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Recently, we developed a formalism for the scattering from linear and acyclic branched structures
build of mutually non-interacting sub-units. [C. Svaneborg and J. S. Pedersen, J. Chem. Phys. 136,
104105 (2012)] We assumed each sub-unit has reference points associated with it. These are well-
defined positions where sub-units can be linked together. In the present paper, we generalize the
formalism to the case where each reference point can represent a distribution of potential link po-
sitions. We also present a generalized diagrammatic representation of the formalism. Scattering
expressions required to model rods, polymers, loops, flat circular disks, rigid spheres, and cylin-
ders are derived, and we use them to illustrate the formalism by deriving the generic scattering
expression for micelles and bottle-brush structures and show how the scattering is affected by differ-
ent choices of potential link positions and sub-unit choices. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.3701737]

I. INTRODUCTION

Light scattering, small-angle neutron or x-ray scattering
(LS, SANS, and SAXS, respectively) techniques are ideal for
obtaining detailed information about self-assembled molecu-
lar and colloidal structures.1–3 However, these techniques pro-
vide reciprocal space intensity spectra. Typically, such spec-
tra cannot be interpreted directly, instead extensive modeling
is required to infer structural information. Such an analysis
necessitates the availability of a large tool-box of model ex-
pressions characterizing the scattering spectra expected from
many different well-defined structures. Fitting such model ex-
pressions to experimental scattering spectra allows the experi-
mentalist to infer and accurately quantify which structures are
most likely to be present in a given sample.

While scattering theory and statistical mechanics provide
a general framework for how to derive such models, there
are no general analytical methods for deriving the expected
scattering spectra for complex self-assembled structures. Of-
ten unchecked approximations need to be introduced to ob-
tain analytical results. Alternatively computer simulations can
be employed to make virtual scattering experiments from en-
sembles of well-defined structures, which can then be com-
pared to the experimental scattering spectra. Our aim here is
to present a formalism for deriving the scattering expressions
characterizing a large class of structures.

We assume that the structures are build out of well-
defined components which we call sub-units. We make no
assumptions as to the internal structure of a sub-unit, nor
on the number of sub-unit types that can be present in a
given structure. Sub-units have well-defined reference points
by which they can be joined to other sub-units. The formalism
in its present form requires that sub-units are mutually non-
interacting, and that all such joints are completely flexible.

Finally, the formalism requires that the structures do not con-
tain loops. For structures that meet these requirements, the
formalism allows exact scattering expressions characterizing
the corresponding scattering expression to be derived with
great ease. The central idea is to express the scattering of the
whole structure in terms of scattering expressions characteriz-
ing the sub-units instead of the scattering from the individual
scattering sites comprising the structure. This idea was previ-
ously used by Benoit and Hadziioannou4 to calculate the scat-
tering from various block-copolymer structures, and by Read5

who applied it to calculate the scattering from H-polymers
and stochastic branched polymer structures. Teixeira et al.
used this idea to calculate the scattering from structures com-
posed of polymer/rod polycondensates.6, 7

In a previous paper,8 we derived and presented a versa-
tile formalism for predicting the scattering from linear and
branched structures composed of arbitrary functional sub-
units. We argued that the formalism is complete in the follow-
ing sense: Three functions describe the scattering from a sub-
unit, and we derive three analogous scattering expressions
that describe the scattering from a structure. Hence, we can
(1) build bottom-up hierarchical structures by building struc-
tures by joining sub-units at well-defined sites in a struc-
ture and (2) build top-down hierarchical structures by substi-
tuting sub-units by more complex sub-structures composed
of sub-units. Furthermore, the formalism is generic, in the
sense that scattering contributions from structural connectiv-
ity and the internal sub-unit structures are decoupled. This
allows generic structural scattering expressions to be de-
rived that describe the scattering from complex hierarchical
structures independently of which sub-units the structure is
built of. We also developed a diagrammatic interpretation
of the formalism that allows us to map structural transfor-
mations onto algebraic transformations of the corresponding
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scattering expressions. We illustrated this with the transfor-
mation rules producing the scattering expression for an nth
generation dendrimer, by successive replacement of the out-
ermost leaves by star shaped sub-structures. In this previ-
ous paper,8 we focused on structural complexity and illus-
trated the formalism by deriving the structural scattering ex-
pressions of linear chain structures, stars, pom-poms, bottle-
brushes (i.e., chains of stars), and dendritic structures (i.e.,
stars build of stars).

In the present paper, our focus is to present the expres-
sions characterizing a large variety of possible sub-units such
as rigid rods, flexible and semi-flexible polymers and loops
of flexible polymers. We also present general expressions for
geometric sub-units together with the expressions for special
cases such as disks, spherical shells, solid spheres, and cylin-
ders. While the form factors for most of the sub-units are well
known, the form factor amplitudes and phase factors depend
crucially on how we choose to link the sub-units together.
Different choices of linking (for instance, center-to-center or
surface-to-surface) cause additional geometric factors to ap-
pear in the form factor amplitudes and phase factors. To il-
lustrate the formalism, we use it to predict the scattering for
chains of identical sub-units. Furthermore, we address the sit-
uation where a single sub-unit can have a distribution of ref-
erence points, and hence form factor amplitudes and phase
factors need to be averaged over linking probability distribu-
tions. Together, Paper I and the present paper allow the scat-
tering expressions for complex heterogeneous structures of a
variety of sub-units to be derived with great ease.

The paper is structured as follows: In Sec. II, we present
the formalism and generalize it for structures where reference
points can be distributed. We illustrate the formalism by de-
riving the generic scattering for a block copolymer micelle. In
Sec. III, we present the general scattering expressions charac-
terizing an arbitrary linear sub-unit with internal conforma-
tional degrees of freedom, and in Sec. IV we give examples
of the scattering from chains and bottle-brush structures. In
Sec. V, we present the general scattering expressions char-
acterizing an arbitrary geometrical sub-unit without internal
conformations, and in Sec. VI we give examples of the scat-
tering from block copolymer micelles with different core sub-
units and tethering geometries as well as the scattering from
end-linked cylinders. We present our conclusions in Sec. VII.
In the Appendix, we derive the scattering terms for polymers,
rods, and closed polymer loops, and for spheres, disks, and
cylinders taking different tethering geometries into account.

II. THEORY

The present theory pertains to the small-angle scattering
for structures build out of sub-units and how to efficiently de-
rive the scattering spectra characterizing such structures. The
formalism is identical for light, x-ray, or neutron scattering
experiments within the Rayleigh-Debye-Ganz approximation.
We define an excess scattering length for each sub-unit. This
parameter captures the experimental details of the interactions
between the incident radiation and the scatterers inside the
sub-unit, and also the scattering properties of the solvent in
which we assume the structures are dissolved.

Each sub-unit comprises a specific number of scattering
sites. We equip each sub-unit with an arbitrary number of ref-
erence points, these are positions on the sub-unit where we
can join two or more sub-units together. Later we will gener-
alize each reference point to represent a distribution of such
positions. If the sub-unit is a polymer molecule, then a natu-
ral choice could be to have the two ends as reference points,
if we are interested in deriving the scattering from end-linked
polymer structures. Assume that the Ith sub-unit is composed
of point-like scatterers, where the jth scatterer in the sub-unit
is located at a position rIj and has excess scattering length
bIj. Let RIα denote the position of the αth reference point as-
sociated with the Ith sub-unit. Once two or more sub-units
are connected at the same reference point, we refer to it as a
vertex in the resulting structure, e.g., if sub-units I and J are
joined at reference point α, then RIα = RJα denotes the same
position in space and a vertex in the structure. Here and in the
following capital letters refer to sub-units, lower case letters
refer to scatterers inside a sub-unit, and Greek letters refer to
vertices and reference points.

