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Estimating plant stem emerging point of beets in early

growth stages

H. S. Midtibya,∗, T. M. Giselssona, R. N. Jørgensena

aInstitute of Chemical Engineering, Biotechnology and Environmental Technology,

University of Southern Denmark, Niels Bohrs Allé 1, 5230 M, Denmark

Abstract

Successful intra–row mechanical weed control of sugar beet (beta vulgaris)
in early growth stages requires precise knowledge about location of crop plants.
A computer vision system for locating Plant Stem Emerging Point (PSEP) of
sugar beet in early growth stages was developed and tested. The system is based
on detection of individual leaves; each leaf location is then described by centre
of mass and petiole location. After leaf detection were the true PSEP locations
annotated manually and a multivariate normal distribution model of the PSEP
relative to the located leaf was built. From testing the system, PSEP estimates
based on a single leaf have an average error of ∼ 3mm. When several leaves are
detected the average error decreases to less than 2mm.

Keywords: plant center, machine vision, leaf extraction

1. Introduction1

Mechanical inter-row weeding between crop rows have been used for a long2

time. But mechanical intra–row weeding within rows between the single crop3

plants is relatively new. Physical intra-row methods can in general rely on4

three different strategies (Griepentrog and Dedousis, 2010): (1) soil coverage of5

weeds or (2) weed root/stem cutting or (3) uprooting of weeds (whole plant or6

partly). The first option is only relevant in some crop types like cereals and7

potatos. Sugar beet (beta vulgaris) at dicotyledon stage does not belong to8

these groups(Melander, 2000; Kouwenhoven, 1997) and only strategy two and9

three may be used.10

Several intra–row mechanical weed management methods need to know where11

the crop plants are located especially with concern to the Plant Stem Emerging12

Point (PSEP) which is defined as the point where the plant stem emerges from13

the soil surface. Computer vision was used by (Tillett et al., 2008) to locate14

transplanted cauliflower plants, before a cultivation disc is moved such that the15

crop plants are not harmed. RTK–GPS have been used to mark the position16
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of crop seeds during sowing (Griepentrog et al., 2005), but the PSEP is not17

identical to the planted seeds position, as the orientation of the seed have not18

been taken into account. (Nørremark et al., 2008) used the RTK GPS coor-19

dinates to control a cycloid hoe doing intra–row weed control based on seed20

positions. Uncertainty in seed orientation, PSEP, and GPS accuracy limits the21

achievable precision to approx 30mm. (Sun et al., 2010) used RTK–GPS for22

mapping transplanted tomatoes, 95% of the plants were within 51mm from the23

true plant position. Based on vision input the crop plant positions may be24

determined with at higher accuracy and precision as (Åstrand and Baerveldt,25

2002) indicated by guiding an autonomous weed robot with 20mm accuracy26

along crop rows. Earlier work on extraction of individual leaves from images27

include (Franz et al., 1991) which analysed boundary curvature by comparing28

with a known leaf shape and (Neto et al., 2006) which detected individual leaves29

in complex scenes based on Gustafson–Kessel clustering. This paper describes30

and evaluates a vision based method which detects single crop leaves and predict31

where the corresponding PSEP is located.32

2. Materials and methods33

The current work consists of three parts: (1) development of a leaf detector,34

(2) building of a relative PSEP model, and (3) using the relative PSEP model35

to predict true PSEP based on detected leaves. An example image of sugar beet36

plants in early growth stages is shown in figure 2. The leaves can be described37

as convex objects with a thin stem (petiole). Leaves are detected by locating38

convex regions of the plant contour. The relative PSEP model is generated39

by comparing manually marked PSEP locations (ground truth values) with the40

detected leaves. Based on the relative PSEP location model and detected leaves,41

estimates of the true PSEP locations are obtained automatically. Finally are42

the methods for evaluating performance described.43

2.1. Image acquisition and segmentation44

Images from sugar beet fields were acquired by a bi-spectral line scanning45

camera mounted on the Robovator (Poulsen, 2010) intra-row mechanical weed-46

ing robot. The setup for image capturing is shown in Fig. 1. The imaged sugar47

beet plants were part of field emergence trials conducted by Maribo Seed in 2009.48

