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Summary
We analyze two symmetric two-mass models of the avian syrinx. Our first model applies to songbirds and is a
rescaled version of the well-known human two-mass model. Our second model (trapezoidal model) introduces
a smoother geometry and is used to simulate the ring dove (Streptopelia risoria) syrinx. Simulations show that
both models exhibit self-sustained vibrations. We show that the occurrence of collisions and the intensity of
harmonics depend strongly on the configuration of the syrinx. The songbird model does not present instabilities.
The trapezoidal model, however, displays coexisting limit-cycles that represent vibrations with, and without
collisions at the same pressure. Register-like transitions are accompanied by subharmonics and deterministic
chaos.

PACS no. 05.45.-a, 43.60.+d, 43.64.+r, 43.70.+i

1. Introduction

Two-mass models of mammalian vocal fold vibration have
been used successfully to describe the normal voice [1, 2],
vocal fold paralysis [3, 4, 5, 6], phonation onset [7], voice
instabilities at high pressures [8] and source-tract coupling
[9, 10].

In contrast to most mammals, birds do not generate vo-
calizations with their larynx but with their uniquely vo-
cal organ, the syrinx [11]. Instead of vocal folds, thick-
ened membranes called “labia” serve as vibrating tissue
[12, 13, 14, 15]. However, sound production in birds is
thought to be based on aerodynamical principles similar
to that of human phonation [12, 13, 16]. Consequently,
similar modelling approaches might be applicable and sev-
eral types of biomechanical models have been developed
[12, 16, 17, 18, 19]. It is not obvious that rescaling of the
original two-mass model will lead to appropriate oscilla-
tions at realistic driving pressures and damping ratios. The
syrinx is generally much smaller than the human larynx,
which leads to smaller areas for the interactions between
airflow and vibrating structures and to higher fundamental
frequencies of the produced sound.

In this paper, we develop two biomechanical models
of the syrinx to study the onset of sound generation and
control of higher harmonics (overtones) in the absence of
source-tract coupling.

Low-order models, as discussed in this paper, are over-
simplifications of the physiology. More realistic geome-
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tries [2], additional degrees of freedom [20], coupling to
the resonators [21] or a more detailed description of the
jet separation [2] can improve the simulated sound signal
significantly. In this paper we consider rather simple mod-
els with somewhat less realistic output. These core mod-
els allow comprehensive bifurcation analyses and we can
address basic questions: Do we find reasonable vibrations
of the masses even for much smaller geometries? How do
symmetric upper and lower masses and a trapezoidal shape
influence voice onset, spectral slope and voice instabili-
ties?

In a first model version (rescaled two-mass model), we
adapt the well-known simplified two-mass model to the di-
mensions of a songbird syrinx. Songbirds have two pairs
of bilateral labia, which can operate as two independent
sound sources [22]. Our model considers one unilateral
pair of labia.

In the second model (trapezoidal model), a more realis-
tic geometry of the so-called LTM (Lateral Tympaniform
Membranes) is adopted to describe the syrinx of a non-
songbird: the ring dove (Streptopelia risoria). The upper
and lower masses are connected with massless plates on
which pressure can act. Such a configuration with mass-
less plates has been applied to reproduce experimental data
from the human voice and to design laryngeal prostheses
[21].

Both models exhibit self-sustained oscillations at phys-
iologically realistic parameter values. In the classical two-
mass model, as well as in the model of the songbird
syrinx, collisions occur at medium pressures leading to
strong harmonics. In the model of the dove syrinx, how-
ever, collision is partially avoided, leading to more pure
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tones. We relate these observations to the widely discussed
topic of how birds control the intensity of their harmon-
ics [23, 24, 25, 26, 27, 28, 29, 30]. The trapezoidal model
exhibits coexisting vibratory regimes that resemble vocal
registers. At the same subsyringeal pressure, vibrations
with and without collisions are possible. Slow variation
of subsyringeal pressure can induce subharmonics, deter-
ministic chaos and a sudden jump to the other “registers”.

2. The Models: Overview

Both models are governed by the same equations of mo-
tion:

dx1

dt
= v1, (1)

dv1

dt
=

1
m1

F1 − r1v1 − k1x1 + I1

− kc(x1 − x2) , (2)
dx2

dt
= v2, (3)

dv2

dt
=

1
m2

F2 − r2v2 − k2x2 + I2

− kc(x2 − x1) , (4)

where Fi are the pressure forces derived from the Bernoulli
equation and the jet assumption and Ii represent the col-
lision forces. We will give a detailed description of both
models in the next sections.