Scattering experiments measure the distribution of pair-
distances between scatterers in a structure. For a given struc-
ture S we can define three types of pair-distance distribu-
tions. The form factor FS(q) is the excess scattering length
weighted Fourier transformed and conformationally averaged
pair-distance distribution between all scatterers in the struc-
ture; this is what is measured in a scattering experiment. We
can also define two auxiliary pair-distance distributions. The
form factor amplitude ASα(q) which is the scattering length
weighted Fourier transform of the pair-distance distribution
between all scatterers in the structure and a specified vertex
α. Finally, the phase factor �Sαω is the Fourier transform of
the pair-distance distribution between two vertices α and ω in
the structure.

We can define the form factor, form factor amplitudes,
and phase factors of a structure S in terms of the scattering
sites and reference points as

FS(q) = (βS)−2

〈∑
j,k

bSj bSke
iq·(rSj −rSk )

〉
S

, (2.1)

ASα(q) = (βS)−1

〈∑
j

bSj e
iq·(rSj −RSα )

〉
S

, (2.2)

and

�Sαω(q) = 〈eiq·(RSα−RSω)〉S. (2.3)

The 〈· · ·〉S averages are over internal conformations and
orientations. The total scattering length of the whole structure
is βS = ∑

jbSj. Due to the orientational average, all the func-
tions only depend on the magnitude of the momentum transfer
q, which is given by the angle between the incident and scat-
tered beam and the wavelength of the radiation. We also have
�Sαω = �Sωα due to the orientational average. Here and in
the rest of the paper, the form factor, form factor amplitudes,
and phase factors are normalized to unity in the limit q → 0.

The derivation of scattering expressions for com-
plex structures can be vastly simplified by describing the
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structure not in terms of fundamental scattering sites, but in-
stead in terms of logical structural sub-units of the structure.
Each sub-unit corresponds to a well-defined group of the scat-
tering sites, and is characterized by its own form factor, form
factor amplitudes, and phase factors defined by Eqs. (2.1)–
(2.3). For instance, to derive the scattering expression for a
block-copolymer micelle, we can group all the scattering sites
of the core into one sub-unit, and let each polymer in the
corona be described by a sub-unit.

The fundamental result of the present formalism is to
express the form factor, form factor amplitudes, and phase
factors of a whole structure in terms of the same functions

characterizing the sub-units. An exact and generic expression
can only be derived in the case where the internal confor-
mations of all sub-units are uncorrelated, since in this case
the structural average factorizes into single-sub unit averages.
This allows generic scattering expressions to be derived for
a large class of complex structures. The assumption of un-
correlated sub-units corresponds to assuming that sub-units
are mutually non-interacting, that joints are completely flex-
ible, and that the structure does not contain loops. Subject to
these assumptions, we can succinctly express the form fac-
tor, form factor amplitudes, and phase factors of a structure
S as

FS(q) = β−2
S

⎡
⎢⎢⎢⎢⎣

∑
I

β2
I FI (q) +

∑
I �=J

α∈I near ω∈J

βIβJ AIα(q)AJω(q)
∏

(K,τ,η)
∈P(α,ω)

�Kτη(q)

⎤
⎥⎥⎥⎥⎦ , (2.4)

ASα(q) = β−1
s

⎡
⎢⎢⎢⎢⎣

∑
I

ω∈I near α

βIAIω(q)
∏

(K,τ,η)
∈P(α,ω)

�Kτη(q)

⎤
⎥⎥⎥⎥⎦ ,

(2.5)

and

�Sαω(q) =
∏

(K,τ,η)
∈P(α,ω)

�Kτη(q). (2.6)

Here FI denotes the form factor of the Ith sub-unit, AIα

denotes the form factor amplitude of the Ith sub-unit relative
to the reference point α, �Iτη denotes the phase factor of the
Ith sub-unit between reference points τ and η, andβI = ∑

jbIj

denotes the total excess scattering length of the Ith sub-unit.
These terms are defined as Eqs. (2.1)–(2.3) with S replaced
by I. In the form factor we have a double sum over distinct
sub-unit pairs, and in the form factor amplitude a single sum
over sub-units. In the form factor sum, the restriction α ∈ I
near ω ∈ J means that we have to identify the reference point
α on I nearest to J in terms of the structural connectivity, and
similarly the reference point ω on J nearest to I. Having done
this, we can identify the path P(α, ω) of sub-units (K) and
reference point pairs (τ ,η) that has to be traversed to walk be-
tween the Ith and Jth sub-units from the reference point α to
the reference point ω on the structure. Since we are assum-
ing acyclic branched structures this path definition is always
unique. Details of the derivation of this expression is given
in Ref. 8. In the Example section below, we will show how
to derive the scattering for a few concrete structures using
Eqs. (2.4)–(2.6). First, we will generalize the formalism to the
case of random linking positions and present a diagrammatic
illustration of the physical interpretation of the generalized
formalism.

Above we have assumed that sub-units are always linked
at reference points which correspond to specific sites on the
sub-units. In the following, we refer to this as regular refer-
ence points. For many structures there is an element of ran-
domness to where sub-units are joined together. For an exam-
ple of a bottle-brush structure, we can, for instance, imagine
a main rod with polymer sub-units linked at random positions
along the rod. While the structure has an element of random-
ness, the connectivity remains well defined. Note, that this
situation differs from random linking, where the structure will
have a random connectivity. Here and below we only address
the first situation. Random linking can be described by cas-
cade theory9, 10 or Markov chain models.6, 7

The formalism can easily be generalized to the case
where some or all reference points refer to distributions of po-
tential link positions on a sub-unit. Above, we have assumed
that a reference point α on a sub-unit refers to a unique fixed
position RIα on the sub-unit, and that sub-unit pairs I and J are
joined at the α vertex when RIα = RJα . Below we consider the
situation where a reference point can be picked from a given
distribution. In this case we refer to the reference point as an
distributed reference point. Assuming we are given a set of
potential positions for the αth reference point on sub-unit I
where the mth possible position is RIαm and is associated with
a probability QIαm and similar RJαn and QJαn for the nth pos-
sible position of the αth reference point on sub-unit J. Then
the probability of joining two sub-units I and J at the α ver-
tex at specific positions RIαm = RJαn is given by the product
QIαmQJαn. This is tantamount to assuming that the two linking
positions on the two joined sub-units are statistically uncorre-
lated. Note that one or both of these distributions can still refer
to a single potential position; hence, regular reference points
remain a special case of the generalized formalism.