Precise plant placement is not required for field emergence trials which can be49

seen directly in the acquired images where sugar beet plants are distributed50

randomly over the captured region. The captured area was illuminated with51

two 55W halogen lamps. Each line in the acquired image consists of 256 pixels52

and a typical data file consist of approximately 13,000 scan lines. A single pixel53

measured approximately 1.1mm×1.1mm. A sample image can be seen in Fig.54

2. For each pixel both a red and a near infrared value are available. Com-55

bining red and near infrared values makes it possible to segment images into56

plant material and soil which is done by calculating the NDVI value for each57

pixel (Backes and Jacobi, 2006). After this operation a single channel image is58
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obtained with plant material having a high NDVI value compared to soil. This59

image is segmented using a threshold of 0.2 to form a binary image, the thresh-60

old was found by trial and error. These binary images are the basis for the data61

material used in this paper. Before further analysis are connected components62

located. It is assumed that a leaf will only contribute to one connected blob.63

To remove noise only blobs with an area larger than 160 pixels are kept.64

2.2. Leaf extraction65

For detecting leaves the general leaf structure is exploited. Examples of66

leaf shapes are shown in Fig. 2. The structure consists of a large mainly67

convex region attached to the rest of the plant via a thin stem (petiole)(Meier,68

2001). The leaf extraction method works in two steps. First convex regions are69

located and marked as leaf tip candidates, this is described in section 2.3. From70

the located leaf tip candidates a search for the corresponding petiole is then71

initiated, the search process is described in section 2.4. If a petiole is located72

a leaf is found. When a leaf is detected the leaf location and orientation is73

described by petiole location ~S and the leaf centre of mass ~C.74

2.3. Leaf tip candidate location75

In this section a method for locating leaf tip candidates within the segmented76

images is described. Leaf tip candidates are found at local curvature minima in77

curvature of the plant boundary. At this stage is the plant boundary specified as78

the list of coordinates ~zk where k ∈ [1, . . . , n] and the boundary is followed clock79

wise. The curvature is then defined as the angle between the line connecting80

point k − ∆ and k and the line connecting point k and k + ∆. The sign of81

the direction change indicates whether the current location of the boundary is82

concave or convex. In this paper the parameter ∆ = 12 was used together with a83

running average of the five nearest points. Plant boundary and curvature along84

the boundary is visualized in Fig. 3. Local maxima corresponds to concave85

regions, which are often located at leaf intersections or near the sugar beat86

growth point, which is assumed to be vertically above PSEP where several87

leaves are connected to a common area. Local minima corresponds to convex88

regions such as leaf tips.89

To locate a single leaf tip candidate for each leaf, the following steps are90

used: (1) division of the boundary into concave and convex regions, (2) locate91

the minima in each convex region and (3) thresholding of the located minima.92

The purpose of the first step is to split the boundary into segments that at93

most contain a single leaf tip. As splitting points are used locations where the94

curvature changes from positive to negative or from negative to positive values.95

The second step finds the most likely leaf tip location, which are the points96

along the boundary where the boundary is convex and change of direction is97

maximized. Step three removes possible leaf tip locations according to direction98

change, if the direction change is too small (less than 1 radians) the candidate99

is eliminated.100
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2.4. Location of corresponding petiole101

