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ABSTRACT

Game-theoretic models of fisheries typically consider cases where some players
harvest a single common fish stock. However, these types of models do not capture
many real-world mixed fisheries, where species can be biologically independent
or dependent. The present paper considers cases where several non-cooperative
exploiters are involved in mixed fisheries. This paper is targeting the preserva-
tion of biodiversity by setting up a two-species model with the aim of exploring
the conditions under which both species can survive exploitation under non-
cooperative management. The model starts out as a two-species model without
biological dependency and is then modified to also include biological dependency.
We contribute to the literature by analytically finding the maximum number of
players that can preserve both species while satisfying the model’s conditions. For
visualization purposes, we simulate a two-species model with different kinds of
interrelationships.
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INTRODUCTION

Game-theoretic models of fisheries typically consider cases where some limited number
of countries harvest a single common fish stock. However, in the case of real-world
fisheries, countries do often exploit several stocks simultaneously in mixed fisheries,
where the stocks may or may not be biologically dependent. This paper seeks to analyze
the species’ preservation with the aim of avoiding the extinction of the species when non-
cooperative exploiters harvest in two-species fisheries. The importance of this economic
competition problem has been discussed by May et al. (1979).

Representing an early contribution to the literature on bioeconomic extinction is
Clark (1973). He shows that even in the socially optimal case, the extinction of one
of the species is possible. Hannesson (1983) presents a general multi-species model
with interdependent fish species and studies the optimal exploitation of two-species
predator–prey fisheries. He examines methods of achieving optimal exploitation in a
Lotka-Volterra type of model with costless harvesting and the impact on the optimal
exploitation of increasing the discount rate. Mesterton-Gibbons (1988) investigates the
optimal policy in a theoretical setting for combining the harvesting of predators and prey.

There is also some literature related to metapopulation models (Potts and Vincent,
2008). These models, however, typically include only one harvested species. As a result,
the literature concentrates on comparing privately and socially optimal outcomes, ignor-
ing the effects of economic competition.

Bhattacharya and Begum (1996) study different two-species systems with independent
and interactions among species. They define the thresholds for the cost per unit of effort
for existence of bionomic or open access equilibrium but do not include the economic
competition problem that this paper focus on.

Fischer and Mirman (1996) have studied strategic interaction in two-species fisheries
using a theoretical model, whereas Sumaila (1997) has studied the case of Barents Sea
fisheries. Many of these authors have investigated the optimal policies corresponding to
the joint action by the exploiters of the two species. From the traditional game theoretical
analysis of single-species fisheries, we know that full cooperation may be hard to achieve
due to free-rider incentives (Kronbak and Lindroos, 2007). Fischer and Mirman (1992,
1996) and Levhari and Mirman (1980) do analyze the decisions of agents in cooperative
and non-cooperative frameworks in a two-species model, but they limit themselves to
the analysis of the case of two agents. We therefore find a lack in the literature studying
the other branch of the game-theoretical behavior, namely, the non-cooperative or the
Nash equilibrium for many players, in a two-species setting.

The present paper is the first to consider the number of agents that can be sustained in
a non-cooperative equilibrium without driving one stock to extinction. We seek to answer
questions such as: what are the driving forces for species extinction in a two-species
model with biological dependency? The opposite effect of the tragedy of the commons
is the increased usefulness of a resource as the result of many individuals using it. This
effect is often referred to as the comedy of the commons (Rose, 1986). Does comedy of
the commons occur, and when, in two-species fisheries? Finally, most importantly, what
are the consequences for the ecosystem from non-cooperative behavior?
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Our modeling approach is to consider two sets of two species; first, we consider bio-
logically independent species, and later, we consider biologically dependent species. The
case with biologically independent species is determined as a point of reference. We seek
the static optimal harvesting effort in both cases and apply this as a baseline. In both
cases, we gradually increase the number of agents until we face the conditions promot-
ing optimal exploitation for a limited number of symmetric competitive exploiters with
non-selective harvesting technology. We relate the optimal competitive effort levels to
the species’ biotechnical productivity and contribute to the literature by finding condi-
tions for the stability and exploitation of stocks in a two-species model with biologically
dependent species where it is no longer sufficient to apply biotechnical productivity. Our
methodology allows us to relate the number of competitive exploiters to the extinction of
the species. Note that our approach is similar to the Fischer–Mirman model (1992, 1996),
as we analyze the effects of different forms of biological interactions. However, the
economic part of the model is very different. The Fischer–Mirman models’ objective
function is ignoring key economic parameters such as fishing costs. Moreover, our model
concentrates on the non-selectivity of fishing gear and a continuum of players.

In the following section we introduce the model by identifying a single stock and
several exploiters. In the section “Two independent stocks”, we have a two-species
fishery with countries exploiting these biologically independent species. In the section
“Two biologically dependent stocks”, we set up the model with two-species fishery with
countries exploiting biologically dependent species. In the section “Visualizations”, we
illustrate the analytical results of the previous section. Finally future research issues are
discussed and conclusions are given.

