄UR, ŪR

)

∈ Φ3,
(

G, D̄R

)

∈ V, (2.4)

where we used a tilde to label the scalar superpartner of each fermion. We indicated with

Φi, i = 1, 2, 3 the three chiral superfield of 4SYM and with V the vector superfield. Four

more chiral superfields are necessary to fully supersymmetrize the MWT model, i.e.:

(

ÑL, NL

)

∈ Λ1,
(

ẼL, EL

)

∈ Λ2,
(

˜̄NR, N̄R

)

∈ N,
(

˜̄ER, ĒR

)

∈ E. (2.5)
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2.2.1 The Higgs Sector

In an ordinary technicolor model one assumes the techniquarks to condense due to the

underlying technicolor dynamics. The SM Higgs can subsequently be identified as a state

composed of the underlying techniquarks. This approach is not immediately applicable here

since the supertechnicolor gauge theory, per se, has an exactly vanishing β function and

hence the theory is conformal for any value of the technicolor gauge coupling. Of course,

as it is well known, this theory represents still an extremely interesting nonperturbative

model. If supersymmetry, or part of the supersymmetry, breaks one can still imagine a

dynamical formation of the technifermion condensate.

Our goal, however, is to construct a calculable model able to interpolate between

different scenarios and, in the first instance, preserving as much symmetry as possible. In

this case, as one can see from the spectrum in eq.(2.3), that before invoking any dynamical

mechanism, there is no candidate to play the role of the SM Higgs boson (a weak doublet

with hypercharge Y = ±1

2
). We therefore introduce in the theory two Higgs doublet

superfields with respective charge assignment

H ∼
(

1,1,2,
1

2

)

, H ′ ∼
(

1,1,2,−1

2

)

, (2.6)

where the presence of both Y = ±1

2
superfields is needed to give mass by gauge invari-

ant Yukawa terms to both the upper and lower components of the weak doublets of SM

fermions. With this choice it is rather natural to take the MSSM to describe the su-

persymmetric extension of the Higgsless SM sector. All the MSSM fields are defined as

singlets under SU(2)TC . The resulting M4ST model is naturally anomaly-free, since both

the MWT and the MSSM are such.

2.2.2 The M4ST Superpotential

The renormalizable superpotential for the M4ST, allowed by gauge invariance, and which

we require additionally to conserve baryon and lepton number2, and to be N = 4 invariant

in the limit of gTC much greater than the other coupling constants, is

P = PMSSM + PTC , (2.7)

where PMSSM is the MSSM superpotential, and

PTC = − gTC

3
√
2
ǫijkǫ

abcΦa
iΦ

b
jΦ

c
k + yU ǫij3Φ

a
iHjΦ

a
3 + yNǫij3ΛiHjN + yEǫij3ΛiH

′
jE. (2.8)

This superpotential describes an approximately conformal theory in the limit when gTC is

much greater than the gauge coupling constants gY , gL, and Yukawa coupling constants

yU , yN , yE. Notice that the gauge invariance of the term proportional to gTC in eq.(2.8) is

guaranteed by the unbroken SU(4) flavor symmetry and the requirement of gauge anomaly

cancellation. There is no need to add furtherN = 1 supersymmetry (SUSY) breaking terms

2We assume all the MWT particles to have baryon and lepton numbers equal to zero
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to those of the MSSM, because the MWT particles are allowed to be mass degenerate with

their superpartners since none of them has been yet observed.

Relaxing the requirements for the superpotential simply to that of gauge invariance,

one would have to substitute gTC with a generic Yukawa coupling constant yTC , and to

add the lepton number violating terms

PTC,∆L 6=0 = ye,kǫij3ΛiHjek + y′N,kǫij3 (lk)iH
′
jN + y′E,kǫij3 (lk)i ΛjE, (2.9)

where k here is a SM family index, e1 is the chiral superfield having the SM left-handed

positron as its fermion component, and l1 is the weak doublet chiral superfield including

the left-handed SM electron. Also, the MSSM part of the superpotential can be extended

to include R-parity violating terms.

2.2.3 The M4ST Lagrangian and Spectrum

The Lagrangian of the M4ST is

L = LMSSM + LTC , (2.10)

where the supertechnicolor Lagrangian can be written in the form of eq.(A.2):

LTC =
1

2
Tr
(

WαWα|θθ + W̄α̇W̄
α̇|θ̄θ̄

)

+Φ†
f exp (2gXVX)Φf |θθθ̄θ̄ + (PTC |θθ + h.c.) , (2.11)

where

Φf = Q,Φ3,Λ, N,E; X = TC,C,L, Y , (2.12)

with Q and Λ defined as the weak doublet superfields with components Φ1, Φ2, and Λ1, Λ2,

respectively. The product gXVX is assumed to include the gauge charge of the superfield

on which it acts. The charge is Y for U(1)Y , and 1 (0) for a multiplet (singlet) of a

generic group SU(N). The technicolor vector superfield VTC is identified with V and

its physical components are given in eq.(2.4). The remaining vector superfields are those

already defined in the MSSM [14] while the superpotential PTC is given in eq.(2.8). Finally,

the first term on the right of eq.(2.11) and its Hermitian conjugate represent the kinetic

Lagrangian terms of the self-interacting techni-gluon and techni-gaugino.

3. The M4ST Landscape

M4ST allows model builders to investigate in a well defined and computable way a large

number of (perturbative and nonperturbative) inequivalent extensions of the (MS)SM.