3. Rescaled Two-mass Model

3.1. Derivation and voice onset

The classical two-mass model directly describes the well-
known phase shift between upper and lower edge of aero-
dynamically driven vibrating tissue [31]. Originally, this
model was derived in order to reproduce human vocal
fold vibrations [1]-[10]. Therefore, it is not obvious that
a rescaling of the original two-mass model will lead to
appropriate oscillations at realistic driving pressures and
damping ratios.

The fundamental frequency F0 of many bird songs is
on the order of 1 kHz. If we assume similar tissue elastic-
ities (k1, k2) and density ρ as in human vocal fold mod-
elling [1], we can derive the appropriate parameters of the
rescaled model shown in Table I. We mantain the 5:1 ratio
of lower to upper mass thickness (compare Figure 1).

The pressures are derived in earlier studies [5] from the
Bernoulli equation using a jet assumption:

P1 = Ps 1 − Θ(amin)
amin
a1

2
Θ(a1),

P2 = 0,

where Θ(x) is the Heaviside function

Θ(x) =
1 if x > 0,

0 if x ≤ 0.

0

z axis

x axis

d
2

d
1

pressure

x
2

x
1

length l

w

Figure 1. The rescaled two-mass model of the songbird syrinx.

Table I. Parameters of the rescaled two-mass model shown in
Figure 1.

symbol description value

l length of the syringeal lumen 0.3 cm
a01 lower rest area 0.0021 cm2

a02 upper rest area 0.00175 cm2

d1 1st mass thickness 0.1 cm
d2 2nd mass thickness 0.02 cm
m1 1st mass 0.0015 g
m2 2nd mass 0.0003 g
k1 1st mass stiffness 0.08 g/ms2

k2 2nd mass stiffness 0.008 g/ms2

r damping constant (r1 = r2) 0.002 g/ms
kc coupling constant 0.025 g/ms2

The forces Fi, Ii read as in previous studies [5]:

F1 = ld1P1, (5)

F2 = 0, (6)

Ii = −Θ(−ai)ci
ai
2l
, i ∈ {1, 2}. (7)

Viscous resistance of the vibrating tissues can be ex-
pressed in terms of damping ratio ζ = r/2

√
km [1]. Be-

cause of the decreasing mass m, r was rescaled to keep
approximately the same ζ values as in [1].

There is almost no information available on the pre-
phonatory shape of vibrating tissues in avian phonation
studies. Therefore, we have chosen rest areas a01 and a02

that allow easy vibrations, i.e. a low onset pressure. Sys-
tematic variations of the configuration revealed that a rect-
angular or a slightly convergent shape allow realistic onset
pressures, close to the values reported in other models, e.g.
[32].

Figure 2 shows the onset of self-sustained oscillations
(solid Hopf bifurcation line) for increasing subsyringeal
pressure Ps and varying stiffness k1. The onset pressure
of the rescaled model can be below 0.004 g/(cm ms2) (400
Pascal ≈ 4 cm H2O1) around our default parameters. Thus,

1 All units are given in centimeters, grams and milliseconds and their
corresponding combinations: hence pressure is measured in g/(cm ms2)
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rescaled dimensions with proper damping ratios and rest
areas lead to an onset of oscillations at realistic pressure
values. Therefore our rescaled two-mass model can serve
as a first step to model vibrating tissues in the syrinx.

3.2. Intensity of overtones

The intensity of higher harmonics (overtones) is a widely
discussed topic in bird song studies [23, 24, 25, 26, 27,
28, 29, 30]. A pure tone (e.g., a sine wave) has no over-
tones. Collisions of the vibrating tissues, however, lead
to pronounced harmonics [31]. To study the intensity of
overtones in the rescaled two-mass model, we calculate
the power spectrum of the flow derivative dU

dt = U̇ (we
recall that U̇ is a reasonable approximation of the radiated
sound pressure [1]). We introduce a simple measure of the
intensity of overtones - the Harmonics Ratio (HR):

HR = 10 log
H1

H0
,

which is calculated from the spectral power H0 at the fun-
damental frequency and the power at the first harmonic,
H1. This quantity is closely related to the widely used
spectral slope [31, 33]. Values below −20 dB indicate that
the signal has weak overtones.