BASIC ONE-STOCK MODEL

Consider a game between n agents harvesting a common natural resource, x (Mesterton-
Gibbons, 2000). Assume the equilibrium use of the fish stock over time by these agents
dx
dt = F(x) − ∑n

i=1 hi = 0, where the growth function is explicitly formulated as
logistic growth, F(x) = Rx(1 − x/K). R is the intrinsic growth rate of fish, and K is
the carrying capacity of the single stock in the ecosystem. The production function is
assumed to be bi-linear in effort, E and stock, hi = qEix, i = {1, 2, 3, . . . , n}, where q
is the catchability coefficient. It follows, then, that the equilibrium fish stock is given as
x = K

R (R − q)�n
i=1Ei , where the equilibrium stock decreases linearly with total effort.

If players adapt a traditional non-cooperative Nash game approach when determining
their effort, this corresponds to common-pool exploitation, or restricted open access,
as the exploiters only consider finding a strategy from which no player has a unilateral
incentive to deviate from (Mesterton-Gibbons, 1993). The result is kind of a restricted
tragedy of the commons (Hardin, 1968) with overexploitation and partly dissipation of
rents, as players only consider their own incentives and not the possible joint outcome.

If extinction of the species should occur, the biomass should be lower than some
threshold. With a logistic growth function, there is no positive threshold, and the critical
depensation is zero. It would then be the case that extinction occurs when the total
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effort exceeds the biotechnical productivity, R/q. However, in the one-species case, even
with the number of players approaching infinity, the total effort is less than equal to the
biotechnical productivity.

TWO INDEPENDENT STOCKS

To examine the consequences of more players exploiting two biologically independent
stocks, we start out by defining and solving for the sole-owner solution, and the number
of players is then increased to n.

Sole Owner Optimum with Two Species

Consider two biologically independent species x1 and x2, each following a logistic growth
function. The optimal harvest is determined as a sole owner harvesting the two stocks.
It is assumed that there are no possibilities for selectivity; therefore, the same effort
reduces both stocks, which is reflected by the identical catchability coefficient for the
stocks. The two biologically independent steady-state equilibrium stocks are

xj = Kj − KjqE
Rj

, j = {1, 2}, (1)

where the sub-script, j, is an indicator for the species. The optimal fishing effort for the
sole owner is derived from the following objective function

Max
E

s.t. (1).

p1qEx1 + p2qEx2 − cE, (2)

This corresponds to finding the effort level that maximizes the equilibrium uses of the
stocks. Here, p1 is the market price of fish stock x1, p2 is the market price of fish stock x2,
prices are assumed to be exogenously given, and c is the unit cost of effort. Based on the
first-order condition (FOC), the optimal fishing effort for a sole owner exploiting two
stocks is

Ê = p1qK1 + p2qK2 − c
2p1q2K1

R1
+ 2p2q2K2

R2

. (3)

Reinserting Ê into the equilibrium stocks yields the specific steady-state stock levels.
Note that in this model, it may be optimal to drive one of the stocks to extinction. This
is the case if the optimal effort level exceeds a threshold defined by the biotechnical
productivity, Ê ≥ Rj/q, j = {1, 2} (Clark, 1990). Because the optimal effort is defined by
Equation (3), extinction is of particular concern if one of the stocks has a low biotechnical
productivity and the cost–price ratio of other species is sufficiently low (Clark, 1990).
The optimal effort level is a trade-off between harvesting the different species and their



On Species Preservation and Non-Cooperative Exploiters 53

productivity. If the intrinsic growth rate of a species is increased, then the optimal effort
level is also increased. The trade-off occurs when there is an increase in the carrying
capacity or in the price of one of species. The change in the optimal effort level depends
on whether the size of the intrinsic growth rate of the species is larger than the growth
rate of the other species (then effort increases) or lower (then optimal effort decreases)
(Clark, 1990). With two species, this is relatively simple to test, but with many species,
the results are more ambiguous.

The n-player Equilibrium with Two Independent Species

Assume there are n symmetric countries competing for the harvest of two biologically
independent species. Each country maximizes the following profit function subject to the
steady state of the logistic growth of the stocks. The interdependency or the economic
competition among fishermen is reflected in the equilibrium of growth functions.

max
Ei

p1qEix1 + p2qEix2 − cEi , i = {1, 2, . . . , n} (4)

s.t. xj = Kj

Rj

(
Rj − q

n∑
i=1

Ei

)
, j = {1, 2}.

From the FOC (Ruseski, 1998), the reaction functions for each country can be derived:

Ei = Ê −
∑
k �=i

Ek

2
, i = {1, 2, . . . , n}, k = {1, 2, . . . , n}. (5)

Because we know that the countries are symmetric, we can easily solve for the optimal
effort level by each country Ei = 2

n+1 Ê, and the total effort in a Nash equilibrium

becomes ET = 2n
n+1 Ê, and with n approaching infinity, the total fishing effort approaching

restricted open access becomes 2Ê.
The equilibrium stocks are

xj = Kj − Kjq 2n
n+1 Ê

Rj
, j = {1, 2}. (6)