These inequivalent extensions are determined, partially, by the choice of the value of the

coupling constant of the supertechnicolor sector near the electroweak scale as well as on the

vacuum choice permitted by the flat directions and, finally, on the supersymmetry breaking

pattern. It is not possible to exhaust in this work all the possibilities and, hence, we limit

ourselves here to introduce the idea and the basic models of minimal super technicolor

type. We, however, sketch some of the basic features of different limits one can take within

the M4ST. Each specific model deserves to be studied on its own and some of these models

will be investigated in more detail in future publications.
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We identify two basic regimes. The perturbative one, in which the supertechnicolor

coupling is sufficiently small allowing the new sector to be treated in perturbation theory

and denote this model with pM4ST. We then introduce the case in which the supertechni-

color is strongly coupled and we will denote it as sM4ST.

3.1 Perturbative M4ST (pM4ST)

The simplest case to consider is the one in which the new sector is weakly coupled at the

electroweak scale (pM4ST). In this case the spectrum of states, which can be observed at

the electroweak scale, is constituted by the elementary fields introduced in (2.4) and (2.5).

However, the detailed mass spectrum will depend on the structure of the SUSY breaking

terms and on the corrections induced by the electroweak symmetry on the supertechnicolor

sector.

The phenomenology is extremely rich with several novel weakly coupled particles,

such as the new techni-up and techni-down, and their respective superpartners, which

can emerge at the LHC. The superpartners will be very similar to ordinary squarks but

will carry technicolor instead of color. All the weak processes involving the production of

squarks at colliders should be re-investigated to take into account the presence of these

new states.

Here we stress, instead, a specific feature of the spectrum associated to the massless,

neutral, and weakly interacting techni-fermion, namely DL. The introduction of the mass

term via an explicit Yukawa coupling to a Higgs scalar would break SUSY non-softly and

hence render the model unnatural. The techni-fermion DL, because of its weak charge, can

be produced in particle-antiparticle pairs by the Z boson decay. The phenomenology of a

massless DL, because of its coupling to the Z boson, might be difficult to reconcile with

the experimental data.

The chiral superfield kinetic term on the right hand side of eq.(2.11) generates the

Yukawa coupling
√
2gTCǫ

abcD̃a†
L D

b
LD̄

c
R which, in case the techni-Higgs D̃L develops a vac-

uum expectation value, would make D massive by breaking SU(2)TC × SU(2)L × U(1)Y
down to U(1)EM . In this analysis we have assumed that supertechnicolor symmetry is un-

broken at the electroweak scale (up to the effects induced by SUSY breaking in the MSSM

sector). A more promising way to tackle this problem is to consider, instead, a dynamical

symmetry breaking by the nonperturbative technicolor dynamics. This is typically what

happens in any (nonsupersymmetric) technicolor model.

We can also imagine to give a mass to D, relaxing possibly tight phenomenological

constraints on the pM4ST, through non-renormalizable interaction terms. From these

considerations it appears clear that a thorough phenomenological study of the pM4ST is

needed.

3.2 Strong M4ST, (sM4ST), AdS/CFT and Unparticle or the Holographic Su-

per Technicolor

If we assume the supertechnicolor dynamics to be strongly coupled at the electroweak scale,

then we must use non-perturbative methods to investigate the effects of the new sector on

the MSSM dynamics and vice versa. For example, we can no longer use the single particle
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state interpretation in terms of the underlying degrees of freedom of the supertechnicolor

model but rather must use an unparticle language given that the supertechnicolor model is

exactly conformal, before coupling it to the MSSM. The model resembles the one proposed

in [67] in which, besides a technicolor sector, one has also coupled a natural unparticle

composite sector. If no SUSY breaking terms are added directly to the 4SYM sector then

conformality will be broken only via weak and hypercharge interactions.

An important further point is that one can use the machinery of the AdS/CFT cor-

respondence to make reliable computations in the nonperturbative sector, considering the

effects of the electroweak interactions as small perturbations.

3.3 Natural 4th Super Family

The M4ST, as its predecessor, the MWT, predicts the natural occurrence of a fourth family

of leptons around the electroweak energy scale, put forward first in [7, 8]. The physics of

these fourth family of leptons has been studied in [68, 69]. In [68] we focussed especially on

detailed collider physics phenomenology while taking into account cosmological limits and

providing a detailed discussion of the mixing with the other generations. Precision data

and collider phenomenology were investigated in [69]. We note that MWT technicolor can

be considered as the precursor of the renewed interest in a fourth family at the LHC given

that, from the weak interactions point of view, the model has a fourth family of both

(techni)quarks and leptons, and historically appeared before the suggestions of [70] and

[71]. Besides, the electroweak precision data comparison is also very similar to the ones

we investigated within MWT 3. In [7, 8] we also showed that there is no problem with

precision data. From the electroweak point of view there is little difference between the

MWT and a fourth-family extended SM at the electroweak scale.

Since the M4ST is a supersymmetrized version of the MWT the former now features

a novel and natural super 4th family of leptons, besides the techniquarks, awaiting to be

discovered at colliders, albeit with more exotic electric charges. The new electron will be

doubly charged and will have a number of interesting signatures at colliders.

We have introduced a very minimal supersymmetric extension of MWT and shown

that one can use 4SYM as a direct extension of the SM of particle interactions. We have

briefly mentioned several possibilities which we will explore in the near future. This is,

however, not the only way we can supersymmetrize MWT.

4. Minimal N = 1 Super Technicolor (MST)

A more straightforward supersymmetrization of the MWT can be obtained simply adding a

superpartner for each particle in eq.(2.1) and for the techni-gluon G. The resulting model,

which we call minimal super technicolor (MST), is anomaly free for the hypercharge assign-

ment of eq.(2.2). This is so since the techni-gaugino, the only new Weyl fermion among

the techni-superpartners, is a singlet under SU(3)C × SU(2)L × U(1)Y , and transforms

according to the real representation of SU(2)TC , which also guarantees that there is no

topological anomaly [34].