Figure 2 shows the values of HR (in grey scale) for vary-
ing subsyringeal pressure Ps and stiffness k1. Only in the
immediate neighborhood of phonation onset do nearly si-
nusoidal oscillations occur (e.g. at point A in Figure 2).
Point B in Figure 2 represents a more typical situation:
collisions of the masses lead to rather strong harmonics
(Figure 3). In summary, the rescaled two-mass model can
be used to model sound production with pronounced over-
tones. Extensive exploration of the effects of parameter
variations revealed that the observed periodic vibrations
with collision are quite robust. No register transitions or
nonlinear phenomena such as subharmonics were found.

4. Trapezoidal Model

4.1. Geometrical aspects

In this section we will relax some over-simplifications
of the original two-mass model along the lines of Refs.
[2, 21]. The trapezoidal model aims to describe the sy-
rinx of the ring dove (Streptopelia risoria). In contrast
with songbirds, the vocal organ of ring doves is located
at the bronchotracheal junction [34], i.e. above the bifur-
cation of the trachea into the bronchi. The anatomy of the
ring dove syrinx (see Figure 4) suggests that a smoother
model is more appropriate (Streptopelia decaocto, [35];
Streptopelia risoria, C.P.H. Elemans unpublished results).
Therefore, each side of the LTM is modelled as a system of
two masses linked together by three massless plates (see
Figure 5), as presented in [21]. The parameters listed in

= 105 Pa. Consequently, with 1 cm H2O ≈ 102Pa we get 1 cm H2O ≈
0.001g/(cm ms2)
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Figure 2. Variation of the onset pressure depending on the stiff-
ness (solid Hopf bifurcation line) and Harmonic Ratio (HR) val-
ues color map above the onset of the pressure. At points A and
B, i.e. close and relatively far away from the Hopf bifurcation,
we evaluated the power spectrum of the flow derivative (see Fig-
ure 3). The fundamental frequencies at Ps=900 Pa range from
approximately 800 Hz (k1 = 0.0025) to 2,400 Hz (k1=0.45).
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Figure 3. Power spectra at two different regimes corresponding
to the letters A (upper panel) and B (lower panel, HR -8) in
Figure 2. Close to the Hopf bifurcation point (A) (Ps = 0.0035)
we observe less intense harmonics (HR −21).

Table II were obtained from anatomical studies (C.P.H. El-
emans, unpublished results). Instead of the estimated to-
tal mass of approximately 9 mg, we assume a vibrating
mass of 2 mg in order to achieve a reasonable fundamental
frequency. Two important modifications of the two-mass
model are introduced:
• symmetry between upper and lower masses (i.e. m1 =

m2, k1 = k2, r1 = r2) as in [21], because there is no
anatomical reason to introduce a small upper mass as in
the classical two-mass model

• smoothed geometry via lower and upper plates which
are characterized by the height parameters d1 and d3,
respectively.

These modifications affect the calculation of pressure and
collision forces significantly. For example, even for a
closed syrinx there is a pressure force acting on the lower
mass via the lower plate.
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Figure 4. The syrinx of a ring dove (Streptopelia risoria). LTM:
Lateral Tympaniform Membranes, MTM: Medial Tympaniform
Membrane, TL: Tracheolateralis Muscle.
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Figure 5. The model of the ring dove syrinx: the point masses are
joined by three massless plates.

Table II. Parameters of the model of the ring dove syrinx (see
Figure 5)

symbol description value

2w width of the trachea 0.3 cm
l length of the trachea 0.3 cm
a01 lower rest area 0.003 cm2

a02 upper rest area 0.003 cm2

d1 1st mass height 0.04 cm
d1 + d2 2nd mass height 0.24 cm

d1 + d2 + d3 LTM height 0.28 cm
m masses (m1 = m2) 0.001 g
k stiffness 0.02 g/ms2

r damping constant 0.001 g/ms
kc coupling constant 0.005 g/ms2

4.2. Calculation of forces

In the traditional two-mass model, the area exposed to
pressure (or collision) is always rectangular and normal to
the motion of the masses [36]. In order to derive the pres-
sure forces F1, F2, we need to multiply the pressure with

the corresponding area. The collision forces I1, I2 can be
written as a linear function of the areas a1, a2.

In our trapezoidal model, most of the quantities have to
be generalized to adapt to the new model geometry. First,
we assume for simplicity that all forces above the imagi-
nary horizontal midline at dM = d1 +

d2
2 act on the upper

mass whereas all forces below that midline drive the lower
mass (midline assumption). Note that in Lous et al. [21],
F1 and F2 are derived from a balance between forces and
torques leading to a more detailed derivation of the force
terms.