Equation (6) clearly indicates that one stock might be eliminated if the total effort is
too high, which, as Clark (1993) demonstrates, also could happen for a single player.
Because total effort depends on the number of non-cooperative exploiters, we can find
the critical number of players playing a Nash game, which simply shifts from preserving
both species to eliminating one species. Setting Equation (6) equal to zero for each of
the species, we find this critical number of players. Clark (1990) demonstrates that it is
sufficient to consider the species with the lowest biotechnical productivity, which in this
case corresponds to lowest intrinsic growth, as the catchability coefficients are identical.
In addition, Clark (1990) shows that this species will only be eliminated if the cost–price
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ratio for other species in question is sufficiently low. Therefore, for the elimination of one
species to occur, we need to find the stock with the lowest biotechnical productivity; call
this stock l. This stock will only face elimination if the following condition is satisfied1:

c
pj �=l q

< Kl
1 − Rj �=l

Rl
for j, l = {1, 2}. (7)

Equation (7) is a necessary condition for extinction to occur. If Equation (7) is not
satisfied, there is no critical limit on the number of players exploiting the two stocks
in terms of preserving the ecosystem, and it must be assumed that this will result in
a restricted open-access exploitation of the stocks. If Equation (7) is satisfied, then
extinction will occur for the stock with lowest biotechnical productivity when the number
of non-cooperative exploiters reaches

n̂ = Rl

2qÊ − Rl
, where Rl = min (R1, R2). (8)

The term n̂ is now defined as the limit of non-cooperative exploiters where a shift occurs
from preserving to non-preserving biodiversity. For a number of players exceeding n̂,
not all species in the ecosystem will be sustained, that is, Equation (7) is satisfied such
that the species with lowest biotechnical productivity will be extinct. Seemingly, the
independency of the stocks implies that it is sufficient to consider the single species
independently with regard to the critical number. There is, however, implicit economic
interdependence among the species because of the lack of selectivity. This interdepen-
dency is reflected in the optimal effort level being dependent on all intrinsic growth rates
and carrying capacities for all species in the two-species fishery. Therefore, the optimal
effort level Ê is dependent on the carrying capacity and the intrinsic growth rate of all
the species in this two-species fishery.

We now proceed towards finding analytical characteristics of the critical number of
players under economic competition for biologically dependent species.

TWO BIOLOGICALLY DEPENDENT STOCKS

In many fisheries, not only an economic interdependence between stocks but also a
biological interdependency among stocks is present. Biological interdependency may
have different structures; It may be predator–prey relationship, such as seals feeding on
smaller pelagic fish, it may be a prey–prey relationship, such as, the cod feeding on sprat
and the sprat feeding on cod eggs in the Baltic Sea, or it may be symbiosis or mutualism,
which has a particular importance in tropical reef environment; representing an example
of this are cleaner fish and their mutualism with other species.

1 This is simply a rewritten version of Clark’s two-player condition for a species to be extinct (Clark,
1990, p. 315).
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We consider a static game between n agents harvesting two common natural resources.
Assume the equilibrium use of the two fish stocks by symmetric countries

dx1

dt
= F(x1, x2) −

n∑
i=1

qEix1 = 0 (9a)

dx2

dt
= G(x1, x2) −

n∑
i=1

qEix2 = 0. (9b)

The growth functions include interaction between species and are explicitly formulated
as a variation of the competition model originally suggested by Gause (see Clark, 1990
or Brown and Rothry, 1993). These growth functions can be regarded as variations of
the traditional logistic growth functions

F(x1, x2) = R1x1(1 − x1/K1) − θ1x1x2 (10a)

G(x1, x2) = R2x2(1 − x2/K2) − θ2x1x2, (10b)

where the parameters θi , i = {1, 2}, are referred to as the interdependency parameter
between species and can be positive or negative constants. If they are both positive, they
describe the biological competition between the stocks; if they are both negative, they
describe a biological symbiosis between stocks; and finally, if they have different signs,
they describe a predator–prey relationship, where the constant with the negative sign
represents the predator. In some cases, nature in itself is so favorable that exploitation,
in this model, cannot eliminate any of the species. In other cases, nature itself will lead to
the elimination of one of the species. In the following, if a stock has a negative effect on
the other stock (both thetas are positive), then it is referred to as prey, and, vice versa; if
a stock has a positive effect on the other stock (both thetas are negative) it is referred to
as prey. Therefore, competition is found in the prey–prey corner, and symbiosis is found
in the predator–predator corner.

A main critique of the applied model in Equations (10a) and (10b) is that the growth
model applied results in a linear functional response; this means that the consumption
per capita increases linearly and predicts the unlimited growth of both species in the case
of mutualism. There exist other models for two-species growth and consumption (see
Noy-Meir, 1975 for a description of some of these models), but they lack the modeling
advantages of the one we suggest. A variation of this type of model is also applied in
Hannesson (1983) and in a theoretical paper by Mesterton-Gibbon (1988). Another
critique of the Gause model is that the cases of predator–prey systems are known for
their structural instability and for yielding limit cycles. There is only a narrow range
where the Gause model predicts a stable coexistence equilibrium, which will also be
reflected later in our results. In general, it is very difficult to estimate functional forms
for interdependent populations (Yodzis, 1994).

