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ABSTRACT 

In this invited paper we focus on the discussion of two recent unique applications of the Finite-Difference Time-Domain 
(FDTD) simulation method to the design and modeling of advanced nano- and bio-photonic problems. We will first 
discuss the application of a traditional formulation of the FDTD approach to the modeling of sub-wavelength photonics 
structures. Next, a modified total/scattered field FDTD approach will be applied to the modeling of biophotonics 
applications including Optical Phase Contrast Microscope (OPCM) imaging of cells containing gold nanoparticles (NPs) 
as well as its potential application as a modality for in vivo flow cytometry configurations. The discussion of the results 
shows that the specifics of optical wave phenomena at the nano-scale opens the opportunity for the FDTD approach to 
address new application areas with a significant research potential. 
 
Keywords: Finite-difference time-domain method, sub-wavelength nanophotonic structures, optical phase contrast 
microscope, optical clearing effect, biological cell, gold nanoparticles, biomedical imaging 
 

1. INTRODUCTION 

The study of optical wave phenomena at the nano-scale requires the application of rigorous numerical electrodynamics 
modeling. In most cases optical simulations could be the only way to get a deeper understanding of light propagation and 
scattering in advanced nanopotonic structures. The situation is very similar in nanobiophotonics diagnostics and imaging 
research studies where the optical scattering phenomena are initiated at a comparable scale of dimensions. This similarity 
enables a common way of treatment with respect to the challenges associated with numerical modeling of optical wave 
phenomena at the nano-scale. The tools and methods for the numerical modeling of light scattering from single or 
multiple biological cells are of particular interest since they could provide information about the fundamental light-cell 
interaction phenomena that is highly relevant for the practical interpretation of cell images by pathologists. The FDTD 
simulation and modeling of the light interaction with single and multiple, normal and pathological biological cells and 
sub-cellular structures has attracted the attention of researchers since 1996.1 The emerging relevance of 
nanobiophotonics imaging research has established the FDTD method as one of the powerful tools for studying the 
nature of light-cell interactions. The main advantages of the FDTD method are: i) its numerical simplicity and 
straightforward physical basis since it is a numerical solution of Maxwell’s equations, and ii) its ability to be easily 
integrated with a graphical user interface enabling its broader adoption as a research tool. This paper will focus on 
summarizing some recent advanced applications of the FDTD approach to the modeling of i) Subwavelength Grating 
Structures (SWG) for refractive index engineering in microphotonic silicon waveguides,2,3 and ii) Optical Phase Contrast 
Microscope (OPCM) imaging of cells containing gold nanoparticles (NPs).4-6 The focus will be on the simulation results 
and the design and modeling power of the FDTD approach rather than on the specific mathematical formulation. Details 
about the numerical aspects of the FDTD can be found elsewhere.7  
______ 
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2. SWG STRUCTURES FOR REFRACTIVE INDEX ENGINEERING IN MICROPHOTONIC 
SILICON WAVEGUIDE CROSSINGS 

This section focuses on the numerical modeling of a recent experimental demonstration of using SWG structures for 
refractive index engineering in microphotonic silicon waveguide crossings by the Optoelectronics Group in the Institute 
for Microstructural Sciences at the National Research Council in Ottawa, Ontario, Canada. The SWG design exploits the 
effective medium principle, which states that different optical materials, combined at subwavelength scales, can be 
approximated by an effective homogeneous material.8,9 Within this approximation, an effective medium can be 
characterized by an effective refractive index defined by a power series of the homogenization parameter χ= Λ/λ, 
where Λ is the grating pitch and λ is the wavelength of light. Provided that the pitch Λ is less than the 1st order Bragg 
period ΛBragg = λ/(2neff), the grating operates in a subwavelength regime and the diffraction effects are frustrated. An 
example of a basic structure that exemplifies the use of refractive index engineering in a waveguide is shown in Fig. 1a.2 
It is a nonresonant photonic structure formed by etching a linear periodic array of rectangular segments into a 260-nm-
thick single crystal silicon layer of a silicon-on-insulator wafer. A 2-μm-thick bottom oxide (SiO2) layer separates the 
waveguide from the underlying silicon substrate. The waveguide core is a composite medium formed by interlacing the 
high-refractive-index segments with a material of a lower refractive index, which at the same time is used as the cladding 
material. The refractive index of the core is controlled lithographically by changing the volume fractions of the two 
materials. By intermixing Si and SU-8 materials at the subwavelength scale, the refractive index range of ∼1.6-3.5 can 
be obtained. In order to avoid the formation of standing waves due to Bragg scattering and the opening of a band gap 
near 1550 nm wavelength, a nominal structural period d = 300 nm was chosen, which is less than a half of the effective 
wavelength of the waveguide mode λeff. Fig. 1b shows the dispersion diagrams of the periodic SWG waveguide and of 
an equivalent strip waveguide with a core index of 2.65.2 The comparison of the two dispersion curves shows that the 
dispersion away from the bandgap resonance matches that of an equivalent strip waveguide. 

