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Nonperturbative Results for Yang-Mills Theories
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Some non perturbative aspects of the pure SU(3) Yang-Mills theory are investigated assuming a
specific form of the beta function, based on a recent modification by Ryttov and Sannino of the known
one for supersymmetric gauge theories. The characteristic feature is a pole at a particular value of
the coupling constant, g. First it is noted, using dimensional analysis, that physical quantities behave
smoothly as one travels from one side of the pole to the other. Then it is argued that the form of
the integrated beta function g(µ), where µ is the mass scale, determines the mass gap of the theory.
Assuming the usual QCD value one finds it to be 1.67 GeV, which is in surprisingly good agreement
with a quenched lattice calculation. A similar calculation is made for the supersymmetric Yang-Mills
theory where the corresponding beta function is considered to be exact.
Preprint: CP3-Origins-2010-36

I. INTRODUCTION

The exact beta function of a gauge theory is gener-
ally considered to contain many non-perturbative secrets
of the gauge theory behavior. Unfortunately it seems
to be only computable analytically in perturbation the-
ory. Physically it is related to the trace anomaly, or the
non-zero value of the divergence of the scale (dilation)
current. We are specializing to massless theories here so
it represents a violation of the classical result.

Another object in gauge theories with massless
fermions, the divergence of the U(1) axial vector current,
should be zero in the classical limit but is known not to
vanish at the quantum level (axial anomaly). Most inter-
estingly it has the property that there are no corrections
[1] beyond the one loop level so it can be considered to
be known exactly.

Now, in supersymmetric gauge theories, it was found
[2] that both the trace anomaly and the axial anomaly
(actually together with the divergence of a special su-
perconformal current) belong to the same chiral multi-
plet and hence should be somehow related to each other.
There was a lot of discussion about the meaning of this
feature - for example is there a contradiction between an
exact one loop result for the axial anomaly and a result
containing all orders of coupling constant for the trace
anomaly - and finally it was realized that there could
be compatibility, with the exact beta function being de-
termined from the axial anomaly. This was shown both
for the supersymmetric Yang-Mills theory [3] and for the
supersymmetric theory containing also fermions not be-
longing to the adjoint representation [4]. A characteristic
feature of these exact beta functions is a pole at a par-
ticular value of coupling constant, g in the beta function
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β(g).
Recently, Ryttov and Sannino [5] conjectured such all

order beta functions for ordinary SU(N) (non supersym-
metric) gauge theories both with and without fermions
belonging to arbitrary representations based on analogy
to the supersymmetric case. The generalization, by one
of the authors, for the SO, and Sp gauge groups ap-
peared in [6] and for chiral gauge theories in [7]. These
beta functions were found to satisfy known consistency
conditions at second order and to work well in many
interesting applications to working technicolor models
reviewed in[7]. These beta functions also feature a pole
at a particular value of g.

In the present note, we study some non-pertubative
consequences of the conjectured beta function for the
simple SU(N) Yang-Mills theory; already [5] the conjec-
tured beta function had been seen to give a reasonable
picture in the asymptotically free perturbative region. In
section II we use dimensional analysis to investigate the
running with scale of physical quantities with various
engineering dimensions. This involves g(µ) but it was
noted that physical quantities change smoothly as g goes
through the pole value.

In section III, we investigate the integration of the
defining equation for the beta function which yields an
explicit expression for g(µ). We consider all Yang-Mills
theories in the sense that a full range of values for the
coupling constant at a reference mass are considered.
An amusing feature is seen to arise: the solutions for
g(µ) do not allow µ to be lower than a certain value.
We interpret this as the measure of the mass gap for the
Yang-Mills theory. For the usual value of the QCD cou-
pling constant, with N=3, our predicted value of 1.67
GeV is seen to be in good agreement with a valence lat-
tice calculation. We also compute the mass gap for the
supersymmetric SU(3) and SU(N) Yang-Mills theories.
In the latter case, the starting beta function does not re-
quire any conjecture.