3This is so since in the MWT the composite Higgs can be very light.
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Requiring the gauge anomalies (including the gravitational one) to cancel leaves two

hypercharges undetermined 4. We assume, however, for MST still the hypercharge assign-

ment displayed in eq.(2.2), since it does not require the introduction of additional Higgs

weak doublets.

We define the chiral superfields (left-handed transforming):

(

ŨL, UL

)

∈ Φ1,
(

D̃L, DL

)

∈ Φ2,
(

˜̄UR, ŪR

)

∈ U,
(

˜̄DR, D̄R

)

∈ D, (4.1)

all transforming according to the adjoint representation to the SU(2)TC gauge group and

the gauge superfield

(G, λ) ∈ V . (4.2)

The techni-singlet superfields are defined in eq.(2.5).

The cancellation of the Witten anomaly in the theory requires possible additional chiral

superfields to come in pairs, while generating fermion masses, respecting supersymmetry,

requires the Higgs doublets to be at least two. We choose to introduce in the theory the

two Higgs superfields whose charges are defined in eq.(2.6). Although for some value of

y this is not the minimal choice, it does allow us to obtain a phenomenologically viable

model for any value of y.

The first coefficient of the beta function of the MST is β0 = 3N − 4N = −N = −2,

where in the last equality we used the fact thatN = 2, i.e. the gauge group is SU(2)TC . The

first term is the contribution of the vector superfield and the second term counts the number

of chiral superfields in the adjoint representation of the gauge group times the quadratic

casimir for the adjoint representation of SU(N) (which is N with our normalization of the

generators). Since this coefficient is negative, we can use perturbation theory for the MST

to analyze the spectrum and physical processes at collider experiments and for cosmology.

This can be considered a virtue, eventhough this analysis does not take into account the

effects of SUSY breaking. If the breaking occurs at very high energies, with respect to

the electroweak scale, it will affect the running of the coupling constant. For example, if

all the superpartners are decoupled then one recovers the dynamics of MWT which is the

one of an asymptotically free gauge theory with a possible infrared fixed point around the

electroweak scale.

4.1 The MST Superpotential for y = 1

The superpotential of the theory is dictated by the value of the hypercharge parameter y

in eq.(2.2), since the gauge invariance of a generic term in the superpotential, an analytical

function of the chiral superfields, depends on the hypercharge assignment. We find the

models obtained for y = ±1,±1

3
, particularly appealing, since for these values of y it is

possible to write mass and Yukawa terms involving only the superfields in eq.(2.5) and

eq.(4.1), which we refer to simply as techni-superfields. For y = 0 one can write mass

4We note that that of eq.(2.2) is not the only possible anomaly free charge assignment. Given that in

these models there is no need for an ETC sector, we can avoid the constraint Y (UL)+Y (ŪR) = −

1
2
= Y (H ′)

(or equivalently Y (DL) + Y (D̄R) =
1
2
= Y (H)), since the role of the techni-fermion condensates is played

by two fundamental Higgs scalars, which generate the mass of the SM fermions.
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mixing terms for U and D, and for E and N , respectively. For any y Yukawa coupling

terms involving either one of the two Higgses are allowed, and so all the fermions in the

theory can acquire mass5.

In sec.(2) we already studied the minimal model for y = 1: by substituting Φ3 with U ,

gTC with yTC in eq.(2.8), and by adding the termsmDD
aDa, yDǫijΦ

a
iH

′
jD

a to eq.(2.8) and

y′DǫijΦ
a
i ljD

a to eq.(2.9) (where a = 1, 2, 3 is the SU(2)TC gauge index and we suppressed,

as we do for the rest of the paper, the family index k) one obtains the full superpotential

of the y = 1 MST, given by eq.(2.7). D now naturally acquires a mass term, in constrast

to the pM4ST case. The corresponding y = 1 MST phenomenology can more easily be put

in agreement with experimental data than in the pM4ST case.

The superpotential for y = −1 is similar to the y = 1 case and hence will not be

studied further here.

4.2 The MST Superpotential for y = ±1/3

For y = ±1

3
the MST presents both a gauge singlet and a Higgs candidate (with corre-

sponding hypercharge ±1

2
): the gauge singlet can be used to solve the MSSM µ problem in

an NMSSM fashion, while the Higgs candidate can be used in principle to reduce further

the particle content of the theory. Indeed for y = −1

3
we can identify the Higgs superfields

H with Λ and H ′ with l (a generic MSSM leptonic doublet superfield). With this choice

we are allowed to discard the extra Higgs superfields, since the theory has neither topo-

logical nor gauge anomalies. Such a theory, though, would suffer from some naturalness

and phenomenological problems: with reference to H ′ replaced by a SM lepton it would be

difficult to accommodate the relatively large mass splitting between the ordinary neutrino

and its scalar superpartner which now is identified with one the higgsses. Another phe-

nomenological obstruction would be that all the Yukawa terms, giving mass to the lower

components of the weak doublets, violate lepton number conservation. These operators

are strongly constrained by experiments. We will therefore study the model with y = −1

3

which includes both the H and H ′: the more economical model can be retrieved by sending

the masses of these two extra Higgs doublets to infinity.

Since the MST with y = −1

3
can be obtained easily from the y = 1

3
MST, we start

from this simpler case and then extend it to obtain the y = −1

3
model.