It follows from the above model that the following two equations jointly describe the
equilibrium fish stocks when n players exploit the stocks, where ET = ∑n

i=1 Ei describes
the total effort by all exploiters
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x1 = K1

R1
(R1 − qET − θ1x2) (11a)

x2 = K2

R2
(R2 − qET − θ2x1). (11b)

The two equilibria of the stocks depending on applied effort are defined as

x1 = K1(−R1R2 + K2R2θ1 + ET q(R2 − K2θ1))
−R1R2 + K1K2θ1θ2

(12a)

x2 = K2(−R1R2 + K1R1θ2 + ET q(R1 − K1θ2))
−R1R2 + K1K2θ1θ2

. (12b)

Equations (12a) and (12b) demonstrate that in some cases, an increase in the total effort
level reduces the equilibrium stocks. Whether an increase in total effort increases or
decreases the equilibrium stocks depends on what the biological parameters are in rela-
tion to each other. The following exemplifies this for species 1

— If Sign[R2 − K2θ1] �= Sign[−R1R2 + K1K2θ1θ2], which is always the case in a
predator–prey model, where species 1 is the predator, but could also occur for compe-
tition and mutualism, then we have a case where the equilibrium biomass of species 1
diminishes with an increase in effort.

— If, on the other hand, Sign[R2 − K2θ1] = Sign[−R1R2 + K1K2θ1θ2], this could be
a predator–prey case, where species 1 is the prey or, in a competition or mutualism
model, a case where the equilibrium biomass for species 1 increases with effort. This
means that the fishing pressure has less of an impact on the species compared to the
ecological pressure due to the biological interdependency.

We can conclude that with biological interdependence among species, an increase in
effort in the fishery is by itself not sufficient for determining whether the equilibrium
stock will increase or decrease, as the ecological pressure from the interdependence also
has an effect.

Two Biological Dependent Stocks with Sole Owner

The sole-owner optimum effort with interacting species is defined by the equilibrium
yields (Equations (11a) and (11b)) and then by maximizing the economic benefits from
a single effort level. The solution to the problem yields

E∗ =
c(−R1R2 + K1K2θ1θ2) + q(K2p2R1R2

+ K1(p1R1R2 − K2p1R2θ1 − K2p2R1θ2))

2q2(K1p1R2 + K2(−K1p1θ1 + p2(R1 − K1θ2)))
. (13)

This solution corresponds to the solution in Equation (3) if θ1 = θ2 = 0 but is far
more complicated if there is a biological interaction. Whether the optimal effort in a
dependent two-species setting is higher or lower than the baseline in (3) depends on the
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Figure 1. Comparison of optimal effort level for dependent and independent species.

sign of the interdependency between species. For illustrative purposes, we have set up a
numerical example comparing the optimal or cooperative effort levels when species are
independent and dependent, respectively. This corresponds to comparing Equations (3)
and (13). The applied parameter values are described in Appendix A.

Figure 1 is an illustrative example of how effort differs between the cases of biological
dependency and independency in the case of two stocks, one with high value and a
high intrinsic growth rate and one with low value and a low intrinsic growth rate. The
optimal effort in the case of a symbiosis (predator, predator) among species will be larger
when species are dependent than when they are independent. This is intuitively clear, as
the ecosystem can support a higher harvest due to the mutually beneficial relationship
between the two species, and vice versa. In the case of a predator–prey relationship, it
is harder to say which optimal effort level is the largest. In these cases, it depends on
the relative price and the growth of the two species. In the lower-left corner, the largest
optimal effort is found when species are independent. This is the case where the species
with the lowest price and the lowest intrinsic growth is prey, which is intuitively clear
from the fact that the ‘prey-pressure’ is not available in the independent case and thus
the optimal effort can be higher in this case.

Two Biologically Dependent Stocks with n Players

With n symmetric players, the problem at a first glance looks similar to the case with
independent species, as we have Ei = 2

n+1 E∗, but from comparing the optimal effort
level when stocks are biologically independent and dependent (Equations (3) and (13)),
complex differences appear. The total effort level employed in the industry in a Nash
equilibrium is ET = ∑n

i=1 Ei = 2n
n+1 E∗.
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The steady-state stocks in Nash equilibrium are defined by the following equations

x1 =
K1

(
−R1R2 + K2R2θ1 + 2n

n+1 E∗q(R2 − K2θ1)
)

−R1R2 + K1K2θ1θ2
(14a)

x2 =
K2

(
−R1R2 + K1R1θ2 + 2n

n+1 E∗q(R1 − K1θ2)
)

−R1R2 + K1K2θ1θ2
. (14b)

The critical number of players where one of the stocks is eliminated is defined by setting
Equations (14a) or (14b) equal to zero and solving for the critical number of competitive
exploiters for each stock, nj , where j = {1, 2}. Therefore, nj represents the knife’s edge
for eliminating or not eliminating species j. It is, however, not always the case that there
is a meaningful interpretation of the critical number of players that eliminates one of
the stocks. Because solving this might result in negative nj or in an nj where the stock
would actually benefit from more players — the comedy of the commons — in principle,
nj ∈ [−∞, ∞], but the economic meaningful interval is nj ∈ [0, OA], where OA is an
upper limit of players, referred to as an restricted open access. This critical number of
players exists if, under traditional open access, one of the species is eliminated and if a
natural equilibrium exists. If a critical number of players exists, it is derived according
to the following formula for each stock.