Second, we define the syringeal area at height z as
a(z) = 2lx(z), where x(z) is obtained by means of plate
equations, i.e. the linear equations which identify each
plate on the plane xz. Particular values of a(z) are a1, a2

(syringeal areas at 1st and 2nd mass heights, d1 and d1+d2)
and aM (syringeal area at height dM ). The minimum sy-
ringeal area amin is defined as amin = min{a1, a2}.

4.2.1. Pressure force
By means of the Bernoulli equation, jet separation as-
sumption and a(z) defined above, we can calculate the
pressure P = P (z) in the syringeal lumen at height z:

P (z) =

 Ps 1 − amin
a(z)

2
Θ(zm − z), if amin > 0,

PsΘ(ζmin − z), if amin ≤ 0,

where zm is the ordinate at which amin is found and, in
case of collision (amin ≤ 0), ζmin is the minimum collision
ordinate, i.e. the minimum ordinate z for which a(z) ≤ 0.

If z0 and z1(z0 < z1) are two generic ordinates of points
belonging to the same plate and α the angle formed by that
plate with the z axis, the pressure force acting on the plate
area between z0 and z1 will be by definition F (z0, z1) =

A
P (z)dA, where A is the plate area

A =
z1 − z0

cos α
l

Because no vertical motion is supposed, the component
along the x axis of this pressure force reads:

Fx(z0, z1) = cos α F (z0, z1)

= cos α
(z1−z0)l/ cos α

0
P (z) dA = l

z1

z0

P (z) dz.

Consequently, and by means of the midline assumption,
the forces F1, F2 read:

F1 = Fx(0, d1) + Fx(d1, dM ), (8)

F2 = Fx(dM , d2). (9)

4.2.2. Collision force
Traditional two-mass models do not require the calculation
of contact area, because the projected area is rectangular
and there is no gradation in opening and closing [36]. We
define a collision force that is consistent with (7) and ad-
mits a gradual variation of contact area in time. First, we
remark that each collision force Ii is zero if:

Ii = 0 ⇔ ai ≥ 0 AND aM ≥ 0, i ∈ {1, 2}

744



Zaccarelli et al.: Modelling bird songs ACTA ACUSTICA UNITED WITH ACUSTICA
Vol. 92 (2006)

0 0.04 0.08 0.12 0.16 0.2 0.24
k1 [g/msec^2]

0

200

400

600

800

1000

pr
es

su
re

[P
a]

0 0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32 0.36 0.4
d1 [cm]

200

400

600

800

1000

1200

1400

1600

pr
es

su
re

[P
a]

Figure 6. Onset pressure as a function of stiffness (upper graph)
and of height d1 (lower graph) for the trapezoidal model. Initial
conditions: [x1, v1, x2, v2] = [0, 0, 0, 0].

If the collision force Ii is nonzero, we define respectively:

I1 =
1

δ(0, dM )

dM

0
−Θ(−a(z))a(z)

ci
2l

dz, (10)

I2 =
1

δ(dM , d3)

d3

dM

−Θ(−a(z))a(z)
ci
2l

dz, (11)

where δ(z1, z2) is the distance (on the line x = 0) between
z1 and z2 along which a(z) < 0.

We chose to normalize I1 and I2 using distance δ in
order to keep ci of the dimension of g/ms2 and to obtain
a generalization of the previous collision force. The latter
is found comparing it with the degenerate case d1 = 0.
For the implementation of Ii, we take into account that
the integrals in eq. (10) and (11) are proportional either to
triangular or trapezoidal areas of colliding masses.

4.3. Bifurcations in the trapezoidal model

As in section 3.2, we study the onset of oscillations and the
strength of harmonics in our trapezoidal model. The upper
panel in Figure 6 shows that oscillations can be obtained
at fairly low subsyringeal pressures (> 200 Pa). Increas-
ing stiffness leads to an almost linear increase of the onset
pressure as observed earlier in other models [5, 37]. An es-
sential modification of the standard two-mass model is the

200 300 400 500 600 700 800 900 1000
pressure [Pa]

-0.005

0

0.005

0.01

0.015

0.02

x1
[c

m
]

stable
unstable

Figure 7. Bifurcation diagram of the variable x1 for increasing
subsyringeal pressure Ps. Note the coexistence of stable limit cy-
cles around 450 Pa.

smoother geometry, i.e. a non-vanishing height d1. It turns
out that in a certain range around our default parameter (d1

= 0.004 cm) oscillations are easily obtained (lower graph
in Figure 6).