The hypercharge assignment for y = 1

3
corresponds to that of a SM family (assuming

that that includes also a right-handed neutrino):

Y (QL) =
1

6
, Y (ŪR, D̄R) =

(

−2

3
,
1

3

)

,

Y (LL) = −1

2
, Y (N̄R, ĒR) = (0, 1) . (4.3)

Following the notation of eqs.(2.7,2.8,2.9) we write the extension of the MSSM superpo-

5The techni-gaugino clearly requires a SUSY breaking term, rather than a superpotential mass term.
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tential as

PTC = sNN +
1

2
mNNN +mΛǫijΛiHj + yNN

3 + yU ǫijΦ
a
iHjU

a + yDǫijΦ
a
iH

′
jD

a

+ y′NǫijΛiHjN + yEǫijΛiH
′
jE + y′DǫijΦ

a
iΛjD

a + yHǫijHiH
′
jN + yeǫij liΛje,

(4.4)

to which we can add the lepton number violating terms6

PTC,∆L 6=0 = y′EǫijΛiljE + y′′DǫijΦ
a
i ljD

a + ynǫijliHjN + y′eǫij liH
′
jE + y′′e ǫijΛiH

′
je. (4.5)

It is interesting to notice that the term proportional tomN in eq.(4.4) and that proportional

to yn in eq.(4.5) generate the Lagrangian terms required to give mass to the neutrino in a

natural way (that is allowing for yn to be of the same order as the other Yukawa coupling

constants) by seesaw mechanism.

The hypercharge assignment for y = −1

3
corresponds to minus that of a SM family

(still assuming that that includes a right-handed neutrino):

Y (QL) = −1

6
, Y (ŪR, D̄R) =

(

−1

3
,
2

3

)

,

Y (LL) =
1

2
, Y (N̄R, ĒR) = (−1, 0) . (4.6)

We switch the weak singlet superfields U and D, and N and E, of eq.(4.1) to match the

label with the (absolute) value of the EM charge:

U ⇄ D, N ⇄ E . (4.7)

Applying these substitutions to eq.(4.4), and replacing the Higgs superfields H and H ′

respectively with Λ and l, as required by gauge invariance, we find:

PTC = sNN +
1

2
mNNN +mΛǫijΛiH

′
j + yNN

3 + yUǫijΦ
a
iH

′
jU

a + yDǫijΦ
a
iHjD

a

+ y′NǫijΛiH
′
jN + yEǫijΛiHjE + y′DǫijΦ

a
iΛjD

a + yHǫijHiH
′
jN. (4.8)

Notice that the correspondent of the last term in eq.(4.4) does not appear in eq.(4.8)

because, by symmetries, this term vanishes identically, i.e. yeǫijlilje = 0.7

The lepton number violating terms include also mass-mixing terms obtained coupling

techni-singlet and MSSM leptonic superfields with opposite hypercharges. These are in

addition to a number of Yukawa terms. These arise as a direct consequence of l and Λ

having the same charge assignments as H ′ and H. We can now add to PMSSM also the

superpotential

PTC,∆L 6=0 = m′
ΛǫijΛilj +meEe+ y′UǫijΦ

a
i ljU

a + y′′NǫijΛiljN + ynǫij liHjN

+ y′nǫij liΛjN + yeEeN, (4.9)

where the terms proportional to yn and y′n allow, together with that proportional to mN

in eq.(4.8), to solve the neutrino mass naturalness problem.

6We consider all the techni-superfields to have baryon and lepton number equal to zero.
7Here we neglect generation mixing terms, that otherwise would give a non-zero contribution to the

previous operator.
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4.3 Minimal Susy Breaking Terms

We neglect for now the most general expression for the SUSY breaking Lagrangian, and

write only those terms involving exclusively the gauge singlet N and the Higgses H and

H ′. The corresponding potential is:

Vsoft =
[

aH
˜̄NR

(

H̃1H̃
′
2 − H̃2H̃

′
1

)

+ aN
˜̄N3
R + bN

˜̄N2
R + cN

˜̄NR + h.c.
]

+M2
N ÑR

˜̄NR. (4.10)

It would be interesting to investigate the possibility of a phenomenologically viable solution

of both the MSSM µ and neutrino mass problems within the frame of the y = 1

3
MST. It

would be furthermore interesting to determine the level of fine tuning required by such a

possible solution, and what is the size of this tuning relative to that of the MSSM, which

is of the order of 1%. The corresponding SUSY-breaking potential for y = −1

3
MST is the

same as of eq.(4.10).

5. Conclusions

We have presented novel extensions of the SM featuring an N = 4 or N = 1 supertechni-

color sector. These models are minimal and direct supersymmetric generalizations of the

MWT model. We started from the observation that the MWT model has the same degrees

of freedom of 4SYM except for the absence of the six real scalars. Following this trail we

added the six scalars and constructed an extension of the SM naturally featuring a super-

symmetrized version of MWT which was 4SYM. We used as basic model, before adding the

new supertechnicolor model and supersymmetry breaking interactions, the MSSM, so that

we could give mass to all the SM particles. In the MSSM we then embedded the 4SYM

in such a way that the extended supersymmetry, of the supertechnicolor sector, is broken

to N = 1 only via weak and hypercharge gauge interactions. Since the original MWT

model contains also a natural 4th family of leptons, needed to cure the topological Witten

anomaly, we introduced in the theory also a 4th family of lepton superfields. We then

constructed the superpotential for the full theory and provided the Lagrangian in terms

of superfields as well as the corresponding physical components. The resulting model was

termed in short M4ST. Depending on the way supersymmetry breaks, the value of the

technicolor coupling constant around the electroweak scale, and the value assumed by sev-

eral other natural couplings one is allowed to investigate several vastly different physical

scenarios. We have suggested several possible models ranging from ordinary technicolor to

unparticle models as well as completely perturbative extensions. We recall that the new

sector coupled to the MSSM is, per se, conformal and hence it can be seen as a well defined

model of unparticle (when the technicolor coupling constant is sufficiently strong that the

single particle interpretation is no longer viable). The advantage is that even when the

supertechnicolor coupling constant is taken to be large, one can use AdS/CFT methods to

determine a number of features ranging from the computation of the unparticle spectrum

to thermodynamical properties which will be investigated in the future. Besides, the model

can benefit from, and provide further motivation for, lattice studies of supersymmetry (see

[72, 73, 74] for recent interesting lattice investigations). The M4ST model can now be used
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to predict interesting signals for collider phenomenology, as well as a model for cosmological

applications, for investigating a closer connection with string theory, and finally, one can

make use of the AdS/CFT methods to investigate explicit physical phenomena for beyond

standard model physics at the TeV scale.