nj = RjRw − KwRwθj

2qE∗RW − RjRw − 2E∗Kwqθj + KwRwθj
, j, w = {1, 2}, w �= j. (15)

Let n∗ be the threshold number of non-cooperative players exploiting two biologically
dependent species that will no longer be able to sustain both species in the ecosystem.2

n∗ is then the variable we are seeking.
Dealing with biological interaction among species and economic completion among

players in some cases results in growing stock sizes with an increasing number of players.
Mathematically, this will occur when

q
n∑

i=1

Ei < θjxw for θj > 0. (16)

When inequality (16) is satisfied, the tragedy of the commons no longer occurs; it is
instead a comedy of the commons.

Several conditions are needed to define n∗. These conditions correspond to Equa-
tion (7) but are far more complicated due to biological interdependence. The following
conditions set up the threshold for the number of competitors that drives one of the two
species to the exact level of extinction. These conditions depend solely on the economic

2 In the case of the extinction of one species, a new situation arises. The optimal effort levels will
change, and other species might show up. This situation is not analyzed further in this paper, as we
primarily seek the number of players that exactly avoids extinction.
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parameters (price, costs and catchability) and ecological parameters (intrinsic growth
rates, carrying capacities and interaction parameters).

— Both stocks decrease when total effort increases (tragedy of the commons)
If Sign[Rw − Kwθj] �= Sign[−R1R2 + K1K2θ1θ2] ∀w, j = {1, 2}, w �= j
then n∗ = max ( min (nw, nj), 0).

— Both stocks increase when total effort decreases (comedy of the commons)

If Sign[Rw − Kwθj] = Sign[−R1R2 + K1K2θ1θ2] ∀w, j = {1, 2}, w �= j (17)

then n∗ = OA (upper limit of players corresponding to restricted open access,
assuming stock levels are positive at this exploitation level).

— Stock j increases and stock w decreases when total effort increases
If Sign[Rw − Kwθj] �= Sign[−R1R2 + K1K2θ1θ2] and
Sign[Rj − Kjθw] = Sign[−R1R2 + K1K2θ1θ2] for w, j = {1, 2}, w �= j
then n∗ = max (nw, 0).

The biological interdependency of the species creates more complexity when deter-
mining sustainability of the ecosystem for the species. An additional dimension is added,
as the tragedy of the commons does not always occur. The biotechnical productivity is
no longer in itself sufficient for finding the critical number. Equations (16) and (17) are
an extension of Equations (7) and (8), as they also include the interrelations between
the species and thus incorporate advanced biotechnical productivity for a two-species
model. If the interrelations are zero (θj = 0), Equations (7) and (8) are in themselves
sufficient.

The critical number in Equation (15) depends on all the economic parameters through
the optimal baseline effort (E∗) in Equation (13). Appendix B analyses the effects on how
this optimal baseline effort changes when economic parameters are changed and how the
critical number of players changes if the optimal effort level is changed. Based on this
analysis, it is difficult to say anything specific on what happens to the critical number,
as it depends highly on the balance between the prices, intrinsic growths, the carry-
ing capacities and the interdependency among species. We thus include a visualization
example in the following section.

VISUALIZATIONS

To get a better understanding of the analytical results in the previous section, and to
elaborate in particular on the case with biological dependency, this section simulates
the exploitation of two stocks with biological dependency. The simulations include two
stocks with identical carrying capacities. The intrinsic growth rates of the two stocks
can be either high or low, and the stocks have different prices. This gives four cases to
consider:

Case 1: Both stocks have a low intrinsic growth rate.
Case 2: Both stocks have a high intrinsic growth rate.
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Case 3: Low-value stock has a low intrinsic growth rate.
High-value stock has a high intrinsic growth rate.

Case 4: Low-value stock has a high intrinsic growth rate.
High-value stock has a low intrinsic growth rate.

Each case allows for a predator–prey relationship, competition and mutualism, as
the interdependency parameter (θ) varies between positive and negative values for
both species. The applied parameter values and the natural equilibria are presented in
Appendix C.

The results are presented as three-dimensional figures describing the critical numbers
of players in a non-cooperative exploitation of two stocks where one of the stocks is
eliminated. This number (n∗) derived from Equations (16) and (17) is pictured on one
axis and the two interdependence parameters (θ1 and θ2) on the other two axes. In the
cases where the natural equilibrium itself eliminates one of the stocks, the number of
players is always zero.