 
Fig. 1. a) SWG waveguide (SEM image);  b) Dispersion diagrams for SWG and an equivalent strip waveguide with an engineered 
core refractive index of 2.65 (TE polarization). 
 
In the case of SOI waveguide platforms, the two natural choices for the high and low index materials to create the 
effective medium are silicon (waveguide core) and silica (cladding) respectively. A gradual change in the ratio of Si to 
SiO2 along the light propagation direction will result in a corresponding effective refractive index change of the 
composite medium of the waveguide core. This effect can be sued to design a SWG mode converter for efficient 
waveguide crossings. This is done by gradually changing the effective index of the SWG waveguide through chirping the 
pitch and tapering the width of the grating segments (Fig. 2).3 Reducing the segment width as the mode propagates along 
the crossing expands the mode near the crossover point. Since the SWG waveguide intersecting this expanded mode is 
also subwavelength, diffraction is frustrated resulting in minimal loss. At the same time coupling to the intersecting 
waveguide is reduced.3  
 
The usual total field/scattered filed approach was used to perform 3D FDTD simulations with a mesh size of 10×20×10 
nm3

 to ensure finer resolution for the taper and chirp (in the direction of the x- and z-coordinates, respectively, as shown 
in Fig. 2a).3 The increased numerical accuracy is at the expense of layout size, which is 3×3×10μm3. The values of the 
refractive indices of the materials that were used are 3.476 for Si and 1.444 for SiO2, the time step is 1.67×10-17s in 
accordance with the Courant criterion.7 The simulation layout for a Si wire waveguide with a SWG crossing is the one 
shown in Fig. 2a, where Λi and Λf  are the initial and final grating pitches, wi and wf are the initial and final segment 
widths, a = 150 nm is the segment length, and h = 260 nm is the Si thickness in the SOI wafer.3 
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Fig. 2. a) Top view of the 3D FDTD simulation layout for a Si wire waveguide with a SWG crossing, where Λi and Λf  are the initial 
and final grating pitches, wi and wf  are the initial and final segment widths and a = 150 nm is the segment length. Inset in (a) shows 
the layout for estimating crosstalk. b) Example of a micro-fabricated waveguide crossing.   
 
This layout was used to calculate loss, whereas the layout inset in Fig. 2a was used to calculate crosstalk. A continuous 
wave (CW) fundamental mode of a 450nm× 260nm wire waveguide at λ= 1.55 μm is used as the input field and 
optimization is performed for TE polarization. Mode mismatch loss is calculated as the power coupled to the 
fundamental mode of the output wire waveguide, whereas crosstalk is calculated as the power coupled to the 
fundamental mode of the intersecting waveguide. To reduce the mode mismatch loss from a wire waveguide to SWG in 
Fig. 2a, we ensure an adiabatic transition by a linear chirp (from Λi = 200nm to Λf =300nm) and taper (from wi = 450 
nm to wf in the range of 200nm-350nm) over 12 grating segments. The taper section is followed by 8 SWG segments 
with a constant pitch of 300nm and a width of 300nm (with a=150nm, i.e., a constant duty cycle of 50 %). The 
intersecting SWG structure has the same grating parameters, while the center segment is square to ensure an identical 
geometry for both waveguides. For each wf, the center segment dimensions are set to match the area of the adjacent 
SWG grating segment (wf×a) ensuring a constant effective index for these adjacent segments. After the crossing point, 
an identical geometry is used for transition back to a wire waveguide (Fig. 2a).3  
 

 
Fig. 3. SWG loss per crossing for TE (blue) and TM (red) polarizations for wf = 350 nm. The inset shows loss for one SWG crossing 
with varying center square segment width w. 
 