For completeness we have also considered the case in which the MWT supertechnicolor

extension is directly an N = 1 gauge theory, the MST. Here more fields than in the case

of the M4ST are needed. We constructed the superpotential for several choices of the

technifields hypercharge. The models feature also a fourth generation of super leptons.

Because the beta function of the MST per se is positive (before supersymmetry breaking),

one can investigate the phenomenology of MST in the perturbative regime, which can be

seen as an advantage over models in which the theory is asymptotically free. Of course, if

one chooses to decouple the superpartners at a very high energy one will recover the MWT

theory, which is strongly coupled at the electroweak scale.

Any other model of supertechnicolor can be constructed in a similar way, by basically

merging a technicolor theory with its supersymmetric counterpart (in our case the MWT

and the MSSM, respectively). The dynamics at the electroweak scale will, however, de-

pend on the type of gauge interactions and supermatter representation with respect to

the technicolor interactions of the specific model. To this scope the reader can find use-

ful the knowledge of the SU(N) supersymmetric phase diagram for matter in different

representations [17].
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A. N = 4 Super Yang Mills: Notation and Lagrangian

The N = 4 supersymmetric Lagrangian for an SU(N) gauge theory can be written in

terms of three N = 1 chiral superfields Φi, i = 1, 2, 3 and one N = 1 vector superfield V ,

all in the adjoint representation of SU(N). The superpotential for this Lagrangian reads

(see [75] and references therein)

P = − g

3
√
2
ǫijkf

abcΦa
iΦ

b
jΦ

c
k, j, k = 1, 2, 3; a, b, c = 1, · · · , N2 − 1; (A.1)

where g is the gauge coupling constant, and fabc the structure constant. This superpotential

is invariant under SU(3) transformations over the flavor index. The full Lagrangian is

indeed invariant under SU(4) transformations because the N = 4 supersymmetry algebra

is invariant under the same transformations of the supercharges.

Following the notation of Wess and Bagger [76] we write

L =
1

2
Tr
(

WαWα|θθ + W̄α̇W̄
α̇|θ̄θ̄

)

+Φ†
i exp (2gV ) Φi|θθθ̄θ̄ + (P |θθ + h.c.) (A.2)

where

Wα = − 1

4g
D̄D̄ exp (−2gV )Dα exp (2gV ) , V = V aT a

A, (T a
A)

bc = −ifabc, (A.3)

and with Φi having gauge components Φa
i . In terms of the component fields eq.(A.2) can

be expressed as

L = −1

4
FµνaF a

µν − iλ̄aσ̄µDµλ
a −Dµφa†i Dµφ

a
i − iψ̄a

i σ̄
µDµψ

a
i

+
√
2gfabc

(

φa†i ψ
b
iλ

c + λ̄cψ̄b
iφ

a
i

)

+
g√
2
ǫijkf

abc
(

φai ψ
b
jψ

c
k + ψ̄c

kψ̄
b
jφ

a†
i

)

+
1

2
g2
(

fabdface + fabefacd
)

φb†i φ
c
iφ

d†
j φ

e
j (A.4)

where

F a
µν = ∂µA

a
ν − ∂νA

a
µ − gfabcAb

µA
c
ν , Dµξ

a = ∂ξa − gfabcAb
µξ

c, ξ = λ, ψi, φi. (A.5)

Here λ is the gaugino, while ψi and φi are respectively the fermionic and scalar component

of Φi. To make explicit the SU(4) R-symmetry of the Lagrangian the following change of

variables provides useful:

ϕa
rs = −ϕa

sr, ϕ
a
i4 =

1

2
φai , ϕ

a
ij =

1

2
ǫijkφ

a†
k , η

a
i = ψa

i , η
a
4 = λa; r, s = 1, · · · , 4. (A.6)

The symmetry of the Lagrangian can be made manifest by rewriting eq.(A.4) as

L = −1

4
FµνaF a

µν − TrDµϕa†Dµϕ
a − iη̄ar σ̄

µDµη
a
r

−
√
2gfabc

(

ϕa†
rsη

b
rη

c
s + η̄crη̄

b
sϕ

a
rs

)

+
1

2
g2
(

fabdface + fabefacd
)

Trϕb†ϕcTrϕd†ϕe. (A.7)

Under SU(4) ϕa transforms as a 6, ηa as a 4, and Aa
µ as a 1, leaving the Lagrangian in

eq.(A.7) unchanged.
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B. M4ST Lagrangian in Components

The Lagrangian of a supersymmetric theory can, in general, be defined by

L = Lkin + Lg−Y uk + LD + LF + LP−Y uk + Lsoft, (B.1)

where the labels refer to the kinetic terms, the Yukawa ones given by gauge and super-

potential interactions, the D and F scalar interaction terms, and the soft SUSY breaking

ones. All these terms can be expressed in function of the physical fields of the theory with

the help of the following equations:

Lkin = −1

4
Fµνa
j F a

jµν − iλ̄aj σ̄
µDµλ

a
j −Dµφa†i Dµφ

a
i − iψ̄a

i σ̄
µDµψ

a
i , (B.2)

Lg−Y uk =
∑

j

i
√
2gj

(

φ†iT
a
j ψiλ

a
j − λ̄aj ψ̄iT

a
j φi

)

, (B.3)

LD = −1

2

∑

j

g2j

(

φ†iT
a
j φi

)2

, (B.4)

LF = −
∣

∣

∣

∣

∂P

∂φai

∣

∣

∣

∣

2

, (B.5)

LP−Y uk = −1

2

[

∂2P

∂φai ∂φ
b
l

ψa
i ψ

b
l + h.c.