To derive Eqs. (2.4)–(2.6), we had to assume that the
internal conformations of all sub-units were uncorrelated.
This allowed structural averages to be factorized into single-
sub unit averages. When we have assigned a probability
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distribution to some or all reference points we have to cal-
culate 〈ASα(q)〉Q, 〈�Sαω(q)〉Q, where 〈· · ·〉Q denotes the addi-
tional averages over link position distributions. Since we have
assumed that linking positions on different sub-units are sta-
tistically independent, the structural and linking position aver-
ages again factorize into single sub-unit averages over internal
conformations as well as linking degrees of freedom. Sub-unit
form factors are independent of reference points, and hence
unaffected by this average. For a sub-unit with a finite set of
potential random linking positions, we can define the refer-
ence point averaged form factor amplitudes and phase factors
as

AI 〈α〉(q) = 〈AIα(q; RIα)〉QIα
≡

∑
n

QIαnAIα(q, RIαn),

(2.7)

�I 〈α〉〈ω〉(q) = 〈�Iαω(q; RIα, RIω)〉QIαQIω

≡
∑
n,m

QIαnQIωm�Iα(q; RIαn, RIωm). (2.8)

Here we write explicitly the reference points that are to be
averaged over in the form factor amplitudes and phase factors.
Here and below we use 〈α〉 to denote the case where the αth
reference point label on the Ith sub-unit has been averaged.
We continue to denote by α a regular reference point, where
no average is to be performed. The formalism (Eqs. (2.4)–
(2.6)) remains valid when some or all form factor amplitudes
and phase factors include distributed reference points.

Figure 1 schematically illustrates an example structure
for which the formalism can provide the corresponding scat-
tering expression. It shows how sub-units can be joined either
at regular reference points or at distributed reference points.
Note how a reference point is associated with a sub-unit,
hence δ refers to a regular reference point on sub-unit L, that
is joined to any of the δ reference points on the Ith sub-unit
denoted by the 〈δ〉 average reference point. In general, a ver-

FIG. 1. Illustration of an example structure where five sub-units have been
joined at four vertices α, γ , δ, ε. Each sub-unit is illustrated by an ellipse
where we associate the interior with the internal conformation of the scat-
tering sites and the circumference with the reference points on the sub-unit.
Sub-units are joined to each other by reference points, and they are illustrated
as a single dot (e.g., ε, δ, γ ) for a regular reference point or a thick line (e.g.,
〈α〉, 〈δ〉) for distributed reference points. Note that we use the same Greek
letter to label vertices in the structure, and regular or distributed reference
points on different sub-units at the same vertex.

tex has an arbitrary functionality, and a sub-unit can have an
arbitrary number of reference points at which it can join with
other sub-units. Hence the structures described by formalism
is not limited to two-functional graph-like structures, but to
any hyper-graph structures that does not contain loops.

In the special case, where we can make a one-to-one iden-
tification between reference points and scattering sites such
that n = i, RIαn = rIi, and QIαn = bIi/βI. Then Eqs. (2.7),
(2.2), (2.8), and (2.3) are identical to the form factor Eq. (2.1).
Hence we conclude that AI〈α〉(q) = �I〈α〉〈ω〉(q) = FI(q) in this
case. For a polymer chain, for instance, this means that the
form factor amplitude relative to a random position on the
polymer and the phase factor relative to two random posi-
tions on the polymer are identical to the polymer form factor.
This is not a surprise since the site-to-site, site-to-reference
point, and reference-to-reference point pair-distance distri-
butions all are identical in this case. When deriving form
factors for a given structure, we often assume that all sites
in a sub-unit have equal excess scattering length, hence all
the known expressions for form factors of structures can
be uses as reference point averaged form factor amplitudes
and phase factors to describe structures with distributed link
positions.

Figure 2 introduces a diagrammatic interpretation of the
form factor, form factor amplitude, and phase factor of a sub-
unit. As in Fig. 1, we associate each sub-unit with an el-
lipse, where reference points are associated with the circum-
ference while the scattering sites are associated with the in-
terior. The form factor is the Fourier transform of the pair-
distance distribution between all scattering sites in a sub-unit,
and we illustrate this by a straight line inside the sub-unit el-
lipse. Form factor amplitudes and phase factors depend on
reference points. Regular reference points are shown as dots,
while distributed reference points are illustrated as a thick line
on the circumference. The form factor amplitude is Fourier
transform of the pair-distance distribution between a speci-
fied reference point and all scattering sites inside the sub-unit,
and this is illustrated as a line from the dot to the inside of
the sub-unit. In the case, of a reference point average, we il-
lustrate the reference point not as a dot but by a thick line

FIG. 2. Definition of diagrams representing the sub-unit form factor, form
factor amplitude, and phase factor terms expressed for the different possibil-
ities of reference point averages for the Ith sub-unit.



154907-5 C. Svaneborg and J. Skov Pedersen J. Chem. Phys. 136, 154907 (2012)

illustrating all the possible reference points, and the form fac-
tor amplitude as a line from anywhere along the thick line
to the inside of the sub-unit. The phase factor is the Fourier
transform of the pair-distance distribution between two spec-
ified reference points, and this is illustrated as a line travers-
ing the sub-unit connecting two reference points or reference
point averages.

Using Eq. (2.1), we can calculate the scattering form fac-
tor for a given structure composed of sub-units joined by reg-
ular or distributed reference points. The first term is just a sum
over the form factors of all the sub-units weighted by their ex-
cess scattering lengths. The second term is more complicated,
and it describes the scattering interference contributed by dif-
ferent sub-unit pairs. For each distinct pair of sub-units I and
J in the double sum, we identify which vertex α at sub-unit
I that is nearest sub-unit J and which vertex ω at sub-unit J
that is nearest to sub-unit I. Here “near” means in terms of
the shortest path originating at a reference point α (or 〈α〉)
on I and terminating on a reference point ω (or 〈ω〉) on J.
We denote the path connecting α and ω through the struc-
ture P(α, ω). For the product, we have to identify each sub-
unit K on this path and also identify the reference points τ

and η (or 〈τ 〉, 〈η〉) across which the sub-unit is traversed. For
some structures the path can traverse a sub-unit by the same
reference point. In the case of a well-defined reference point
�Kαα(q) ≡ 1 and we can neglect the contribution, however in
the case of an distributed reference point the corresponding
term �K〈α〉〈α〉(q) will contribute to the product. The path con-
struction is always unique and well defined for structures that
does not contain loops.

The form factor expression (Eq. (2.4)) has a quite simple
physical interpretation, despite the complex notation required
to describe branched reference point distributed structures.
The structural form factor is the pair-correlation function be-
tween all scattering sites in the structure. It can be obtained by
propagating position information between all scattering sites
in the structure. When both sites belong to the same sub-unit
it is given by the sub-unit form factors and is described by the
first term in Eq. (2.4). The distance information between sites
on different sub-units is obtained by propagating position
information along paths through the structure. To propagate
site-to-site position information between sites in sub-unit I
and sites in sub-unit J, we first have to propagate the position
information between the sites in sub-unit I to the vertex α at
I. This is done by the form factor amplitude βIAIα or βIAI〈α〉.
The position information is then propagated step-by-step
along the path of intervening sub-units towards the vertex ω

at sub-unit J. Each time a sub-unit is traversed it contributes
a phase factor �Kτη, �K〈τ 〉η,�Kτ 〈η〉, or �K〈τ 〉〈η〉 to account
for the conformationally averaged distance between the two
(potentially distributed) reference points. Finally, the position
information is propagated between the vertex ω and all the
sites inside the J sub-unit. This is done by the final form
factor amplitude βJAJω or βJAJ〈ω〉. Only the amplitudes have
an excess scattering length prefactor, since they represent
the amplitudes of scattered waves from all the scatterers inside
the sub-units relative to the α and ω vertices, while the prod-
uct of phase factors represents excess phase contributed by the
path between the vertices. The product of all these propaga-

FIG. 3. Diagrammatic representation of some of the terms contributing to the
form factor of the structure shown in Fig. 1 using the definition of diagrams
shown in Fig. 2.

tors describes the scattering length weighted site-to-site scat-
tering interference contribution from the Ith and Jth sub-units.
By summing over all such pair contributions all the possible
site-to-site pair-distances in the structure are accounted for.