To determine loss per SWG crossing in the simulations (Fig. 3) wf = 350 nm was used to minimize taper insertion loss. 
Loss per crossing is calculated as the slope of the linear fit to the insertion loss from three structures, comprising 0, 1 and 
2 crossings. Fig. 3 shows that for TE polarization the loss is -0.31 dB/crossing, while for TM polarization the loss is -
0.21 dB/crossing. The inset in Fig. 3 shows one SWG crossing loss (wf =350nm) for different widths of the center square 
segment indicating optimal performance at w = 220nm.  
 
This example demonstrates the application of the FDTD approach for the design and modeling of a new waveguide 
crossing principle based on subwavelength grating waveguides. The fabrication of such micro-waveguide structures is 
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impossible without the preliminary design and modeling step that was based on the application of the FDTD approach. 
The new device was experimentally fabricated.3 The measured loss of the fabricated structures is as low as -0.023 
dB/crossing, polarization dependent loss is minimal (0.01 dB) and crosstalk is less than -40 dB. An important advantage 
of this SWG structure is that it can be fabricated with a single etch step. Subwavelength grating crossings have the 
potential to facilitate massive interconnectivity and minimize the device footprint for future complex planar waveguide 
circuits.  

3. THE FDTD OPCM APPROACH 

The 3D FDTD formulation provided in this section is based on a modified version4-6 of total-field/scattered-field (TFSF) 
FDTD formulation.7  It could be more appropriately called total-field/reflected-field (TFRF) formulation. The 3D TFRF 
formulation uses a TFSF region which contains the biological cell and extends beyond the limits of the simulation 
domain. The extension of the transverse dimension of the input field beyond the limits of the computational domain 
through the perfectly matched boundaries would lead to distortions of its ideal plane wave shape and eventually distort 
the simulation results. To avoid these distortions one must use Bloch periodic boundary conditions (Fig. 4ab) in the 
lateral x - and y -directions which are perpendicular to the direction of propagation – z .4-6  
 
Phase contrast microscopy produces high-contrast images of transparent specimens such as living cells and sub-cellular 
components. In a conventional flow cytometry configuration a beam of light of a single wavelength is directed onto a 
hydro-dynamically focused stream of fluid driving a periodical array of cells to flow through it. The OPCM simulation 
model requires the explicit availability of the forward scattered transverse distribution of the fields. The phase of the 
scattered field accumulated by a plane wave propagating through a biological cell within a cytometric cell flow will be 
used in the FDTD model of the OPCM that is described as the follows. 
 

                  
Fig. 4. Schematic representation of the 3D FDTD formulation including: a) a cell with a nucleus and a cluster of gold nanoparticles in 
the cytoplasm; b) a cell with gold nanoparticles randomly distributed on the nucleus surface.  
 
Fig. 5ab shows a flow cytometry configuration of a phase contrast microscope, where an image with a strong image 
contrast ratio is created by coherently interfering a reference (R) with a beam (D) that is diffracted from one particular 
cell in the cell flow. The phase contrast microscope uses incoherent annular illumination that could be approximately 
modeled by adding up the results of eight different simulation using ideal input plane waves incident at a given polar 
angle (30 deg), an azimuthal angle (0, 90, 180 or 270 deg), and a specific light polarization (parallel or perpendicular to 
the plane of the graph). 
 
Every single FDTD simulation provides the near field components in a transverse monitoring plane located right behind 
the cell (see Fig. 4ab). The far field transformations use the calculated near fields right behind the cell and return the 
three complex components of the electromagnetic fields far enough from the location of the near fields, i.e. in the far 
field.7 The amplitudes and the phases of the calculated far-field components can be used then to do Fourier optics with 
both the scattered and reference beams. 
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Fig 5. OPCM cytometer (a,b) with a visual representation of the FDTD OPCM model (c) including the propagation of the reference 
(R) beam without the cell flow and the propagation of the beam diffracted (D) from one of the cells. 

 
The magnification factor of the optical lens system was implemented by merely modifying the angle of light propagation 
– it was applied to the far fields before the interference of the diffracted (D) and reference (R) beams (Fig. 5c) at the 
image plane.4-6 The effect of the numerical aperture NA is to clip any light that has too steep an angle and would not be 
collected by the lens system. The OPCM images at the image plane are calculated by adding up the scattered and the 
reference beam at any desired phase offset Ψ . To model the resonant and non-resonant scattering and absorption 
properties of the gold nanoparticles (NPs) we used the dispersion model for gold derived from the experimental data 
provided by Johnson and Christy.10 The FDTD technique was applied to calculate the extinction cross-sections over a 
400-900 nm wavelength range for a single 50 nm diameter gold NPs immersed in a material having the properties of the 
cytoplasm ( cyton 1.36= ) and space resolution 10nm . The calculated extinction cross-section has a maximum of 3.89 at 
543.0 nm corresponding to one of the radiation wavelengths of He-Ne lasers. The result for 676.4nmλ =  (a Krypton laser 
wavelength) which corresponds to the non-resonant case (extinction cross-section value 0.322, ~12 times smaller than 
3.89). The FDTD results were validated by comparing them with the theoretical curve calculated by Mie theory.   