Figure 7 shows a one-dimensional bifurcation diagram
for increasing subsyringeal pressure Ps. Figure 8 shows a
more detailed bifurcation diagram near the onset visualiz-
ing coexisting limit cycles and negative values of the ar-
eas corresponding to colliding tissues. We observe in Fig-
ure 7 a sudden onset of oscillations around 300 Pa via a
subcritical Hopf bifurcation. The amplitude of the result-
ing limit cycle increases and no collision occurs (see Fig-
ure 8). At 425 Pa another limit cycle with larger ampli-
tudes is observed exhibiting collisions of the upper part
described by x2 (corresponding to negative values of a2 in
Figure 8). Furthermore, Figure 7 implies that quite distinct
vibration patterns coexist at the same pressure. The large
limit cycle contains stronger harmonics than the smaller
one (Figure 9). These observations resemble observations
in previous experiments of the chest to falsetto transitions
in excised larynx studies [38]. Several register-like transi-
tions were also found in simulations of an extended two-
mass model [36]. Because the suppression of collision and
the register transitions are novel features of our trapezoidal
model, we discuss these phenomena in some detail.

4.4. Avoidance of collisions

As illustrated in Figure 2, the standard two-mass model
is characterized by strong harmonics due to collision even
at small and medium pressures. However, the lower limit
cycle of our trapezoidal model is collision-free even at
high pressures and consequently has only weak harmon-
ics (lower panel in Figure 9). This is due to the increas-
ing steady state area (see Figure 8) which pulls apart the
masses. The equilibrium in the standard two-mass model,
however, is constant, i.e. it does not depend on the sub-
glottal pressure. If we set the derivatives with respect to
time in the equations (1)–(4) to zero, we obtain in the
two-mass model x2 = x1 kc/(k2 + kc). For a rectangular
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Figure 8. Detailed bifurcation diagram of the syringeal areas
a1, a2 for increasing subsyringeal pressure Ps.
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Figure 9. Power spectra at two different regimes: Collisions at
larger vibrations lead to strong harmonics whereas harmonics de-
cay rapidly for the small limit cycle.

shape (a01 = a02 > 0) we get from (2) the trivial solution
x1 = x2 = 0. As shown in [5], oscillations starting from
that rest position lead to collision, even for small pressures.

If we apply the same calculations to our trapezoidal
model we obtain:

x2 =
kc

k2 + kc
x1 +

F2

k2 + kc
, (12)

leading directly to

x1 =
(k2 + kc)F1 + kcF2

k1k2 + k1kc + k2kc
> 0. (13)

There is no simple analytical solution of this equation.
However, because F1 > 0 we get no equilibrium at x1 =
x2 = 0. Therefore, the smoother geometry implies that
there is always a force that pulls apart the masses, and the
rest position increases linearly with the subsyringeal pres-
sure (see Figure 7). Figure 8 shows that for the equilibria
we always have a1 > a2, i.e. a convergent configuration.
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Figure 10. Register transitions from the large limit cycle to the
small limit cycle (see Figure 7). Starting from a subsyringeal
pressure of 500 Pa, we observe period doubling and chaos in the
vicinity of the jump to the small limit cycle with less pronounced
harmonics.

Because for a convergent shape the suprasyringeal pres-
sure has little effect on the masses, such a persistent con-
vergent configuration might lead to a reduced source-tract
interaction.

It is clearly visible that both areas remain positive for
the small limit cycle, while the large limit cycle exhibits
negative values of a2 corresponding to colliding tissues.

4.5. Register transitions via subharmonics and
chaos

As described above, we found coexistence of a small and
a large limit cycle in the range of 425-535 Pa. This im-
plies that different initial conditions lead to distinct vibra-
tion patterns.

Furthermore, small perturbations can induce sudden
jumps from one attractor to another. In this section we
analyze the transition from the large attractor with colli-
sions to the small limit cycle due to a slow increase of the
subsyringeal pressure. Figure 10 shows the spectrogram of
the sound pressure generated during the transition from the
large limit cycle (with collisions) to the small limit cycle
caused by a slow increase of the subsyringeal pressure. It
is evident that there is a jump from harmonic rich spectra
to a more sinusoidal oscillation.

Furthermore, subharmonics and noise-like components
are visible. In Figure 11, high-resolution spectra2 confirm
the appearance of subharmonics and chaos. Using phase
portraits and Poincaré sections (not shown), we have con-
firmed the existence of deterministic chaos in our trape-
zoidal model.

5. Discussion

Our simulations show that rescaled biomechanical models
originally developed to describe mammalian vocal fold vi-

2 Integration time from 1000 to 2000 ms in order to avoid transients and
time step of 0.0005 msec (2000 kHz sampling rate).