From each of the candidate leaf tips a search for the corresponding petiole is102

then initiated. Two walkers are placed at the leaf tip with the goal of following103

the boundary in each direction, one clockwise and one counter clockwise. The104

movement of the walkers is controlled such that they will reach the petiole105

nearly simultaneous. Each walker is then moved forward until the next step106

along the boundary will bring the euclidean distance between the walker and107

the leaf tip point above a specified threshold distance l. Then the distance108

between the walkers is measured. This process (walker movement and distance109

measurement) is repeated with increasing values of l. In Fig. 4 the search110

strategy is visualized. For each value of the distance threshold the corresponding111

circle is drawn together with the two walker locations.112

To locate the petiole the distance between the walkers are investigated as113

follows: (1) search for a narrow leaf region which initiates the region in which114

the petiole can be located followed by a (2) search for a broadening of the leaf115

width which ends the region in which the petiole can be found. This strategy116

was implemented as a state machine. The state machine starts in the leaf–tip117

state and remains there until the distance between the two walkers get below118

half of the maximum distance between the walkers and the stage is changed to119

the leaf–stem stage. While in leaf–stem stage the system keeps track of the min-120

imum distance between the walkers and corresponding walker locations. When121

the distance between the walkers exceed three times the minimum distance ob-122

served in the leaf–stem stage the search is terminated. The leaf boundary cutoff123

positions are given by the location of the walkers where the distance between the124

walkers are minimized within the leaf–stage. The petiole location is set to the125

midpoint of the two boundary cutoff positions. To avoid infinite loops petiole126

search is terminated if one of the walkers reach a leaf tip candidate or the two127

walkers pass each other.128

2.5. Manual marking of root / leaf relative locations129

After the automatic extraction of plant leaves as described in section 2.2,130

real PSEP location were marked manually. A program showed each plant and131

the user should then mark the pixel nearest the true PSEP. Fig. 5 illustrate a132

sample image with PSEPs marked with red spots and detected leaves marked133

by orange. To describe the marked PSEP location relative to the extracted leaf,134

the leaf coordinate system is placed with origin located at the petiole ~S and135

direction of the x axis parallel to the vector ~C− ~S. An example is shown in Fig.136

6.137

The manual annotation of the location of the true PSEP locations is prone138

to errors. PSEP locations were marked with a single pixel, so the average quan-139

tization error will be ∼ 0.5mm along each dimension. The true PSEP locations140

marked by a person will also have an uncertainty. To estimate size of the typical141

error in this process the same image was annotated by two persons. Differences142

in PSEP locations were calculated and mean distance between annotations were143

determined.144
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2.6. PSEP location model145

A multivariate normal distribution is used to model the PSEP location146

within the leaf coordinate system. The model is defined as:147

p(~x) =
1

2π |Σlc|
exp

[

−
1

2
(~x− ~xlc)

TΣ−1
lc (~x− ~xlc)

]

(1)

where ~xlc is the centre of the true PSEP estimate and Σlc is the covariance148

matrix. Both ~xlc and Σlc are expressed in the leaf coordinate system. Ellipses149

are used to visualize the multivariate normal distribution, contours of certain150

values are drawn such that a given fraction of the probability is inside the151

ellipses. To calculate the ellipses the formula below is used:152

(~x− ~xlc)
TΣ−1

lc (~x− ~xlc) = χ2
2,α (2)

where χ2
2,α is the χ2 distribution with 2 degrees of freedom and P value 1−α.153

Typical fractions used for visualization are 68%, 95% and 99.7%. As the PSEP154

is defined relative to the leaf (Fig. 6) the x and y coordinate values translate to155

a displacement along the major leaf axis and displacement perpendicular to the156

same axis respectively. The PSEP is expected to lie in extension of the primary157

leaf axis (low y values) shifted to negative x values. For later analysis position158

and uncertainty parameters are converted to the global coordinate system using159

a coordinate transformation based on rotation and translation.160

2.7. Combination of relative PSEP location models161

In many cases is it possible to detect more than a single leaf, an example162

is shown in Fig. 7. In the figure 99.7% ellipses of the two estimates of the163

true PSEP share a common region and it is expected that the true PSEP is164

located within this region. To combine two PSEP models (pA(~x) and pB(~x))165

the probability densities are multiplied and normalized.166

pC(~x) ∝ pA(~x) · pB(~x) (3)

If the PSEP models are defined by the parameters ΣA, ΣB , ~x
A
c and ~xB

c the167

parameters of the combined model can be expressed as (Gales and Airey, 2006)168

Σ−1
C = Σ−1

A +Σ−1
B (4)