The upper plateaus in Figures 3a–d represent the restricted open-access equilibrium,
where both species will coexist with the high number of non-cooperative exploiters.
For all cases, the symbiosis always leads to an upper plateau, and in these cases, the
number of players can result in the comedy of the commons, which would grow to very

Figure 3a. Critical number of players, where the ecosystem cannot be sustained. Both
stocks have low intrinsic growth rates (case 1). Note: ncrit is identical to n∗ in the
theoretical model.
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Figure 3b. Critical number of players, where the ecosystem cannot be sustained. Both
stocks have a high intrinsic growth rates (case 2). Note: ncrit is identical to n∗ in the
theoretical model.

high number of competitive players in the case of no restricted open access. Figure 3a
shows that there are only limited areas where the extinction of species will occur due to
the number of players. These areas are concentrated in the predator–prey models and
correspond to the areas between the upper (restricted open access) plateaus and the lower
(no natural equilibria) plateaus. This is due to the narrow range of the stable coexistence
equilibrium in the defined predator–prey model. In these cases, the management of the
species, to limit the number of players, becomes of particular importance, as new entrants
could result in an extinction of one of the species. For symbiosis among species, it is
not surprising that, if the ecosystem can sustain interaction if species are independent
(θ1 = θ2 = 0), then a symbiosis can also sustain a restricted open access or even a
higher number of players. In the case of competition among species, the ecosystem can
to some extent sustain a restricted open access and maybe a higher number of players,
but if the competition becomes too large, then the ecosystem will not itself have a natural
equilibrium where both stocks coexist.

In Figure 3b, where both stocks have high growth, the overalls conclusions are more or
less the same as the conclusions from Figure 3a. There are, however, two main differences
between them: first, the case with higher intrinsic growth (Figure 3b) can, in the case
of competition, better sustain the restricted open-access situation (the size of the upper
plateau in the competition area is larger), and second, in a predator–prey case, higher
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Figure 3c. Critical number of players, where the ecosystem cannot be sustained. Low-
value stock has a low intrinsic growth rate. High-value stock has a high intrinsic growth
rate (case 3). Note: ncrit is identical to n∗ in the theoretical model.

predation by the high-valued species can sustain more players in the equilibrium (the
rainbow-colored area is prolonged into the predator–prey square). With regard to man-
agement, the predator–prey square requires in particular the management of the fishery,
as the area with a limited number of players lower than restricted open access is large.

The cases in Figures 3c and 3d are fairly complicated, with plateaus, peaks and canyons
appearing in many places. This shows that small changes in the parameters of the ecosys-
tem can have a significant economic effect: a system previously able to sustain several
fishers may suddenly be able to sustain only a few fishers or none at all; therefore, the
management of the species has either to be on a knife edge or to be very constrained
based on the uncertainty of biological parameters. However, it is still the case that the
symbiotic interaction can sustain even restricted open access, and the same is true for
some parameters in the competition square.

Figures 3a–d also illustrate how sensitive the ecosystem is to even small changes in
the interaction parameter. This is very relevant, for instance, when considering invasive
species or pests or in cases with management of species with great uncertainty about
biological parameters. Such species might alter the interaction in the ecosystem, and
species that could be exploited by a limited number of cooperative players might now
be extinct. If there is great uncertainty about the interrelation of species, it requires the
strict management of the fishery under a precautionary approach.
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Figure 3d. Critical number of players, where the ecosystem cannot be sustained. Low-
value stock has a high intrinsic growth rate. High-value stock has a low intrinsic growth
rate (case 4). Note: ncrit is identical to n∗ in the theoretical model.

DISCUSSION AND CONCLUSION

The paper merges bioeconomic two-species modeling with non-cooperative game theory.
We set up an analytical framework for non-cooperative exploiters harvesting biologically
dependent and independent two-species in a non-selective manner. In this setup, we have
analytically defined the conditions for species preservation when several non-cooperative
exploiters harvest two-species fisheries. Our modeling is clearly a very important issue
in fisheries economics as many commercial fisheries include more than one species and
can indeed be characterized by non-cooperative exploitation.

When species are biologically independent, it is sufficient to consider the biotechnical
productivity to find stocks that are in danger of not being preserved. When, on the other
hand, species are biologically dependent, it is not straightforward to apply the biotech-
nical productivity from the independent model. The conditions, for which the stock is
in danger of not being preserved, also require including the interdependency parame-
ters. We contribute to the literature with a general definition of the critical number of
non-cooperative players to preserve biodiversity in a two-species fishery for all possible
sets of interdependency parameters. In our analytical model with biologically depen-
dent species, we have shown that the tragedy of the commons does not apply for some
parameters; instead, we have the comedy of the commons, where open access is favorable.
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Applying the results from the analytical model, we visualized a two-species fishery with
two dependent species. We show that in the cases of symbiosis and competition, open
access may not be a problem. Among the lessons to be learned from the visualizations is
that it is primarily the low values of interdependency parameters that are the interesting
values but that in this parameter range, the model is very sensitive to small changes
in those small dependency values. A small change in the interdependency can lead to
large changes in the critical number of non-cooperative players. The visualization also
demonstrates that management of the fishery is of more importance when growth rates
are low than when growth rates are high. Finally, when there is competition among
species, a higher intrinsic growth rate tends to extend the range of parameters for which
restricted open access is sustained. When we have a critical number of players that is
lower than restricted open access, then the management of the fishery is important for
the preservation of the species.