]

, (B.6)

where i, l run over all the scalar field labels, while j runs over all the gauge group labels, and

a, b are the corresponding gauge group indices. Furthermore, we normalize the generators

in the usual way, by taking the index T (F ) = 1

2
, where

TrT a
RT

b
R = T (R)δab,

with R here referring to the representation (F=fundamental). The SUSY breaking soft

terms, moreover, are obtained by re-writing the superpotential in function of the scalar

fields alone, and by adding to it its Hermitian conjugate and the mass terms for the

gauginos and the scalar fields.

Using these equations it is rather straightforward to write the Lagrangian of the M4ST

defined in sec.(2). We refer to [14] and references therein for the explicit form of LMSSM in

terms of the physical fields of the MSSM, and focus here only on LTC . The kinetic terms

are trivial and therefore we do not write them here. The gauge Yukawa terms are given by

Lg−Y uk =
√
2gTC

(

˜̄U b
LU

c
LD̄

a
R −Da

RŪ
b
LŨ

c
L + ˜̄Db

LD
c
LD̄

a
R −Da

RD̄
b
LD̃

c
L + Ũ b

RŪ
c
RD̄

a
R −Da

RU
b
R
˜̄U c
R

)

ǫabc

+ i
gL√
2

(

˜̄Qi
LQ

j
LW̃

k − ˜̄W kQ̄i
LQ̃

j
L + ˜̄Li

LL
j
LW̃

k − ˜̄W kL̄i
LL̃

j
L

)

σkij

+ i
√
2gY

∑

p

Yp

(

˜̄ψpψpB̃ − ˜̄Bψ̄pψ̃p

)

, ψp = Ua
L,D

a
L, Ū

a
R, NL, EL, N̄R, ĒR , (B.7)

where W̃ k and B̃ are respectively the wino and the bino, σk the Pauli matrices, i, j =

1, 2; k, a, b, c = 1, 2, 3; and the hypercharge Yp is given for each field ψp in eqs.(2.3).
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The D terms are given by

LD = −1

2

(

g2TCD
a
TCD

a
TC + g2LD

k
LD

k
L + g2YDYDY

)

+
1

2

(

g2LD
k
LD

k
L + g2YDYDY

)

MSSM
,

(B.8)

where

Da
TC = −iǫabc

(

˜̄U b
LŨ

c
L + ˜̄Db

LD̃
c
L + Ũ b

R
˜̄U c
R

)

, Dk
L =

σkij
2

(

˜̄Qi
LQ̃

j
L + ˜̄Li

LL̃
j
L

)

+Dk
L,MSSM

DY =
∑

p

Yp
˜̄ψpψ̃p +DY,MSSM . (B.9)

In these equations the Dk
L,MSSM and DY,MSSM auxiliary fields are assumed to be expressed

in function of the MSSM physical fields [14]. The rest of the scalar interaction terms8 is

given by

LF = −g2TC

[

(

Ũ b
L
˜̄U b
L + D̃b

L
˜̄Db
L + ˜̄U b

RŨ
b
R

)2

−
(

Ũ b
L
˜̄U c
L + D̃b

L
˜̄Dc
L + ˜̄U b

RŨ
c
R

)(

˜̄U b
LŨ

c
L + ˜̄Db

LD̃
c
L

+ Ũ b
R
˜̄U c
R

)]

− y2U

[(

H̃1D̃
a
L − H̃2Ũ

a
L

)(

˜̄H1
˜̄Da
L − ˜̄H2

˜̄Ua
L

)

+ Ũa
R
˜̄Ua
R

(

H̃1
˜̄H1 + H̃2

˜̄H2

)

+ Ũa
R
˜̄U b
R

(

˜̄Ua
LŨ

b
L + ˜̄Da

LD̃
b
L

)]

− y2N

[(

˜̄NL
˜̄H2 − ˜̄EL

˜̄H1

)(

ÑLH̃2 − ẼLH̃1

)

+ ÑR
˜̄NR

(

H̃1
˜̄H1 + H̃2

˜̄H2 + ÑL
˜̄NL + ẼL

˜̄EL

)]

− y2E

[(

˜̄NL
˜̄H ′
2 − ˜̄EL

˜̄H ′
1

)(

ÑLH̃
′
2 − ẼLH̃

′
1

)

+ ẼR
˜̄ER

(

H̃ ′
1
˜̄H ′
1 + H̃ ′

2
˜̄H ′
2 + ÑL

˜̄NL + ẼL
˜̄EL

)]

+
{√

2yUgTCǫ
abc
[

Ũ b
LD̃

c
L

(

˜̄H1
˜̄Da
L − ˜̄H2

˜̄Ua
L

)

+ ˜̄U b
RŨ

c
L
˜̄H1Ũ

a
R + ˜̄U b

RD̃
c
L
˜̄H2Ũ

a
R

]

− yUyN Ũ
a
R
˜̄NR

(

˜̄Ua
LÑL + ˜̄Da

LẼL

)

− yNyE ÑR
˜̄ER

(

˜̄H1H̃
′
1 +

˜̄H2H̃
′
2

)

+ h.c.
}

+ Lmix, (B.10)

with Lmix defined in function of the F auxiliary fields associated with the MSSM two Higgs

super-doublets:

Lmix = −
∑

φp

(

Fφp,TCF
†
φp,MSSM + h.c.