~xC
c = ΣC

(

Σ−1
A ~xA

c +Σ−1
B ~xB

c

)

(5)

This combination of PSEP models is based on the same principle as least169

squares estimation in the Kalman filter.170
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2.8. Generation of position predictions171

To test the developed method for PSEP estimation, the method was applied172

to a test image. True plant locations were determined manually and compared173

to six sets D1,...,6 of predicted PSEP locations. These sets were used to measure174

accuracy of the located PSEPs under different conditions, eg. different number175

of detected leaves per plant.176

From all the detected leaves were a PSEP generated (using only information177

from this leaf). This is set D1. D2 contains PSEPs calculated from two detected178

leaves. All possible combinations were tested and leaf pairs was combined if179

distance between centers of their PSEP models was less than 20mm. D3 and180

D4 are similar toD2 except that 3 and 4 leaves are used for calculating the PSEP.181

For a plant where n leaves was detected, the set Dk would contain
(

k
n

)

elements182

related to that plant. Not all plants had all four leaves detected, therefore will183

D4 not contain PSEPs associated to these plants so when the number of leaves184

used to calculate PSEPs is increased, will the precision of the located PSEPs185

increase, but a larger fraction will be missed. D5 is a compromise between186

large coverage and low placement error. The set is built on D1 by merging187

PSEP models with a distance between predicted plant centers of 20mm or less.188

This merging scheme will generate combined PSEP models based on position189

information from up to 4 leaves. In addition were a set, D6, generated by190

manual annotation by a different person than the one who marked the reference191

PSEPs. D6 covered only one third of the test image and was used to estimate192

uncertainty of the manually marked PSEPs.193

2.9. Performance evaluation194

Performance of the PSEP location model were judged according to the fol-195

lowing values:196

False positives: If a leaf is falsely found by the leaf separator method it con-197

stitute a false positive. These cases are characterized by having a long198

distance from the predicted PSEP to the nearest true PSEP. False pos-199

itives are detected by setting a threshold on the allowed distance from200

predicted leaf location to the nearest true PSEP.201

Missed PSEP locations: If none of a plant’s leaves have been detected a202

PSEP is missed. It is characterized by having a long distance from the203

true PSEP to the nearest predicted PSEP. Missed PSEPs are detected by204

setting a threshold on the allowed distance.205

Predicted position error: The error in the predicted PSEP location were av-206

eraged for all predicted PSEP locations with an error less than a threshold207

of 20mm.208
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3. Results209

3.1. Leaf detector performance210

For evaluating performance of the leaf detector, the 805 leaves present in211

the test images were counted manually. The leaf detector located 46.6% (395)212

leaves, of those 2.4% (19) were false positives.213

3.2. Relative PSEP model214

The leaf detector were applied to three datasets. True PSEPs were marked215

by hand in all three datasets. Additionally leaves were detected by the leaf216

detector method and their location specific information recorded. Analyzing217

leaves and PSEPs led to the generation of 223 data points. In the local leaf218

coordinate system the multivariate normal distribution model is described by219

the parameter values:220

~xlc =

(

5.40
0.24

)

mm Σlc =

(

12.65 1.28
1.28 2.35

)

mm2 (6)

3.3. Fraction of PSEP locations found221

The fraction of missed PSEPs is visualized as a function of the chosen thresh-222

old in Fig. 8. All six PSEP prediction methods show the same trend. At first223

the fraction of missed PSEPs decreases linearly until the curve flattens out. The224

point where the curve flattens out indicates the maximum error of the position225

estimate and the fraction of PSEPs that are not found. Note that humans are226

good at locating a large fraction of the PSEPs. The fraction of roots not found227

within 20mm are shown in the MR column in Tab 1. If a single leaf (D1) is228

used to predict PSEPs approximately 10% of the true PSEPs will be missed,229

this number increases strongly when the number of leaves used in the prediction230

is increased. ∼ 37% of the true PSEPs are missed with estimates based on two231

leaves, this number is increased to ∼ 89% when four leaves are used to generate232

