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1. Minimal Walking Technicolor

The mechanism of dynamical electro-weak symmetry breaking (often referred to as techni-
color) [1] remains a possible explanation for the breaking of the electro-weak symmetry observed
in nature. Gauge theories which possess an approximate infra-red fixed point have been proposed
as preferred candidates for the technicolor sector in models of extended technicolor [2] as it has
been argued that they would allow suppression of flavour changing neutral currents while permit-
ting generation of large fermion masses. This is achieved through the non-trivial renormalisation
dynamics between the technicolor and extended technicolor scales. This property of the theory has
been coined “walking” in reference to the slow running of the coupling between the two scales 1.

We can hope to generate an infra-red fixed point in a gauge theory, while minimising con-
tributions to electroweak precision constraints, by adding a low number of fermion flavours in
higher gauge representations to a gauge theory with a low number of colours. For these reasons the
gauge theory theory with symmetry group SU(2) and two flavours of Dirac fermion in the adjoint
representation has been termed minimal walking technicolor (MWT) [4].

Conformal or near-conformal dynamics have not been conclusively identified in any theory as
yet, although there are encouraging hints from a number of sources. Due to the non-perturbative
nature of the problem, much of the investigation of this problem has arisen from lattice simulations,
and this activity is growing. Some recent lattice studies of MWT [5, 6, 7] have attempted to identify
a near-conformal behaviour directly from the behaviour of the coupling and anomalous dimensions
of the theory under renormalisation flow. Others [8, 9, 10, 11, 12, 13], including this work, perform
measurements of physical observables in the theory and from their behaviour attempt to identify
signals of near-conformal dynamics.

This study builds on previous work in [9, 13]. In particular we seek to support these results
and establish their reliability by investigating the effect of performing measurements and analysis
using alternative methods. In addition, through this we expect to ascertain the scale of systematic
uncertainties present, which have as yet been largely unexplored.

2. Signals of Conformality

The question of whether MWT in the chiral limit posesses an actual infra-red fixed point,
i.e. it lies within the conformal window, or an approximate fixed point, has not been conclusively
answered. Nevertheless, it is clear that MWT with a non-zero fermion mass and defined in a
finite volume, as simulated on the lattice, cannot be conformal. If the chiral continuum theory
posesses an infra-red fixed point, the lattice results will be described by a mass-deformed conformal
gauge theory. Recent discussions of scaling laws in such theories [13, 14, 15] have derived scaling
relations for hadronic masses and amplitudes in terms of the mass deformation.

In a theory with strong chiral symmetry breaking (like QCD), the mesonic spectrum departs
significantly from degeneracy. The pseudoscalar mesons become massless in the chiral limit, while
the rest of the spectrum is expected to retain a finite mass. In a mass deformed conformal theory,
the outlook is different. In approaching a conformal limit, the theory respects the hyperscaling
property, whereby all masses M in the theory scale identically. They must vanish in the limit of

1For a recent technicolor review see [3].
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vanishing quark mass m. From an analysis of the renormalisation of mesonic two-point functions
we can deduce that all meson masses M in the theory vanish as M ∼mρ where the critical exponent
ρ is given by ρ = 1

1+γ∗
where γ∗ denotes the anomalous dimension of the chiral condensate in the

conformal theory at the infra-red fixed point. This quantity is phenomenologically very interesting
as it determines the extent to which the chiral condensate is enhanced at the extended technicolor
scale with respect to the technicolor scale when a near-conformal gauge theory is included as the
new strongly coupled gauge group in a model of extended technicolor. We will attempt to fit our
lattice data with this hyperscaling relation in order to determine whether the massless limit of MWT
is indeed a conformal theory, and also to deduce a range of γ∗ preferred by the data.

In [13] it is also shown that in a theory confined to a finite box of size L, analysing the renormal-
isation of the free energy density and treating the box size L as a relevant parameter, there exist uni-
versal finite-size scaling laws for physical observables. These can be summarised as LM ∼ ϒ(Lmρ)

for any observable M of mass dimension one. The function ϒ will differ for each M, but this rela-
tion allows us to compare data across different lattice volumes in order to draw conclusions on the
range of γ∗ which are preferred by the data.

3. Systematic Spectroscopy

This study builds on the work described in [9, 13] where spectroscopic observables of MWT
were measured through lattice simulations. The computation was performed using the HiRep
code, designed to simulate theories of general number of colours Nc and number of flavours N f

of fermions in a generic representation R of the gauge group. The simulations used the Wilson
gauge action, and the Wilson fermion formulation along with the RHMC algorithm. A number of
lattice volumes have been analysed, from 16× 83 to 64× 243 with a range of bare quark masses.
We describe analysis of ensembles at a single lattice spacing, with β = 2.25.

For this study we have performed some alternative analyses to those in [13]. We have mod-
ified the Chroma suite of lattice software [16] to operate with Nc 6= 3 and a number of fermion
representations R other than the fundamental. Using the resulting code we have utilised the in-
built smearing routines found in Chroma to perform measurements on the gauge configurations
generated with HiRep with a number of different quark smearings.