746



Zaccarelli et al.: Modelling bird songs ACTA ACUSTICA UNITED WITH ACUSTICA
Vol. 92 (2006)

1 2 3 4

- 40
- 20

0
20

1 2 3 4

- 40
- 20

0
20

so
un

d
in

te
ns

ity
[d

B
]

0 1 2 3 4 5

- 40
- 20

0
20

frequency [kHz]

P
s
=450 Pa

P
s
=530 Pa

P
s
=535 Pa

Figure 11. Power spectra at different pressure values for the large
limit cycle depicted in Figure 7: As visible from the spectrogram
in Figure 10, we detect a period doubling and chaos in the vicin-
ity ( 540 Pascal) of the abrupt jump to the small limit cycle.

brations can be adapted to model the bird syrinx. We as-
sumed that both sound producing organs are excited by
the same principle: in the opening phase a high pressure
drives the vibrating structure apart and during closure the
pressure is reduced due to the Bernoulli force. The funda-
mental frequency is governed by the mass and stiffness of
the vibrating tissue.

Our simulations represent symmetric vibrations. Inter-
estingly, the same model equations can be used to model
a single vibrating structure (a “hemi-syrinx”). In this case
only the sound intensity is reduced but onset pressure or
intensity of harmonics are identical.

Control of harmonics in bird songs is widely debated
[23, 24, 25, 26, 27, 28, 29, 30]: some species have whistle-
like songs and not much energy is found in the harmon-
ics [26], whereas other species, such as the zebra finch
(Taenopygia guttata), display strong harmonics during
song or calls.

In all two-mass model versions almost pure tones are
found near the onset of vibrations (i.e. near the Hopf bi-
furcation line shown in Figure 2). In the rescaled two-mass
model, strong harmonics appear at higher pressures due to
collisions. For a small upper mass and a rectangular geom-
etry, collisions leading to strong harmonics can be avoided
only near the phonation onset. At higher pressures coun-
teracting forces would be required to diminish collisions.
We hypothesize that the avoidance of strong collisions in
song birds might be achieved by the medial tympaniform
membranes (MTM) that are continuous with the inner vi-
brating labia [19]. This possible function of the MTM will
be discussed in more details in a forthcoming study.

In our model of the ring dove syrinx no collisions oc-
cur at default parameters. Consequently, harmonics are
fairly weak. The smoother configuration and equal upper
and lower masses counteract collisions even at relatively
high pressures. This is presumably due to a stronger ef-
fect of the subsyringeal pressure acting on both masses.
In a recent experimental paper [23], Riede et al. showed

how varying suprasyringeal configurations can suppress
the second harmonic in ring doves, and Fletcher et al. [29]
showed that the combined influence of trachea, glottis and
upper esophagus acts as an effective band-pass filter that
eliminates higher harmonics generated by the dove syrinx.
Our simulations reveal that the configuration of the sy-
rinx influences the intensity of overtones. Therefore, the
amount of energy in the harmonics could also be con-
trolled by syringeal muscles that directly affect the con-
figuration of the syrinx [39, 40].

Around our default parameters given in Table I we
found no voice instabilities. On the other hand, we have
shown that our trapezoidal model exhibits coexistence of
attractors and jumps from harmonic rich spectra to more
sinusoidal oscillations of the radiated sound pressure.

A previously published two-mass model of the songbird
syrinx [12] demonstrated many instabilities such as period
doublings, transitions from periodic to chaotic dynamics,
as well as mode locking transitions. Unfortunately, we are
unable to compare the behaviour of the two models in
more details, because the governing equations and the pa-
rameter settings were not provided. Ring doves already
exhibit stronger harmonics during inspiratory phonation
compared to expiratory phonation even at low intensities
[23, 27, 41, 42]. This implies that asymmetries between
outflow and inflow of the air have to be taken into account.
This will be treated in a more sophisticated model. Insta-
bilities such as frequency jumps are commonly observed
in the ring dove coo [43, 41]. Even our current model de-
scribed in this paper exhibits already coexistence of differ-
ent “registers”.

In this paper we have shown that the geometry and the
rest position of the syrinx can influence the harmonic spec-
tra drastically. Our simulations are a first step towards
more realistic modelling of the syrinx. In subsequent stud-
ies we will incorporate the MTM and the dynamic control
of associated superfast syringeal muscles. This will allow
a quantitative comparison of observed bird songs and sim-
ulations.
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