estimates. This increase in fraction of missed PSEPs is only to be expected, as233

the plants with one or two detected leaves are not present in D3 and D4.234

3.4. Fraction of false positives235

To gain insight in the accuracy of PSEP–location–estimates the fraction of236

false positives is visualized as a function of threshold distance in Fig. 9. The237

figure is divided into four regions, each representing a dataset. In dataset One238

is the PSEP near which the leaf detector found a single leaf; in Three the leaf239

detector located three leaves. From the green curve it is seen that ∼ 20% of240

the D1 position–estimates have a distance (error) of more than 4mm to the241

nearest true PSEP, for comparison is the corresponding distance for D2 3mm.242

The figure shows that when the number of leaves used to generate a PSEP–243

location–estimate is increased the error in the estimate is reduced significantly.244

The figure was divided into four underlying data sets such that each dataset245

could be weighted appropriately. If all the data was shown in one plot it would246
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be difficult to interpret because each set of location estimates was based on a247

unique dataset. The number of false positives and missed roots for each of the248

estimate sets is given in table 1. The listed values are found using a threshold249

distance of 20mm. In addition the estimate error (distance from estimate to250

nearest PSEP) is described using the average value and the 95% quantile (95%251

of the predicted PSEP had an error of less than. . . ).252

4. Discussion253

The leaf detector is not able to locate all leaves in the test images. This is254

due to overlapping leaves, leaves with irregular shapes and to a certain extend255

limitations in the implemented algorithm. Some typical cases are shown in Fig.256

10. The petiole search is fragile and will fail if more than a single leaf tip257

candidate is found in one leaf. In the used leaf definition (convex area with a258

thin petiole) overlapping leaves can influence both criteria: the combined leaf259

area is not guaranteed to be convex and the petiole region can be hidden or260

widened. Rarely will the relative location of leaf tip estimate and petiole cause261

the petiole search strategy to fail, this is the case when distance between petiole262

and leaf tip estimate is less than the distance between leaf tip estimate and the263

true leaf tip. To reduce the fraction of missed PSEPs the leaf detector must264

be improved. If a PSEP is not located none of the associated leaves have been265

detected.266

Before evaluation of the implemented algorithms the uncertainty of the true267

PSEP position should be investigated. This can be achieved by comparing268

true PSEPs with PSEPs determined by a human being different from the one269

who determined the true PSEPs initially. The difference between such two270

manual annotations can be used as an estimate of the position uncertainty271

of the true PSEPs. On average the difference was 1.37mm and in 95% of272

the cases the difference between the two human annotations were less than273

3.58mm. Two sources contribute to this difference (1) quantification error and274

(2) uncertainty / unreliability of the human annotation. The quantification275

error origins from the annotation program, which used integer coordinates for276

describing PSEPs. A rough estimate of this error is ±0.5mm along the two277

coordinate axes. The human annotation unreliability origins from differences in278

test image interpretation.279

When the leaf detector has found two leaves of a single plant the correspond-280

ing true PSEP will with a probability of 95% be within a distance of 5mm or less281

from the guess. This and similar values are shown in table 1. (Sun et al., 2010)282

positions 95% of the plants within 51mm. The accuracy of the vision system283

is thus one order of magnitude better than RTK-GPS seeding of plants. When284

three or more leaves are used to predict PSEPs the accuracy is comparable to285

the human annotation. One interpretation of this is that the developed method286

can predict PSEPs with a higher accuracy than the reference predictions based287

on manual annotation given that two or more leaves are detected for each PSEP.288
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5. Conclusion289