The signals for the observables obtained from correlators using a wall-smeared source op-
erator are the cleanest available. This could be expected due to the enhancement of the overlap
of the wall-smeared quark bilinear with the mesonic ground states due to its projection onto zero
momentum. As a result it was decided to produce a complete set of wall smeared correlators on
our data, complementing the local correlators already analysed [13]. We present full results for all
observables of interest in Sec. 4.

In addition to this investigation of the effect of smearing on the observables, we have also
investigated possible systematic errors arising from our analysis methods. Firstly, we considered
the algorithm for extracting meson masses from the correlators. The Prony method [13] using only
the ground state mass was preferred to the effective mass method [17], and so the Prony method
was implemented in all analyses. We then examined whether the effective observable for the PCAC
quark mass and decay amplitudes was affected by the use of the effective meson mass or its fitted
value. Finding little variation, it was decided to use the effective mass in all definitions.

3
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4. Results

In the following we present results from the wall-smeared inversions on all available ensembles
generated with HiRep. The analysis used every tenth configuration in the Monte Carlo chain.
Meson masses were extracted from the correlators using the Prony method using only the ground
state mass. The definition of effective observables for the PCAC mass and decay constants are
those used in [13] and can be found explicitly in [17].

4.1 Systematics

As stated in Sec. 3 the wall-smeared correlators result in significantly improved signals for
our mesonic observables. This is illustrated in Fig. 1 for a choice of bare masses, on our smallest
and largest lattices. It can be seen that on the smallest lattice, the result from unsmeared correlators
is contaminated with excited states and that their effects are not diluted even at the centre of the
lattice. This will lead to a discrepancy between the results from the smeared correlators and those
from the unsmeared. In contrast however, we see that on the largest lattice, the temporal extent
is sufficient to suppress the effect of excited states in the local correlators towards the centre of
the lattice, and the two results are in good agreement. As such we expect the smeared results to
systematically differ from the local results on smaller lattices while we expect agreement on the
larger lattices. Below we present the smeared results, for the full local results see [13].
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Figure 1: Effective pseudoscalar masses from both smeared and unsmeared correlators.

4.2 PCAC mass

In Fig. 2a results for the PCAC mass on all ensembles are presented. The inset illustrates a
close up of the approach to the chiral limit, with a linear extrapolation to zero quark mass. Using
this we find the critical bare quark mass to be amc =−1.2025(5), which compares very well to the
result obtained from the local data [13].

4.3 Meson masses

Fig. 2b shows the results obtained for the pseudoscalar mass mPS as a function of the PCAC
quark mass m. In Figs. 2c, 2d we can see the ratio of mPS and m2

PS, respectively, to m. We notice

4
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that mPS
m appears to increase in the chiral limit, while m2

PS
m appears to vanish at zero quark mass. This

is at odds with the behaviour expected in a theory described by a chiral effective field theory (like
QCD) in which the pseudoscalar mass is expected to scale as mPS ∼

√
m in the chiral limit.

In Fig. 2e we see the mass of the vector meson mV as a function of the quark mass m. We can
see that it appears to vanish in the chiral limit, indicating that chiral symmetry is unbroken in this
theory. Analysing the ratio of mV to mPS, Fig. 2f, we see that this does not diverge in the chiral
limit, in fact it deviates little from unity, again in conflict with the expectations from a chirally
broken theory where the pseudoscalar is expected to become massless in the chiral limit, with the
rest of the mesonic spectrum retaining a finite mass. The behaviour we observe is more akin to that
expected in a mass deformed conformal gauge theory where the property of hyperscaling insists
that all masses must scale to zero with the same critical exponent in the chiral limit.

4.4 Decay constants

In Fig. 2g we show the measured pseudoscalar decay constant as a function of quark mass.
Clearly, large finite-volume effects are present, indicated by the large discrepancies between results
on different volumes. Using the Gell-Mann–Oakes–Renner relation we can analyse the scaling of
the chiral condensate with the quark mass. Although again our data, shown in Fig. 2h, suffer from
significant finite-size effects, there is no indication of a finite chiral condensate in the chiral limit.

4.5 Scaling and anomalous dimension

In Sec. 2 we described how the meson masses are expected to scale to zero with the same
critical exponent ρ = 1

1+γ∗
in the chiral limit. We have attempted to fit the behaviour of mPS and

mV to such a power law and extract from these fits a value of γ∗. The χ-squared value of these
fits is generally rather poor, except in a few cases. However the results indicate that no particular
non-zero value of γ∗ is preferred by our data, and we see this as consistent with a low value γ∗� 1.
We have also attempted to determine γ∗ from the finite-size scaling relations described in Sec. 2.
This analysis also indicates a preference for a low γ∗ from the data. For details, see [18].

5. Conclusions

Our investigation of the systematic effects present in our analysis of mesonic observables in
MWT indicates that they are largely under control, and finite volume effects are small on our larger
lattices. We find further supporting evidence for the case that this theory is near-conformal, with
indications that the anomalous dimension at the fixed point in the massless theory is small. This
could be a problem for certain models which depend on a large γ∗ to satisfy current experimental
data, however it should be remembered that MWT must be embedded in a larger theory of extended
technicolor in order to construct a model of electro-weak symmetry breaking and as such γ∗ could
be affected by other sectors of the theory, and so our result is nothing like the final answer.
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Figure 2: Fermionic observables in the chiral region.
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