4. FDTD OPCM SIMULATION RESULTS 

The 3D FDTD modeling of OPCM imaging of single biological cells uses optical magnification factor M 10=  and 
numerical aperture NA 0.8= . The cell is modeled as a sphere with a radius 

cR 5 m= μ  (Fig. 1) with membrane thickness 
d 20nm= . It corresponds to an effective (numerical) thickness of approximately 10 nm. The cell nucleus is also 
spherical with a radius nR 1.5 m= μ  centered at a position 2.0 mμ  away from the cell center in a direction perpendicular 
to the direction of light propagation. The refractive index of the cytoplasm is cyton 1.36= , nucn 1.4=  of the nucleus, 

memn 1.47=  of the membrane and 
extn 1.33=  of the extra-cellular material (no refractive index matching). The case of  

extn 1.36=  corresponds to refractive index matching (RIM) which through optical clearing ensures a better contrast of 
the cell image.11  Fig. 4a shows the schematic positioning of a cluster of 42 NPs in the cytoplasm that was used in 
simulations. The cell center is located in the middle ( x y z 0= = = ) of the computational domain with dimensions 
15 m 12 m 15 mμ × μ × μ  (Fig. 1a). The nucleus’ center is located at x 2 m= − μ , y z 0 m= = μ . The cluster of gold NPs is 
located at x 2 m= μ , y z 0 m= = μ . Fig. 4b shows another simulation scenario where the cluster of 42 NPs is randomly 
distributed on the surface of the cell nucleus. One of the main goals of this section is to illustrate the ability of the FDTD 
approach to model generate OPCM cell images including the imaging effects of optical clearing and gold NP resonance. 
The presence of NPs at non-resonant regime ( 676.4nmλ = ) can be clearly seen on the graph shown in Fig. 6 (left). It 
represents a comparison of the cross-sections of two cell images – one with the cluster of NPs and one without it. 
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Fig. 6. Left: Comparison of the geometrical cross sections of two OPCM images – with and without nanoparticles ( 676.4nmλ = , 

o180Ψ = ). The non-resonant effect of the presence of the gold NPs is clearly visible. Right: Comparison of the geometrical cross 
sections of two OPCM cell images with gold NPs at resonant and non-resonant conditions ( o180Ψ = ). The effect of the optical 
resonance ( 543.0nmλ =  vs 676.4nmλ = ) of the gold NPs is clearly demonstrated 
 
 
 

 
 

 
 
Fig. 7. OPCM images of a single cell for different values of Ψ (a: o150− , b: o90− ) at RIM conditions with (right) and without (left) 
a cluster of 42 gold NPs at non-resonant conditions ( 676.4nmλ = ). The arrows indicate the position of the cluster. 

 
The full images of the cell are shown in Fig. 7 for two different values of the phase offset Ψ between the reference beam 
and the scattered beam. The images demonstrate that the value of the phase offset Ψ affects the image contrast and needs 
to be optimized during real life experiments. The effect of the optical resonance of the gold NPs can be clearly seen in 
Fig. 6 (Right) - for o180Ψ =  when the resonant optical contrast of the gold NP peak is ~2.24 times larger than the non-
resonant one. It however needs to be studied as a function of the particular phase offset Ψ  between the reference beam 
and the scattered beam of the OPCM. An additional analysis of the optical contrast due to the gold NP cluster as a 
function of the phase offset showed that the enhancement of the optical contrast due to the NP resonance changes 
significantly from a minimum of 0.0 ( o0Ψ = ) to a maximum of 3.60 ( o150Ψ = − ). This dependence could be important 
in real life OPCM imaging. The full images of the cell are shown in Fig. 8 for two different values of the phase offset Ψ 
between the reference beam and the scattered beam. The images illustrate the optical contrast effect of the optical 
resonance of the gold NPs. Fig. 9 shows the OPCM images of a cell including a group of 42 gold NPs randomly 
distributed on the surface of the cell nucleus at and non-resonant (left) and resonant (right) conditions. The optical wave 
phenomena involved in this second simulation scenario are fundamentally different from the ones considered earlier 
where the gold NPs are randomly distributed within the homogeneous material of the cytoplasm. 
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Fig. 8. OPCM images of a single cell for different values of Ψ  (a: o150− , b: o90− ) at RIM conditions including a cluster of 42 gold 
NPs at resonance (right, 543.0nmλ = ) and at no-resonance (left, 676.4nmλ = ). The arrows indicate the position of the cluster. 