Figure 3 diagrammatically illustrates some of the terms
that contributes to the form factor (Eq. (2.4)) using the dia-
grammatic definitions in Fig. 2. We can generate all the dia-
grams by picking a pair of sites inside the same or two dif-
ferent sub-units and drawing a line between them using ref-
erence points to step between sub-units and to traverse across
sub-units (diagram 1). A line between two sites within the
same sub-unit contributes the form factor of that sub-unit.
Sub-units that are joined directly to each other will contribute
the product of two form factor amplitudes and excess scatter-
ing lengths of the two sub-units (diagrams 2, 3, 5). For sub-
units that are not directly joined to each other, the form factor
amplitude product is further multiplied by the phase factors of
all the sub-units on the intervening path (diagrams 4, 6). For
all the reference point labels of the form factors and phase fac-
tors, we either have a regular reference point, or a distributed
reference point which depend on the details of the given struc-
ture. In general, for a structure of N sub-units, there will be N
form factor contributions and N(N − 1)/2 different scatter-
ing interference contributions that has to be determined. The
longest possible path is N − 2 sub-units which occurs in the
case of a linear chain of sub-units.

Similar diagrammatic interpretations apply to the
structural form factor amplitude and phase factors
(Eqs. (2.5) and (2.6)). For the form factor amplitude we
have to propagate position information between a specified
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vertex and all sites in the structure. Diagrammatically, this
can be done by picking a site in any sub-unit and drawing a
line between the site and the specified vertex using reference
points to step between sub-units and to traverse across
sub-units. Summing over all the N diagrams will produce the
form factor amplitude of the structure. For the phase factor
we have to propagate position information between two
specified vertices. Diagrammatically, this is done by drawing
a line between the two vertices using reference points to
step between sub-units and to traverse across sub-units.
The resulting structural phase factor is the product of the
phase-factors of all the intervening sub-units.

With the diagrammatic interpretation of the formalism, it
becomes quite easy to draw a structure and write down the
corresponding scattering expressions. The price of this sim-
plicity is that we had to assume that sub-units are mutually
non-interacting, that the joints between sub-units are com-
pletely flexible, and that the structures do not contain loops.
However, no assumptions were made about the internal struc-
ture of the sub-units. The formalism is complete in the sense
that the three structural scattering expressions allow a whole
structure to be used as a sub-unit to build more complex struc-
tures. This we utilized in Paper I but will not use here.8 The
formalism is also generic in the sense that scattering contribu-
tions due to structural connectivity and the internal structure
of the sub-units have been completely decoupled. This allows
us to write down generic scattering expressions for structures
without knowing what sub-units they are made of. This infor-
mation can be specified at a later point when concrete expres-
sions for the sub-unit form factor, form factor amplitudes, and
phase factors are inserted. Below we give some generic ex-
amples, and then dedicate the rest of the paper to derive and
present scattering expressions characterizing specific sub-unit
structures.

A. Example structures

We can regard a block copolymer micelle as N identical
two-functional sub-units tethered by one end to a random site
on the surface of geometric structure representing the core.
Such a structure is shown in Fig. 4. Note that the core sur-
face still is referred to by a single reference point label α.
Similarly, we can regard a bottle-brush polymer as N identi-
cal two-functional sub-units tethered by one end to a random
point on a main structure such as a polymer chain. The con-
nectivity of the two structures is identical, and hence they are
characterized by the same generic scattering expression

Fmic(q) = (NβT + βC)−2
(
β2

CFC + Nβ2
T FT

+ 2NβCβT AC〈α〉AT α + N (N − 1)β2
T A2

T αψC〈α〉〈α〉
)
.

(2.9)

Here, the tethered sub-units are denoted by T and the end
attached to the core surface is denoted “α” while “ω” denotes
the free end. The core sub-unit is denoted by C and the av-
erage over random surface point is denoted by 〈α〉. The form
factor consists of terms representing all the possible pair dis-
tributions between sub-units in the structure. These are shown
in Fig. 4. Each term has a prefactor, which for form factor

FIG. 4. Diagrammatic representation of the form factor of a block copolymer
micelle with a core sub-unit “C” and a number of identical sub-units “T”
tethered at random points on the surface. All the scattering contributions are
shown using the diagrammatics in Fig. 2. They correspond to β2

T FT (solid
line), β2

T A2
T α�C〈α〉〈α〉 (short dashed line), βTβCATαAC〈α〉 (long dashed line),

and β2
CFC terms (dot dashed line) in Eq. (2.9).

terms is the number of corresponding sub-units in the struc-
ture. The form factor amplitude product terms represent pair
distributions between different sub-units and they are counted
twice. Hence there is both an AC〈α〉ATα contribution and an
identical ATαAC〈α〉 contribution for each of the N tethered sub-
units. For the pair distribution between two tethered sub-units,
we note that we have N tethered sub-units to pick the starting
point from, and N − 1 tethered sub-units to pick end ending
point. This also counts each pair twice. The prefactor of the
form factor ensures it is normalized to unity in the limit of
small q values.

We have chosen to express the form factor amplitude rel-
ative to the tip of a tethered sub-unit. The form factor am-
plitude represents the pair distribution between the reference
point at the tip of a tethered sub-unit and the sites in the same
sub-unit, the sites in the core, and in the sites in the other teth-
ered sub-units. These are shown in Fig. 5 and when taking
into account the multiplicity of the sub-units the normalized
form factor amplitude becomes

Amic,ω(q) = (NβT + βC)−1
(
βC�T,ωαAC,〈α〉

+βT AT ω + βT (N − 1)�T ωαψC〈α〉〈α〉AT α

)
.

(2.10)

The contribution to the tip-to-tip phase factor is also
shown in Fig. 5 and is given by

�mic,ωω(q) = ψ2
T αω�C〈α〉〈α〉. (2.11)

Since exactly the same diagrams are required to describe
a bottle-brush structure where side-structures are randomly
tethered along some main chain structure (corresponding to
the core of the micelle), the generic scattering expressions for
these two structures are identical. They will first differ when
we make choices of which sub-unit structures are involved
and insert the corresponding form factor, form factor ampli-
tudes, and phase factors in the expressions.
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FIG. 5. Diagrammatic representation of the form factor amplitude and phase
factor of a block copolymer micelle. The scattering contributions to Amic,ω
are shown by lines starting at an ω reference point on a tethered sub-unit
and using the diagrammatics in Fig. 2. They correspond to the βTATω (solid
line), βCAC〈α〉�Tωα (dash dotted line), and βTATα�C〈α〉〈α〉�Tαω terms (short
dashed line) in Eq. (2.10). The phase factor (Eq. (2.11)) between the tips of
two tethered sub-units is given by �2

T ωα�C〈α〉〈α〉 (long dashed line).

Previously,8 we derived the form factor of a chain of iden-
tical two functional sub-units using Eq. (2.4) as

Fchain(q) = F

N
+ 2

�N
αω − N�αω + N − 1

N2(�αω − 1)2
AαAω.