In this context, it is important to notice that we set up a simple non-spatial model
and in a spatial setting, such as the natural environment, the different patches are likely
to have different characteristics, and different species may thus survive in different
patches. Our bioeconomic model is a simple approach used to provide a discussion on the
biotechnical productivity for a two-species model. The paper attempts to close this gap
in the literature, although we are aware of the widespread skepticism of one mathematical
model’s ability to capture all crucial aspects of even one type of interaction (Begon et al.,
1996) and of the limitations of the applied Gause model.

Among areas for further research are simulations of cases where a two-species fishery
with biologically independent stocks has a limited number of players that can preserve
the species. It is expected that such a simulation example could yield more information
about the critical number function for small levels of dependency. The biologically
independent case is straightforward for extending to more than two species, but the
biologically dependent species requires more considerations for the interactions for the
species. We believe that it is a possible research issue, although the analysis might become
extremely complicated.

There are also various economic issues left for future research, such as market interac-
tions between two fish species. Further, varying rents or viability of rents with different
biological interactions would be an interesting avenue for further studies. In the present
model, there is no specific direct interaction between the different players and the differ-
ent species (such as player one’s only targeting one stock and player two’s only targeting
the other stock). The effect of non-cooperative exploitation is confined to a suboptimally
high effort. The case of cooperation versus non-cooperation for players with different
target species is an issue for future research.

APPENDIX A

For illustrative purposes in Figure 1, the following parameter values are applied to
compare the difference in effort levels with and without ecological dependency.
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Table A1. Parameter values applied for visualization.

p1 p2 Rlow Rhigh K1= K2 c q θ1 θ2

1 2 0.3 0.9 50 7 0.5 [−0.2; 0.2] [−0.2; 0.2]

APPENDIX B: SENSITIVITY ANALYSIS WHEN CHANGING ECONOMIC
PARAMETERS

The section “Two biologically dependent stocks” investigates the conditions for the
number of non-cooperative players that can preserve the two species in the ecosystem.
This appendix conducts a sensitivity analysis on the baseline optimal effort when changes
in the economic parameters occur. Further, the impact of the baseline effort on the
number of players is analyzed. Together, this results in a sensitivity analysis on the critical
number of players when economic parameters are changed.

Optimal Effort and Price of Species

If the price of species increases, then the change in the optimal baseline effort and thereby
also the effort level of non-cooperative players will look like

∂E∗

∂p1
= K1(cR2 + K2(p2q(R1 − R2) − cθ1))(R1R2 − K1K2θ1θ2)

2q2(K1p1R2 + K2(−K1p1θ1 + p2(R1 − K1θ2)))2 , (A.1a)

∂E∗

∂p2
= K1(cR1 + K1(p1q(R2 − R1) − cθ2))(R1R2 − K1K2θ1θ2)

2q2(K2p2R1 + K1(−K2p2θ2 + p1(R2 − K2θ1)))2 . (A.1b)

To find the effects on the optimal effort level in the case of an increase in the price of one
species, it is necessary to determine whether (A.1a) and (A.1b) are positive or negative.

Although it is clear that the denominator, 2q2(K2p2R1 + K1( − K2p2θ2 + p1(R2 −
K2θ1)))2, will always be positive because of the second power, the nominator, K1(cR2 +
K2(p2q(R1 − R2) − cθ1))(R1R2 − K1K2θ1θ2), is more ambiguous. The following focuses
on the sign of the nominator.

If Sign[cR2 + K2(p2q(R1 − R2) − cθ1)] = Sign[R1R2 − K1K2θ1θ2], then an increase
in price increases effort.

In the case of a predator–prey model, θ1 and θ2 will have different signs, and the last
term will thus be positive.

A sufficient but not necessary assumption for the effort level to increase as a result of a
price change for one of the species is then that the growth of the species that experiences
the price change is larger than the growth of the other species. For a price change for
species 1, this will look like R1 > R2 and that p2q(R1 − R2) ≥ cθ1. This is more likely to
be true if the intrinsic growth of species 1 is high relative to species 2 and if species 1 is
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the predator (θ1 < 0). It is thus seen that an increase in the effort level requires a balance
between the value of the two species, their intrinsic growths and their interdependency.

Optimal Effort and Cost of Harvesting

If the cost of harvesting is changed, then the effort is changed, according to the following:

∂E∗

∂c
= −R1R2 + K1K2θ1θ2

2q2(K1p1R2 + K2(−K1p1θ1 + p2(R1 − K1θ2)))
. (A.2)

One would expect this to be negative, such that the effort is decreased if the cost of
harvesting is increased, ceteris paribus. However, for this to be true, either R1R2 >

K1K2θ1θ2 or K1p1R2 < K2(−K1p1θ1 + p2(R1 − K1θ2)) has to be satisfied.

Conclusion on Changes in Effort When Economic Parameters are Changed

It is difficult to say anything concrete on what happens to the optimal effort level if the
economic parameters change. It is a balance between the prices, the intrinsic growths,
the carrying capacities and the interdependency among species. However, it can be
concluded that economic parameters will, except in rare cases, change the optimal effort
level for the sole owner and thereby also for the n-players.

Critical Number of Players and Effort Level

We know from the above analysis that changes in economic parameters make E∗ change
and that this is true without changing other parameters in the critical number of players.
Changes in optimal effort can therefore be interpreted as an effect of economic parameter
changes.