 

 
 

 
 

Fig. 9. OPCM images of a single cell for different values of Ψ  (a: o90− , b: o90+ ) at RIM conditions including 42 gold NPs 
randomly distributed on the surface of the nucleus at resonance (right, 543.0nmλ = ) and no-resonance (left, 676.4nmλ = ).  

 
In this first scenario the specific nature of their imaging effect is determined solely by their own absorption and 
scattering properties. In the second scenario, when the NPs are located at the interface between the nucleus and the 
cytoplasm, the imaging effect of the NPs cannot be decoupled from the imaging effect of the interface which is 
characterized by a relatively large refractive index difference n 0.04Δ = . 
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Fig. 10. Cross-sections of the cell images corresponding to the simulation scenario used in Fig. 7 and phase offset o30Ψ = + . The 
specific fragmentation of the nucleus’ image is due to the presence of the Gold NPs at resonant condition.  
 
Comparing the images shown in Fig. 9 and Fig. 8 shows that the images of the cell without the gold NPs are hardly 
distinguishable from the images including gold NPs at no resonance conditions ( 676.4nmλ = ). However, the presence of 
the gold NPs on the surface of the nucleus at resonant conditions (see Fig. 10) can be identified by a specific 
fragmentation of the image of the nucleus for specific values of the offset Ψ .  

5. CONCLUSIONS 

In this contribution we provided a brief summary of some recent unique applications of the FDTD method for the design 
and modeling of nano- and biophotonics problems. The focus of the examples was on i) using SWG structures for 
refractive index engineering in microphotonic silicon waveguide crossings, and ii) numerically constructing OPCM 
images of realistic size cells to study the imaging effect gold NPs. The first example shows the ability of the FDTD 
approach to help in addressing a critical issue in the design and fabrication of microphotonic waveguide structures - the 
optimal choice for the most suitable refractive-index contrast of the waveguides. The real challenge in making this 
choice consists in the requirement for the refractive index values to be sufficiently high in order to guarantee a proper 
light confinement and, at the same time, dealing with all the consequent side effects, such as higher propagation loss, 
higher sensitivity to fabrication imperfections and sidewall roughness. Usually, the refractive index cannot be chosen at 
will but must be selected within a limited set of optical platforms. In the new design2,3 the waveguide is longitudinally 
patterned with a SWG, consisting of segments of a high-refractive-index core material interlaced with a lower-refractive-
index cladding material. Since the refractive-index contrast can be changed by simply controlling the grating period, 
SWG waveguides with different optical parameters (mode confinement, effective index, chromatic dispersion, and so on) 
can be realized on the same chip. This approach nicely fits the fabrication processes of planar lightwave circuits and 
represents a radical step forward with respect to the existing methods. The extremely low loss of the experimentally 
fabricated waveguides2,3 shows that SWG waveguide applications are now able to compete with the ones based on 
conventional waveguides.  
 
In what it concerns the second example, it is important to point out that in the second case all the results correspond to 
the case when there is a refractive index matching between the cytoplasm and the extra-cellular medium which leads to 
the optical clearing of the cell images. The refractive index of the extra-cellular fluid can be externally controlled by the 
administration of an appropriate chemical agent11 leading to increased light transmission through cell due to the 
matching of the refractive indices of some of its organelles to that of the extra-cellular medium.4-6 For example, due to 
optical clearing, the image contrast of the cell cytoplasm can be drastically reduced to zero levels and it is only the image 
of the nucleus that will remain sharply visible. Such scenario shows an unprecedented opportunity to use the optical 
clearing effect for the analysis of pathological changes in the eccentricity and the chromatin texture of cell nuclei within 
the context of OPCM configurations. This opportunity is associated with the fact that at refractive index matching 
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conditions the cell image is efficiently transformed into a high contrast image of the nucleus. In such conditions the 
imaging effect of the NPs is significantly enhanced. The presented results did not allow analyzing the scaling of the NP 
imaging effect as a function of the number of the NPs. However, the validation of the model provides a basis for future 
research in this direction.  
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