A system for automated PSEP estimation of sugar beet plants (in growth290

stages BBCH10-14) based on leaf detection has been developed and tested.291

In a set of test images the system detected 46.7% of the present leaves. A292

multivariate Gaussian PSEP model was built based on the detected leaves and293

manual annotation of true PSEPs. Given centre of mass and attach point of a294

single leaf the model states that the average true PSEP will be at a distance295

of 6.2mm from the petiole attachment point and placed on the line connecting296

the leaf attach point and the leaf centre of mass. 95% of the volume below the297

multivariate Gaussian is contained within an ellipse with semi major and semi298

minor axes of 12mm and 6mm respectively.299

In the set of test images the detected leaves were used to predict the true300

PSEPs. With PSEP prediction based on single leaves were 90% of the true301

PSEPs located within 20mm of at least one predicted PSEP location. In this302

case where the average distance from predicted location to true PSEP of 3.3mm.303

When several leaves of the same plant are detected, the PSEP models can304

be combined using least–squares estimation and thus produce an even better305

estimate of the true root location. E.g. by combining two leaves the average306

error is reduced to 1.9mm. Precise quantification of error in three and four leaf307

based PSEP estimates is hindered as these methods perform on par with the308

human annotation used as reference.309
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Figure 1: The camera unit consisted of camera combined with halogen lamp.
During image acquisition were eight such units mounted in front of a tractor.

Set # leaves Count FP MR Avg 95%
D1 1 395 4.8%(19) 10.0% 3.29± 0.14 15.76
D2 2 313 1.6%(5) 37.3% 1.88± 0.07 4.62
D3 3 132 0.8%(1) 70.1% 1.42± 0.09 3.02
D4 4 29 0.0%(0) 89.1% 1.22± 0.20 2.39
D5 1–4 188 8.0%(15) 10.4% 2.66± 0.21 49.51
D6 na 71 0.0%(0) 2.7% 1.37± 0.26 3.58

Table 1: Count: Number of position estimates. FP: False positives, percentage
of predicted plant positions with a distance to the nearest true plant location
larger than 20mm. MR: Missed roots, percentage of true PSEPs within 20mm

of a predicted PSEP location. Avg: Average estimate error in mm. 95%: 95%
quantile of estimate errors in mm.
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Figure 2: Plant segmentation was done in two steps. First were NDVI values
calculated for each pixel, then was the image thresholded. The shown images are
(a) pseudo RGB image of raw data (red is shown as red and NIR is shown as
green while the blue channel is set to zero) (b) NDVI image before thresholding
and (c) after thresholding.

Figure 3: Example of plant boundary and the calculated curvature along the
boundary. The boundary is followed clockwise. Leaf tips are local minima and
locations near the PSEP corresponds to peaks.
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Figure 4: Visualization of the search strategy. The boundary is followed from
the leaf tip until the euclidean distance between the current location and the leaf
tip exceeds a specified threshold. This is done in both directions and distance
between the located points is measured. The procedure is repeated with increas-
ing distance thresholds illustrated by concentric circles. When distance between
located points is minimized the leaf cut–off location is found.

Figure 5: Manually marking of PSEPs. The orange leaves were detected by
the leaf detector. PSEPs are marked with a red spot.

Figure 6: PSEP location as specified in the leaf coordinate system. The follow-
ing points are marked: centre of mass C, stem attach point S and PSEP location
R. The PSEP location model is indicated by the three concentric ellipses. Ac-
cording to the PSEP location model, will 68% of the true PSEP locations be
placed within the central ellipse, the two other ellipses will contain 95% and
99.7% respectively.
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Figure 7: Combination of two PSEP location models. The ellipses contains
are similar to those shown in figure 6. For the raw models are the ellipse for
99.7% shown and for the combined model: 68%, 95% and 99.7%.

Figure 8: Fraction of missed PSEPs as a function of the threshold distance.
When the number of leaves used to estimate true PSEPs are increased the frac-
tion of missed PSEPs also increases. The following color encoding is used: D1,
D2, D3, D4, D5 and D6
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Figure 9: Fraction of false positives as a function of the threshold distance.
Error of PSEP–location–estimates is seen to decrease when the number of leaves
used to make the estimate is increased. Color encodings as in figure 8.

Figure 10: Easy and difficult cases for the leaf detector. Leaf tip candidates
are marked by purple squares. Cyan indicates concave locations. Detected leaves
are marked in blue.
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