(2.12)

Here we have discarded the superfluous sub-unit index
and also omitted the q dependence on the right-hand side for
sake of brevity. A diagrammatic representation is shown in
Fig. 6. Here, α and ω denote the two ends of the sub-unit. The
sub-units can be asymmetric with regard to exchanging the
two ends, for instance, if the sub-unit is a di-block copolymer.
The sub-units are joined as ω − α, leaving one free α end
and one free ω end of the structure. If we assume that each
of the reference points are picked from two distributions, then
we obtain the scattering expression for the corresponding ran-
domly joined chain by replacing the regular reference points

FIG. 6. Diagrammatic representation of chain of identical two-functional
sub-units with regular reference points (top) or linked at two random posi-
tions (bottom).

by distributed reference points as

Fchain(q) = F

N
+ 2

�N
〈α〉〈ω〉 − N�〈α〉〈ω〉 + N − 1

N2(�〈α〉〈ω〉 − 1)2
A〈α〉A〈ω〉.

(2.13)

Figure 6 shows a diagrammatical representation of such
a structure, where a random reference point ω is joined with
a random reference point α on the next sub-unit. Again this
leaves a structure with two ends characterized by 〈α〉 and 〈ω〉.
If the sub-units are block-copolymers and the linking can be
anywhere along the copolymer, then the corresponding struc-
ture is one where each polymer is randomly cross-linked with
the previous and next polymers in the chain. Alternative, if
the α link is anywhere in the A block, and the ω link any-
where in the B block, then the result will be a chain where
each di-block copolymer (except for the ends) has one link on
the each of the two blocks. These different choices correspond
to different expressions for �〈α〉〈ω〉, A〈α〉, and A〈ω〉.

Note that the formalism is generic. We have made abso-
lutely no assumptions as to the internal structure of the sub-
units in the expressions above. These scattering expressions
we have presented are completely generic and only encode the
structural connectivity. The formalism is also complete, in the
sense that a whole structure described by the formalism can
be used as a sub-unit to build more complex structures within
the formalism. For example, we can regard the three func-
tions Fmic(q), Amic, ω(q), and �mic, ωω(q) given by Eqs. (2.9)–
(2.11) as defining a micelle sub-unit. We could then obtain the
scattering expression for a chain of micelles, by inserting the
micelle sub-unit expressions into the form factor of a chain
Eq. (2.12). This illustrates the versatility of the formalism.

III. SUB-UNITS WITH INTERNAL CONFORMATIONS

Each sub-unit is characterized by a three types of
pair-distance distribution functions, the site-to-site, site-
to-reference, and the reference-to-reference point pair-
distribution functions, denoted Pss(σ , ρ; r), Psα(σ ; r), and
Pαω(r), respectively. Here σ and ρ are running labels de-
noting scattering sites, such as an index of a point scatterer
or a contour-length, surface or volume element, respectively,
while the α and ω labels denote fixed reference points. The
corresponding positions are denoted rσ , rρ , Rα , and Rω,
respectively. In a rigid structure, the pair-distance r = |rσ

− rρ | is constant and the pair-distance distributions reduce
to delta functions. In a flexible structure with internal confor-
mational degrees of freedom such as a polymer, the distance
between two sites will in general be given by a distribution.
Let the excess scattering length density of a scattering site σ

be denoted b(σ ), and β = ∫
dσb(σ ) denotes the total excess

scattering length of the sub-unit. The 3D isotropically aver-
aged Fourier transform is F(P ) = ∫

dr4πr2 sin(qr)
qr

P . Hence
the sub-unit scattering expressions are

F (q) = β−2
∫

dσdρb(σ )b(ρ)
∫

dr4πr2 sin(qr)

qr
Pss(σ, ρ; r),

(3.1)
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Aα(q) = β−1
∫

dσb(σ )
∫

dr4πr2 sin(qr)

qr
Psα(σ ; r),

(3.2)

�αω(q) =
∫

dr4πr2 sin(qr)

qr
Pαω(r). (3.3)

In the case of a linear sub-unit with translational invari-
ance along the contour, the pair-distance distributions func-
tions only depend on the relative contour distance. Let L de-
note the total contour length, such that σ , ρ ∈ [0; L] denote a
pair of sites along the sub-unit separated by a contour length
distance l = |σ − ρ| and a spatial separation r. The two ends
are located at α = 0 and ω = L, respectively. Then Pss(σ , ρ;
r) = P(|σ − ρ|; r), Psα(σ ; r) = P(|σ − α|; r), and Pαω(r)
= P(|α − ω|; r) where P(l; r) denotes the pair-distance distri-
bution between two sites separated by a contour length l and
a direct distance r. In the Appendix, we use these expressions
to derive the form factor, form factor amplitudes, and phase
factors of polymers, rods, and closed polymeric loops.

IV. SCATTERING EXAMPLES

Figures 7(a)–7(c) illustrates some of the possible struc-
tures obtained by linking sub-units into chains. When identi-
cal polymers are end-linked the result is a long linear polymer.
A very different structure is obtained, when polymers are al-
lowed to link anywhere along their contour. The result resem-

FIG. 7. Illustration of chains and tethered structures. (a) End-linked poly-
mers, (b) contour-linked polymers, (c) contour-linked loops, (d) rods contour-
linked to a polymer, and (e) loops contour-linked to a loop.

bles a bottle-brush structure, where each sub-unit in the chain
has two pendant chains of a random length. Note that just as in
the end-linked case, all the internal sub-units in the contour-
linked chain have exactly two links. This is very different
from a truly randomly linked structure, which would form a
gel-like network. The scattering from a gel-like network can
be described by the random phase approximation (RPA),11

and the diagrammatic representation of the RPA form factor
corresponds to a weighed sum over contour-linked chain dia-
grams of varying number of sub-units.

The scattering from these structures are obtained from
Eq. (2.13) by inserting the corresponding sub-unit form fac-
tor, form factor amplitude, and phase factors. We have derived
these terms for a flexible polymer chain, a rod, and a closed
polymer loop in the Appendix. Figure 8 shows the scatter-
ing from end-linked and contour-linked polymers and rods,
as well as contour-linked loops. At small q values we ob-

serve the Guinier F (q) ≈ 1 + (qRg )2

3 regime, where Rg is the
radius of gyration of the entire structure, at intermediate q
values we see the power law characteristic of the fractal di-
mension of the structure, while at large q values we see the
scattering from the sub-units. The end-linked chain shows the
expected Debye scattering behavior corresponding to a ran-
dom walk with an asymptotic behavior 2(qRg)−2 at large q
values. The contour-linked polymers have a smaller radius
of gyration since the chain structure is more at intermedi-
ate length scales, however, at small length scales we again
see the same sub-unit scattering as for the end-linked poly-
mers. The chain of polymer loops is more compact than the
chain of end-linked polymers, which is why their scattering
is larger at large q values, however at large q values we ob-
serve the asymptotic (qRg)−2 behaviour expected for a poly-
mer loop. The end-linked chain of rods is observed to have
the largest radius of gyration of all structures. At intermediate
length scales the end-linked rod chain has a random-walk-like
structure, while at small length scales show a crossover to
the π (Lq)−1 asymptotic behavior characterizing the rod-like
sub-units. Chains of contour-linked polymers, polymer loops,

10 1 100 101 10210 6

10 5

10 4

10 3

10 2

10 1

100

qRg

Rods contour linked

Rods end linked

Loops contour linked

Polymers contour linked

Polymers end linked

FIG. 8. Normalized form factors from a chain of N = 100 identical sub-
units for end-linked polymers (red solid line), contour-linked polymers (green
dashed), contour-linked polymer loops (blue dotted), end-linked rods (ma-
genta short dashed), contour-linked rods (brown medium dashed). All sub-
units have the same radius of gyration Rg.
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qRg

Loops on loop

Polymers on loop

Rods on loop

Loops on rod

Polymers on rod

Rods on rod

FIG. 9. Normalized form factor for bottle-brush structures where the main
chain structure is either a rod (green) or a polymer loop (blue). The main
chain structure has N = 20 rods (dotted), polymers (solid), or polymer loops
(dashed) tethered at random positions. The main chain and tethered sub-unit
radii of gyration, Rg, C and Rg, are fixed at Rg, C/Rg = 10 for all the structures.
The excess scattering length of the core and tethered sub-units are the same
βC = βT.

and rods have the same radius of gyration, since we have
fixed the size of the sub-units to produce the same radius of
gyration.