)

, φp = H ′
1,H

′
2,H1,H1, FH′

1,TC = −yEẼL
˜̄ER,

FH′
2,TC = yEÑL

˜̄ER, FH1,TC = −yUD̃a
L
˜̄Ua
R − yNẼL

˜̄NR, FH2,TC = yU Ũ
a
L
˜̄Ua
R + yNÑL

˜̄NR.

(B.11)

The corresponding MSSM auxiliary fields F can be found in [14] and references therein.

Also, in the eqs.(B.10,B.11) we used H̃ and H̃ ′ to indicate the scalar Higgs doublets, for

consistency with the rest of the notation where the tilde identifies the scalar component

of a chiral superfield or the fermionic component of a vector superfield. The remaining

8We neglect here and in the following the lepton-number violating terms given by the superpotential

in eq.(2.9), and consider the constants in the superpotential to be real in first approximation to avoid the

contribution of CP violating terms.
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Yukawa interaction terms are determined by the superpotential, and can be expressed as

LP−Y uk =
√
2gTCǫ

abc
(

Ua
LD

b
L
˜̄U c
R + Ua

LD̃
b
LŪ

c
R + Ũa

LD
b
LŪ

c
R

)

+ yU

[

(H1D
a
L −H2U

a
L)

˜̄Ua
R

+
(

H̃1D
a
L − H̃2U

a
L

)

Ūa
R +

(

H1D̃
a
L −H2Ũ

a
L

)

Ūa
R

]

+ yN

[

(H1EL −H2NL)
˜̄NR

+
(

H1ẼL −H2ÑL

)

N̄R +
(

H̃1EL − H̃2NL

)

N̄R

]

+ yE

[

(

H ′
1EL −H ′

2NL

) ˜̄ER

+
(

H ′
1ẼL −H ′

2ÑL

)

ĒR +
(

H̃ ′
1EL − H̃ ′

2NL

)

ĒR

]

+ h.c.. (B.12)

The soft SUSY breaking terms, finally, can be written straightforwardly starting from the

superpotential in eq.(2.8), to which we add the techni-gaugino and scalar mass terms as

well:

Lsoft = −
[

aTCǫ
abcŨa

LD̃
b
L
˜̄U c
R + aU

(

H̃1D̃
a
L − H̃2Ũ

a
L

)

˜̄Ua
R + aN

(

H̃1ẼL − H̃2ÑL

)

˜̄NR

+ aE

(

H̃ ′
1ẼL − H̃ ′

2ÑL

)

˜̄ER +
1

2
MDD̄

a
RD̄

a
R + h.c.

]

−M2
Q
˜̄Qa
LQ̃

a
L −M2

U
˜̄Ua
RŨ

a
R

− M2
L
˜̄LLL̃L −M2

N
˜̄NRÑR −M2

E
˜̄ERẼR. (B.13)

C. MST Lagrangian in Components

In this appendix we write the y = 1

3
MST Lagrangian, determined by the superpotential

in eqs.(2.7,4.4), in terms of its physical components. The full Lagrangian can be derived

using eqs.(B.1,B.2,B.3,B.4,B.5,B.6), as we did for the M4ST Lagrangian in the previous

appendix. The MST Lagrangian’s kinetic terms (eq.(B.2)) are trivial and therefore we do

not write them here. The gauge Yukawa terms, indipendent of the superpotential, are

given by

Lg−Y uk =
√
2gTC

(

˜̄U b
LU

c
Lλ

a − λ̄aŪ b
LŨ

c
L + ˜̄Db

LD
c
Lλ

a − λ̄aD̄b
LD̃

c
L + Ũ b

RŪ
c
Rλ

a − λ̄aU b
R
˜̄U c
R + D̃b

RD̄
c
Rλ

a

− λ̄aDb
R
˜̄Dc
R

)

ǫabc + i
gL√
2

(

˜̄Qi
LQ

j
LW̃

k − ˜̄W kQ̄i
LQ̃

j
L + ˜̄Li

LL
j
LW̃

k − ˜̄W kL̄i
LL̃

j
L

)

σkij

+ i
√
2gY

∑

p

Yp

(

˜̄ψpψpB̃ − ˜̄Bψ̄pψ̃p

)

, ψp = Ua
L,D

a
L, Ū

a
R, D̄

a
R, NL, EL, N̄R, ĒR , (C.1)

where i, j = 1, 2; k, a, b, c = 1, 2, 3; and the hypercharge Yp is given for each field ψp in

eqs.(4.3).

The D terms are given by

LD = −1

2

(

g2TCD
a
TCD

a
TC + g2LD

k
LD

k
L + g2YDYDY

)

+
1

2

(

g2LD
k
LD

k
L + g2YDYDY

)

MSSM
,

(C.2)

where

Da
TC = −iǫabc

(

˜̄U b
LŨ

c
L + ˜̄Db

LD̃
c
L + Ũ b

R
˜̄U c
R + D̃b

R
˜̄Dc
R

)

,

Dk
L =

1

2
σkij

(

˜̄Qi
LQ̃

j
L + ˜̄Li

LL̃
j
L

)

+Dk
L,MSSM , DY =

∑

p

Yp
˜̄ψpψ̃p +DY,MSSM . (C.3)
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In these equations the Dk
L,MSSM and DY,MSSM auxiliary fields are assumed to be expressed

in function of the MSSM physical fields [14]. The rest of the scalar interaction terms9 is

given in terms of the F auxiliary fields by

LF = −
∑

φp

Fφp
F †
φp
, φp = UL,DL, ŪR, D̄R, NL, EL, N̄R, ĒR,H1,H2,H

′
1,H

′
2, νL, eL, ēR,

(C.4)

where

FUL
= yUH̃2

˜̄Ua
R + yDH̃

′
2
˜̄Da
R + y′DẼL

˜̄Da
R,

FDL
= −yUH̃1

˜̄Ua
R − yDH̃

′
1
˜̄Da
R − y′DÑL

˜̄Da
R,

FŪR
= yU

(

Ũa
LH̃2 − D̃a

LH̃1

)