If the optimal effort level in the sole owner case increases, then the number of players
needed to sustain biodiversity changes according to the following:

∂n∗

∂E∗ = 2q(R2 − K2θ1)(−R1R2 + K2R2θ1)
(−R1R2 + 2E∗q(R2 − K2θ1) + K2R2θ2)2 , (Species 1) (A.3a)

∂n∗

∂E∗ = 2q(R1 − K1θ2)(−R1R2 + K1R1θ2)
(−R1R2 + 2E∗q(R1 − K1θ2) + K1R1θ1)2 . (Species 2) (A.3b)

The denominators in Equations (A.3a) and (A.3b) positive, but in order to discuss the
sign of the nominator, we divide into different subcategories of interdependency.

If θ1, θ2 < 0 (symbiosis): the nominators in Equations (A.3a) and (A.3b) are negative, and
the critical number of players will decrease if the optimal effort level is increased.

If θ1, θ2 > 0 (competition): then the number of players will decrease only if R2 < K2θ1
and R1 < K2θ1 or R2 > K2θ1 and R1 > K2θ1 if species 1 is binding for the critical
number or R1 < K1θ2 and R2 < K1θ2 or R1 > K1θ2 and R2 > K1θ2 if species 2 is
binding for the critical number.
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This can be interpreted as follows: the intrinsic growth rates of both species have to
be either sufficiently large or sufficiently small; otherwise, the non-cooperative behavior
in the model will drive the stocks to extinction.s

If θ1<0 (predator) and θ2>0 (prey) (or θ2<0 (predator) and θ1>0 (prey)) (predator-
prey model): if the predator sets the limits for the critical number of players, then an
increase in the optimal effort level will further decrease the critical number of players.

If, on the other hand, the prey sets the limit for the critical number of players, then this
number will only decrease if R1 < K1θ2 and R2 < K1θ2 or vice versa. This means that
the increase in effort is only critical if the intrinsic growths of the two species are low.

That is, if the intrinsic growth rate of the prey is small, then the intrinsic growth of
the prey must also be small, and vice versa, if the number of players should increase with
the optimal effort level.

APPENDIX C

The applied parameters for the visualization in Section 5 are represented in Table C1.
We have defined an upper limit of players, which we refer to as restricted open access

(OA) and an upper limit for the stock, a maximum stock size (MS). This is purely for
illustrative purposes, as some conditions are so favorable that we have a case of the comedy
of the commons, or a case with symbiosis, where stocks will jointly grow unlimited,
which is a known limitation of the Gause model.

The natural equilibria for different interdependency among species are simulated to
identify where the two species can coexist. If the species cannot coexist, it is not relevant
to search for the number of exploiters where one species is extinct. Figure C1 illustrates
the patterns for the natural equilibrium for both species with a low intrinsic growth
rate (Case 1) as a function of interdependency among species. Figure C2 illustrates the
natural equilibria for two stocks, both with a high intrinsic growth rate (Case 2), and
Figure C3 shows the natural equilibria for two stocks with a low and high intrinsic
growth rate, respectively (Cases 3 and 4). The stocks are symmetric; therefore, (low,
high) is equivalent to (high, low) for the natural equilibria. The model illustrated in the
“Visualization” sections also includes economic parameters, and because the species are
valued differently, (low, high) and (high, low) are no longer equivalent.

All figures for the natural equilibria look very much alike. In the symbiotic case
(θ1, θ2 < 0), both stocks are above their carrying capacities as they both benefit from the
existence of the other species. For illustrative purposes, the stock sizes in these cases are

Table C1. Parameter values applied for visualization.

p1 p2 Rlow Rhigh K1 = K2 C Q OA MS Q1 Q2

1 2 0.3 0.9 50 7 0.5 60 60 [−0.2; 0.2] [−0.2; 0.2]
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Figure C1. The natural equilibria for two stocks, both with a low intrinsic growth rate
(Case 1).

Figure C2. The natural equilibria for two stocks, both with a high intrinsic growth rate
(Case 2).
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Figure C3. The natural equilibria for two stocks with a low and high intrinsic growth
rate, respectively (Cases 3 and 4).

restricted, as the Gause model itself predicts unlimited growth. These upper plateaus
when there is a symbiosis (or mutualism) among species are higher than the carrying
capacities, due to the upper limit for the maximum stock size (MS), which we forced into
being slightly higher than the carrying capacity. The theoretical model itself suggests
that the stock could jointly grow to very high stock levels. In the case of predator–prey
situations (θj > 0 (prey), θw < 0 (predator)), the dominant cases in the figures are the
cases in which one of the stocks becomes extinct. This is due to the application of the
Gause model, which only predicts a narrow range of stable coexistence equilibria. This
corresponds to the narrow parameter space at the positive θ-parameter (the prey) close
to zero, where both species can coexist. It is due to this narrow range of coexistence
in the predator–prey model that the theta parameter is chosen to be within the range
[−0.2; 0.2]. Finally, the case of competition (θ1, θ2 > 0) is described by decreasing stock
levels; an example is where species 1 decreases with increasing θ1 and species 2 decreases
with increasing θ2.
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