Figures 7(d) and 7(e) show the bottle-brush structures
that are obtained by tethering rods to a long main chain poly-
mer and by tethering polymer loops to a main chain polymer
loop. The scattering from these structures is obtained from
Eq. (2.9) by inserting the corresponding form factor, form
factor amplitudes, and phase factors of the main chain and
tethered sub-units. The scattering form factors are shown in
Fig. 9. Again we have fixed the radius of gyration of the main
chain and of the tethered sub-units to the same values inde-
pendent of their structure and for this reason all the bottle-
brush structures has the same radius of gyration. At inter-
mediate length scales we see a small regime with power law
behavior corresponding to the fractal dimension of the main
chain q−2 for the random-walk-like polymer loop and q−1 for
the straight rod, while at small length scales we observe the
power law corresponding to the fractal dimensions of the teth-
ered sub-units. Again we observe that the polymer loop sub-
unit scattering is a factor one half lower than that of the linear
polymer sub-unit.

V. GEOMETRIC SUB-UNITS

We assume that a sub-unit is a rigid geometric body with-
out internal degrees of freedom. In this case, it is more con-
venient to express the sub-unit scattering expressions as the
orientational average of the phase integral over all the scatter-
ing sites as

Frigid (q) = 〈Fβ(q, O)Fβ(−q, O)〉o,
(5.1)

Arigid (q, O) = 〈Fβ(q, O)〉o,
here 〈· · ·〉o denotes an orientational average. While the form
factor is independent of the choice of origin O, it is use-

ful when expressing form factor amplitudes, since we have
Arigid, α(q) = Arigid(q, Rα) for a particular regular reference
point Rα . The phase integral is defined as

Fβ(q, O) =
(∫

drβ(r)

)−1 ∫
drβ(r) exp (iq · (r − O)) ,

(5.2)

which is the Fourier transform of the excess scattering length
density distribution β(r) of the sub-unit relative to the origin
O. We normalize the phase integral such that Fβ(q = 0, O)
= 1. The major challenge when calculating the scattering
from geometric objects is to calculate the phase integral ana-
lytically and then perform the orientational averages.

Since we are not only interested in regular reference
points, but also reference points that are averaged over distri-
butions of potential reference point sites, we will focus on the
situation where these site distributions are also characterized
by a geometric objects. For instance, we could be interested
in the form factor amplitude of a sphere relative to a random
site on its surface, or the phase factor between two random
sites on the surface of a sphere. By generalizing the averages
Eqs. ((2.7) and (2.8)) into integrals over reference point dis-
tributions, and recognizing that these averages can be recast
into the form of phase factor integrals, we can express the ref-
erence point distribution averaged form factor amplitude and
phase factors as

Arigid〈α〉(q) =
〈∫

dr′Qα(r′)Fβ(q; r′)
〉
o

= 〈Fβ(q, O)FQα
(−q, O)〉o, (5.3)

�rigid〈α〉ω(q) =
〈∫

drQα(r)eiq·(r−Rω)

〉
o

= 〈FQα
(q, Rω)〉o,

(5.4)

and

�rigid〈α〉〈ω〉(q) =
〈∫

drdr′Qα(r)Qω(r′)eiq·(r−r′)
〉
o

= 〈FQα
(q, O)FQω

(−q, O)〉o. (5.5)

Here, FQα
(q, O) denotes the Fourier transform

(Eq. (5.2)) of the reference point site probability distri-
bution Qα(r). The form factor amplitude A〈α〉(q) and double
averaged phase factor �〈α〉〈ω〉(q) are independent of the
choice of origin O by construction. Again we recognize that
if the normalized excess scattering length distribution and the
reference point site probability distribution are proportional
β(r) ∝ Qα(r), then the form factor, averaged form factor
amplitude, and double averaged phase factor reduce to the
same function. Finally, the phase factor between two regular
reference points Rα and Rω is given by

�rigid,αω(q) = sin(q|Rα − Rω|)
q|Rα − Rω| . (5.6)

For a large number of geometric objects the scattering
form factor is known, see, e.g., Ref. 12. In the Appendix,
we derive the scattering expressions characterizing spheres,
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FIG. 10. Illustration of tethering geometries: (a) disk surface, (b) disk rim,
(c) cylinder equator, (d) end, (e) side, and (f) surface tethering.

flat disks, spheres, and cylinders with special emphasis on
how phase factors and form factor amplitudes change de-
pending on different choices of reference point distributions.
This is relevant in many applications, e.g., for structures
such as block-copolymer micelles and polymer brushes end-
grafted to a surface or an interface.13, 14 Below we give some
examples.

VI. SCATTERING EXAMPLES

Figure 10 shows some of the possible tethering geome-
tries for disk-like and cylindrical micelles. For a disk we can
either have the sub-units tethered to anywhere on the surface
or only at the rim of the surface. For a cylinder we could,
for instance, tether polymers to the equator, the two ends, the
side, or the entire surface of the cylinder. The corresponding
scattering expressions are obtained from (Eq. (2.9)) by insert-
ing the form factor, form factor amplitudes, and phase factors
corresponding to the chosen sub-units and tethering geometry.
In the Appendix, we have derived the required expressions to
characterize these tethering geometries.

Figure 11 shows the form factors for disk-like and spheri-
cal micelles. At small q values we observe the Guinier regime
which characterizes the radius of gyration of the whole struc-
ture, while at large q values we observe the scattering due
to the tethered chain sub-unit. In an intermediate regime, the
scattering is both due to the micellar core geometry and
the tethered sub-units. Even though the number of chains is
the same, significant differences are observed in the scatter-
ing for the different tethering geometries, but coincidentally
the sphere with equatorial tethering and disk with rim tether-
ing produce very similar scattering patterns. Figure 12 shows
the form factors for cylindrical micelles for different choices
of tethering geometry. Again the tethering geometry is ob-
served to introduce significant differences in the spectra.