,

FD̄R
= yD

(

Ũa
LH̃

′
2 − D̃a

LH̃
′
1

)

+ y′D

(

Ũa
LẼL − D̃a

LÑL

)

,

FNL
= mΛH̃2 + y′NH̃2

˜̄NR + yEH̃
′
2
˜̄ER − y′DD̃L

˜̄DR − yeẽL ˜̄eR,

FEL
= −mΛH̃1 − y′NH̃1

˜̄NR − yEH̃
′
1
˜̄ER + y′DŨL

˜̄DR + yeν̃L ˜̄eR,

FN̄R
= sN +mN

˜̄NR + 3yN
˜̄N2
R + y′N

(

ÑLH̃2 − ẼLH̃1

)

+ yH

(

H̃1H̃
′
2 − H̃2H̃

′
1

)

,

FĒR
= yE

(

ÑLH̃
′
2 − ẼLH̃

′
1

)

, (C.5)

and for the MSSM physical fields, referring to [14] and references therein for the MSSM

auxiliary F fields,

FH1
= −(mΛẼL + yUD̃

a
L
˜̄Ua
R + y′NẼL

˜̄NR − yHH̃
′
2
˜̄NR) + FH1,MSSM ,

FH2
= mΛÑL + yU Ũ

a
L
˜̄Ua
R + y′N ÑL

˜̄NR − yHH̃
′
1
˜̄NR + FH2,MSSM ,

FH′
1
= −(yDD̃

a
L
˜̄Da
R + yEẼL

˜̄ER + yHH̃2
˜̄NR) + FH′

1,MSSM ,

FH′
2
= yDŨ

a
L
˜̄Da
R + yEÑL

˜̄ER + yHH̃1
˜̄NR + FH′

2,MSSM ,

FνL = yeẼL ˜̄eR + FνL,MSSM ,

FeL = −yeÑL ˜̄eR + FeL,MSSM ,

FēR = ye

(

ν̃LẼL − ẽLÑL

)

+ FēR,MSSM . (C.6)

The remaining Yukawa interaction terms are determined by the superpotential, and can

9We neglect here and in the following the lepton-number violating terms given by the superpotential in

eq.(4.4) and assume the constants in eq.(4.4) to be real to avoid CP violating contributions.
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be expressed as

LP−Y uk = −1

2
mN N̄RN̄R −mΛ (NLH2 − ELH1)− 3yN

˜̄NRN̄RN̄R − yU

[

(Ua
LH2 −Da

LH1)
˜̄Ua
R

+
(

Ua
LH̃2 −Da

LH̃1

)

Ūa
R +

(

Ũa
LH2 − D̃a

LH1

)

Ūa
R

]

− yD

[

(

Ua
LH

′
2 −Da

LH
′
1

) ˜̄Da
R

+
(

Ua
LH̃

′
2 −Da

LH̃
′
1

)

D̄a
R +

(

Ũa
LH

′
2 − D̃a

LH
′
1

)

D̄a
R

]

− y′N

[

(NLH2 −ELH1)
˜̄NR

+
(

NLH̃2 − ELH̃1

)

N̄R +
(

ÑLH2 − ẼLH1

)

N̄R

]

− yE

[

(

NLH
′
2 − ELH

′
1

) ˜̄ER

+
(

NLH̃
′
2 − ELH̃

′
1

)

ĒR +
(

ÑLH
′
2 − ẼLH

′
1

)

ĒR

]

− y′D

[

(Ua
LEL −Da

LNL)
˜̄Da
R

+
(

Ua
LẼL −Da

LÑL

)

D̄a
R +

(

Ũa
LEL − D̃a

LNL

)

D̄a
R

]

− yH

[

(

H1H
′
2 −H2H

′
1

) ˜̄NR

+
(

H1H̃
′
2 −H2H̃

′
1

)

N̄R +
(

H̃1H
′
2 − H̃2H

′
1

)

N̄R

]

− ye [(νLEL − eLNL) ˜̄eR

+
(

νLẼL − eLÑL

)

ēR + (ν̃LEL − ẽLNL) ēR

]

+ h.c.. (C.7)

The soft SUSY breaking terms, finally, can be written straightforwardly starting from the

superpotential in eq.(4.4), to which we add the techni-gaugino and scalar mass terms as

well:

Lsoft = −
[

aN
˜̄N3
R + bN

˜̄N2
R + cN

˜̄NR + bΛ

(

ÑLH̃2 − ẼLH̃1

)

+ aH

(

H̃1H̃
′
2 − H̃2H̃

′
1

)

˜̄NR

+ aU

(

Ũa
LH̃2 − D̃a

LH̃1

)

˜̄Ua
R + aD

(

Ũa
LH̃

′
2 − D̃a

LH̃
′
1

)

˜̄Da
R + a′N

(

ÑLH̃2 − ẼLH̃1

)

˜̄NR

+ aE

(

ÑLH̃
′
2 − ẼLH̃

′
1

)

˜̄ER + a′D

(

Ũa
LẼL − D̃a

LÑL

)

˜̄Da
R + ae

(

ν̃LẼL − ẽLÑL

)

˜̄eR +
1

2
Mλλ̄

aλ̄a

+ h.c.] −M2
Q
˜̄Qa
LQ̃

a
L −M2

U
˜̄Ua
RŨ

a
R −M2

D
˜̄Da
RD̃

a
R −M2

L
˜̄LLL̃L −M2

N
˜̄NRÑR −M2

E
˜̄ERẼR. (C.8)
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