The scattering expression for a chain of thick end-linked
cylinders are obtained from Eq. (2.12) by inserting the form

10 1 10010 4
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100

qRg

Disk rim

Disk surface

Sphere equator

Sphere surface

FIG. 11. Normalized form factors for spherical core sub-unit with N = 100
polymers tethered on the surface (black solid line), at the equator (red dotted
line), and for a disk-like core sub-unit with polymers tethered on the surface
(green short dashed line) and on the rim (blue long dashed line). The sub-units
have the same radii of gyration with Rg, C/Rg = 10, and the excess scattering
lengths βC = 100βT.

factor, form factor amplitude relative to the reference point
where the axis crosses the end, and phase factor between the
two ends. In Fig. 13, the scattering from this thick random
walk is compared to that of a thin polymer and a rod. At
large distances in the Guinier regime we see the crossover
from a point-like structure at the very largest scales to a ran-
dom walk-like structure with scaling behavior (qRg)−2. At in-
termediate length scales the cylinder structure is probed and
shows a scaling behavior like (qL)−1 comparable to the rod.
At length scales at and below the radius of the rod, we see
strong oscillations due to cross section of the cylinder, and
the envelope of the scattering curve shows the q−4S2 behavior
of Porod scattering from the surface, where S denotes the total
surface area of the cylinders.
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FIG. 12. Normalized form factors of cylinders with N = 100 polymer sub-
units for equator (black solid line), end (red dotted line), side (green short
dashed line), and surface (blue long dashed line) tethering geometries. The
sub-units have fixed radii of gyration with Rg, C/Rg = 10, the length L and
radius R of the cylinder are equal, and the excess scattering lengths are
βC = 100βT.
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FIG. 13. Normalized form factors for chains of N = 100 cylinders as func-
tion of their aspect ratio for R/L = 0.001 (red dotted line), 0.01 (green short
dashed), 0.1 (blue long dashed). Also shown is the scattering from a poly-
mer (black dot-dashed) and a rod (magenta solid line). The horizontal axis of
each form factor has been scaled with the radius of gyration of each of the
structures.

VII. CONCLUSIONS

In a previous paper,8 we presented a formalism for pre-
dicting the scattering from a linear and branched structures
composed of mutually non-interacting sub-units. A sub-unit
can have an arbitrary number of reference points. Sub-units
are connected into structure by joining their reference points
to the reference points of other sub-units. In the present pa-
per, we have briefly presented the formalism and generalized
it to the case where reference points can be characterized by
a distribution of potential link positions on a sub-unit. For in-
stance, one reference point of a polymer could be a random
site along the contour, or a reference point of a sphere could
be a random point on the surface. To generalize the formal-
ism, we had to assume that reference point distributions on
different sub-units are mutually statistically uncorrelated.

We used the generalized formalism to derive the generic
scattering expression for a micelle/bottle-brush structure with
a core sub-unit and a number of identical sub-units tethered to
random positions on the core/main chain. Since the connec-
tivity of a micelle and a bottle-brush is the same, the generic
scattering expressions are also identical. We presented the
general scattering expressions for the form factor, form factor
amplitudes, and phase factors of a structure with internal con-
formations. We illustrated the scattering the expression using
end-linked and contour-linked chains of polymers, rods, and
polymeric loops, and bottle-brush structures of rods and poly-
mer loops with tethered polymers, rods, or polymer loops.
All these structures are special cases of the generic scattering
expression, which are obtained when the form factor, form
factor amplitudes, and phase factors of the corresponding
sub-units are inserted into the generic structural scattering
expression. We derived these terms in the Appendix.

We also presented the general expressions for the form
factor, form factor amplitudes, and phase factors for rigid sub-
units without internal conformations. We derived the scatter-
ing terms for spheres, disks, and cylinders for a variety of dif-
ferent reference point distributions in the Appendix. While the

form factors for all these sub-units are known, the form factor
amplitudes and phase factors are not necessarily known, and
these are required by the formalism. This allowed us to pre-
dict the scattering from micelles with different core structures
and geometries of tethering the corona sub-units.

Taken together, the formalism presented in Ref. 8, the
present generalization to distributed reference points, and the
sub-unit scattering expressions derived in the Appendix en-
able the scattering from a large class of regular or random-
linked, homogeneous or heterogeneous, linear and branched
structures to be derived with great ease. With this, we hope to
have provided a valuable tool for analyzing scattering data in
the future.
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APPENDIX: SUB-UNIT SCATTERING EXPRESSIONS

1. Rigid rods

The most basic example is a randomly orientated in-
finitely thin rigid rod of length L. The rigid rod is special as
the contour length l and direct distance r between a pair sites
are degenerate parameters, hence the δ(r − l) factor in the rod
pair-distance distribution: P(l; r) = δ(r − l) � (L − r)/(4π l2),
where �(x) denotes the Heaviside step function. Performing
the contour length integrations (3.1)–(3.3), the rod scattering
becomes

Frod (q, L) = 2Si(x)

x
− 4

x2
sin2

(x

2

)
, Arod (q, L) = Si(x)

x
,

and �rod (q, L) = sin(x)

x
, (A1)

where x = qL and Si(x) = ∫ x

0 dy sin(y)/y is the Sin integral.15

The expression for the rod form factor was previous derived
by Neugebauer16 and Teixera et al.7 In the case where the
reference points are distributed along the rod contour with
a constant probability (denoted contour-linking and shown
with sub-script 〈c〉 and 〈c〉〈c〉), the rod phase factor and form
factor amplitudes are given by �rod, 〈c〉〈c〉(q) = Arod, 〈c〉(q)
= Frod(q, L).

2. Flexible polymers

Flexible polymers can be modeled as random walks with
Kuhn length b. The pair-distance distributions between two
sites separated by a contour length l are given by the Gaus-

sian distribution Prw(l; r) = (
3

2πbl

) 3
2 exp

(
− 3

2
r2

bl

)
. Inserting

this distribution into Eqs. (3.1)–(3.3) yields the scattering
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triplet characterizing a flexible polymer

Fpol(x) = 2[e−x − 1 + x]

x2
, Apol(x) = 1 − e−x

x
,

and �pol(x) = e−x, (A2)

here x = (qRg, rw)2, and the radius of gyration is given by
R2

g,rw = bL/6. The result for the form factor amplitude has
previously been given by Hammouda17 and the form factor
was calculated by Debye.18 These expressions can also be ob-
tained as a self-consistency requirement of this formalism re-
quiring that the scattering form factor, form factor amplitude,
and phase factor from a di-block copolymer with two identical
blocks of length L/2 match the scattering expressions for one
block of length L.8 Expressions for the scattering from poly
disperse flexible polymer characterized by a Schultz-Zimm
distribution are given in Ref. 4. In the case where the refer-
ence points are distributed randomly along the polymer con-
tour (denoted 〈c〉 and 〈c〉〈c〉), the polymer phase factor and
form factor amplitude are given by �pol, 〈c〉〈c〉(x) = Apol, 〈c〉(x)
= Fpol(x).

3. Polymer loops

While the formalism does not apply for structures that
contain loops, no assumptions are made as to the internal
structure of the sub-units, which can contain loops. The sim-
plest loop is formed by linking the two ends of a flexible
polymer chain. We can model a polymer loop as two random
walks with contour lengths l and L − l, respectively, starting
at Rα and ending at the link Rω. In this case, the pair-distance
distribution is given by Ploop(l; |Rω − Rα|) ∝ Prw(l; |Rω

− Rα|)Prw(L − l; |Rω − Rα|), and the corresponding phase
factor becomes �loop,αω(q; l) = exp(− bl(L−l)q2

6L
). Since the

link at l can be anywhere along the loop [0; L], we need to
average over the link position to get the loop scattering

�loop,〈α〉〈ω〉(q) =
∫ L

0

dl

L
�loop(q; l) = exp(−2y2)D[y]

y
.

Here y = q
√

bL/
√

24 and D[y] = exp(−y2)∫ y

0 exp(t2)dt is the Dawson integral, which is related to
the imaginary part of the complex error function.15 By
construction, the form factor amplitude, form factor, and
average phase factor are all identical when the reference
point(s) is averaged over all sites in the structure, since
Eqs. (3.1)–(3.3) become identical Aloop, 〈α〉(q) = Floop(q)
= � loop, 〈α〉〈ω〉(q). The form factor of a flexible polymer loop
was previous derived by Zimm and Stockmayer.19

4. Solid sphere

For a solid homogeneous sphere with excess scatter-
ing length density β, we can characterize any scattering
site by its spherical coordinate σ = (r, φ, θ ). Then r(σ )
= (r cos φ sin θ, r sin φ sin θ, r cos θ ). We can choose a coor-
dinate system such that the sphere center is located at the
origin O = 0. Due to the spherical symmetry the scattering
vector q is pointing towards the pole (θ = 0), then q · rσ =

qr cos θ . The phase integral becomes

Fsphere(q, 0; R)

=
(

4πR3

3

)−1 ∫ π

−π

dφ

∫ 1

−1
d cos θ

∫ R

0
drr2eiqr cos θ

= 3 (sin(qR) − qR cos(qR))

(qR)3
, (A3)

Due to the spherical symmetry, we do not need to per-
form an additional orientational average 〈· · ·〉o when us-
ing Eqs. (5.1)–(5.6). Hence, the form factor, the form fac-
tor amplitude, and phase factor of a solid sphere with
Rα = Rω = 0 fixed at the center (denoted subscript “c”)
are given by Fsphere(q; R) = A2

sphere,c(q; R), Asphere,c(q; R)

= 3(sin(qR)−qR cos(qR))
(qR)3 , �sphere, cc(q) = 1.

The scattering from a solid sphere was derived by
Reyleigh in 1911.20 Having the reference point at the cen-
ter is the simplest choice, however, for the derivation of, e.g.,
the scattering from spherical micelles it is more relevant
let the surface of the sphere be a reference point. In this
case the corresponding normalized reference point distribu-
tions are Qα(R) = Qω(R) = δ(|R| − R)/(4πR2) representing
a spherical shell. We can calculate Fshell(q, 0; R) by integra-
tion of Eq. (5.2). However, since the shell corresponds to the
upper limit of the radial integral in Eq. (A3), we can trivially
obtain its Fourier transform by differentiation of Fsphere as

Fshell(q, 0; R) = (4πR2)−1 d

dR

[
4πR3

3
Fsphere(q, 0, R)

]

= sin qR

qR
. (A4)

Here, we have introduced an area and volume prefactor
to account for the normalizations of the two Fourier trans-
forms, such that Fshell → 1 when q → 0. We can obtain the
form factor amplitude and phase factors relative to the sur-
face reference point (denoted by subscript “〈s〉”) combining
Eqs. (5.3), (5.5), (A3) and (A4) as13

Asphere,〈s〉(q,R) = 3 (sin(qR) − qR cos(qR))

(qR)3

sin(qR)

qR
,

�sphere,〈s〉〈s〉(q,R) = sin2(qR)

(qR)2
. (A5)

5. Flat circular disk

Due to rotational symmetry, we can choose a geom-
etry where the disk is in the xy plane, and q in the
xz plane. Expressing the scattering site in polar coordi-
nates σ = (r, φ), such that r = (r cos φ, r sin φ, 0), and
q = (q sin θ, 0, q cos θ ) then q · r = qr cos φ sin θ ,

Fdisk(q, 0; R) = 2J1(qR sin θ )

qR sin θ
. (A6)

Expressing the integrals in cylindrical coordinates immedi-
ately provides the form factor, form factor amplitude, and
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phase factor for Rα = Rω = 0 fixed at the center as

Fdisk(q) =
〈(

2J1(qR sin θ )

qR sin θ

)2
〉

o

= 2

q2R2

[
1 − J1(2qR)

qR

]
,

(A7)

Adisk,c(q) =
〈

2J1(qR sin θ )

qR sin θ

〉
o

, �disk,cc(q) = 1. (A8)

Here Jn(x) denotes the nth Bessel function of the first
kind,15 and 〈· · ·〉o = 1

2

∫ 1
−1 d cos(θ ) · · · denotes an orienta-

tional average. The form factor of a disk first derived by
Kratky and Porod.21 We could choose to put the reference
point anywhere on the circular rim of the disk. In this case,
we can obtain the Fourier transform of the points on a circu-
lar rim Frim by differentiation of Fdisk as

Frim(q, 0, R) = (2πR)−1 d

dR
[πR2Fdisk(q, 0, R)]

= J0(qR sin θ ). (A9)

The corresponding form factor amplitude of the disk rel-
ative to any site on the rim and the phase factor between two
sites on the rim (denoted by subscript 〈r〉),

Adisk,〈r〉(q) =
〈

2J1(qR sin θ )

qR sin θ
× J0(qR sin θ )

〉
o

and �disk,〈r〉〈r〉(q) = 〈
J 2

0 (qR sin θ )
〉
o
. (A10)

If we instead choose to put the two reference points
at any point on the surface of the disk (again denoting an
average surface reference point by 〈s〉), the result is again
given by the disk form factor as we have seen previously
Adisk, 〈s〉(q) = �disk, 〈s〉〈s〉(q) = Fdisk(q).

6. Solid cylinder

We can choose a cylinder with its center at the ori-
gin and the axis along z. With polar coordinates σ = (r,
φ, z), we get r(σ ) = (r cos φ, r sin φ, z) and can de-
fine q = (q sin θ, 0, q cos θ ). Then q · r(σ ) = qr cos φ sin θ

+ qz cos θ and the phase integral becomes

Fcyl(q, O; R,L) = 4J1(qR sin θ ) sin( qL

2 cos θ )

LRq2 sin θ cos θ
× e−iq·O.

(A11)

We have chosen to explicitly write the origin O, since
this will be required to calculate the form factor amplitude.
With regular reference points at the ends of the cylinder axis
Rα = (0, 0,−L/2) and Rω = (0, 0,+L/2) (denoted by sub-
script “a”), the form factor, form factor amplitude, and phase
factor can be derived as

Fcyl(q; R,L) =
〈(

4J1(qR sin θ ) sin( qL

2 cos θ )

LRq2 sin θ cos θ

)2〉
o

,

(A12)

Acyl,a(q; R,L)

=
〈

4J1(qR sin θ ) sin( qL

2 cos θ )

LRq2 sin θ cos θ
cos

(
qL

2
cos θ

)〉
o

,

(A13)

�cyl,aa(q; R,L) = sin qL

qL
. (A14)

The form factor of a solid cylinder was previously de-
rived by Fournet.22 We can also derive the Fourier transform
of the end and side of the cylinder by differentiation as

Fcyl,end (q, 0; R,L) = (
πR2

)−1 d

dL

[
πLR2Fcyl(q, 0; R,L)

]

= 2J1(qR sin �) cos(Lq

2 cos �)

qR sin �
, (A15)

Fcyl,side(q, 0; R,L) = (2πRL)−1 d

dR
[πLR2Fcyl(q, 0; R,L)]

= 2J0(qR sin �) sin(Lq

2 cos �)

Lq cos �
. (A16)

By combining Eqs. (A15) and (A16) weighting the terms
by their relative areas and normalizing, we obtain the Fourier
transform of the surface of a cylinder as14

Fcyl,surf ace(q, 0; R,L) = (R + L)−1(RFcyl,end + LFcyl,side).

(A17)

With these Fourier transforms we can write down the
form factor amplitudes and phase factors of the cylinder rel-
ative to a reference point distributed on the ends side or any-
where on the surface. These expressions are given in the sup-
plementary material.23
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