Section IV contains a brief summary and discussion.
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II. GENERAL SCALING RESULTS FOR YANG - MILLS
THEORIES

Consider a renormalization group invariant quantity
H of mass dimension D in any theory with a single field
and a single coupling constant g. Define µ to be the
renormalization scale and g(µ) to be the value assumed
by the coupling constant at that scale. Since H must
be a measurable physical quantity, dimensional analysis
implies that it has the form,

H = µD
H

[
g(µ)

]
, (1)

where H
[
g(µ)

]
is some function of the coupling con-

stant. Of course, for any given theory there are many
different interesting quantities H. One may, as usual, in-
troduce a characteristic invariant scale, Λ for the theory by
defining a particular H to be ΛD. By differentiating both
sides of Eq.(1) with respect to log(µ), the natural log, and
recognizing that the left hand side is independent of µ,
we obtain the main equation:

DH +
∂H
∂g

β(g) = 0 , with β(g) =
∂g

∂ log(µ)
. (2)

By integrating this equation one immediately finds:

log
(
H

H 0

)
= −D

∫ g

g0

dg
β(g)

. (3)

Hence if the exact beta function were known as a func-
tion of g, one could express any renormalization group
invariant quantity H as a known function of g up to an
arbitrary overall constant.

Now, as discussed in the preceding section, a conjec-
tured all orders beta function for the ordinary Yang-Mills
theory based on the known supersymmetric Yang-Mills
theory all orders beta function was recently introduced in
[5] by Ryttov and Sannino. It was found to be consistent
with other non perturbative approaches to the ordinary
(non supersymmetric) gauge theories and hence to be a
reasonable model for further investigation.

This RS all orders beta function ansatz for the SU(N)
Yang-Mills theory reads:

βYM = −g3 a
1 − bg2 , with a =

11
3

N
(4π)2 and b =

17
11

N
8π2 .

(4)
Using Eq.(4) in Eq.(3) then yields:

H = const
µD

g
Db
a

exp
[
−

D
2a g2

]
, (5)

where the overall constant is defined by

const = H0g0
Db
a exp

 D
2a g2

0

 . (6)

Here the subscript zero denotes the value corresponding
to the lower limit of integration in Eq. (3). Of course,

there is a different numerical constant for each choice
of H. These numerical constants might be approximated
by using perturbation theory at a large value of µ, for
example.

For definiteness we list some possible interesting
choices for H.

i. The gluon condensate or vacuum expectation
value of the trace of the energy momentum ten-
sor. This has the engineering dimension D = 4.

ii. The glueball squared masses (D = 2). We presume
that there is a spectrum of glueballs with different
spin-parities and masses.

iii. The glueball-glueball scattering cross sections (D
= - 2).

iv. The coefficients, an in the expansion of the partial
wave amplitudes for glueball scattering, Σansn in a
region of analyticity (Here D= -2n).

To get an idea of the dependences of various phys-
ical quantities on the coupling constant g we plot the
characteristic factor,

F(g) =
1

g
Db
a

exp
[
−

D
2a g2

]
, (7)

in Eq.(5) for the case D = 4 in Fig. 1 (a) one and for the
case D = −2 in Fig. 1 (b) . For definiteness the choice N
equal to 3 is made. It is seen that each of these curves
displays an extremum at the same value of g.

Differentiating shows that this value is,

g2 = 1/b =
88π2

51
≈ (4.127)2. (8)

Furthermore, the second derivative of F(g) at this point
is simply −2DF(g)/ag4; this means that dynamical quan-
tities with positive dimension D will have a maximum at
this point while those with negative D will have a mini-
mum at the same point. We also note the interesting fact
that for a given value of the physical quantity F, there are
two different values of g. The situation will be further
explored by looking at the beta function.

III. BETA FUNCTION AND MASS GAP

A graph of the N =3 Yang-Mills conjectured beta func-
tion in Eq.(4) is shown in Fig. 2(a). From its shape one
concludes that the origin, g =0 is an ultraviolet stable
fixed point and that there is clearly a pole at g = b−1/2.
However, we observe from the Figs. 1 (a) and (b) that the
physical quantities, H remain smooth as one goes from
one side of the pole to the other.

In order to discuss the coupling constant in a gauge
theory, one chooses a reference value µ0 of the energy
scale and specifies (from experiment) the value of the
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(b) Case D = −2

FIG. 1: F(g) as function of g for N = 3.

running coupling constant, g(µ0) at this point. In the
case of QCD, it is convenient to choose µ0 = mZ ≈ 91.19
GeV. For illustration we will also choose this value of µ0
as our reference scale. The value of the QCD coupling
constant at this scale is measured to be about 1.228. In
the present pure Yang-Mills case we are dealing with a
hypothetical model so we are free to choose any value
for g(µ0). In fact it is better to allow g(µ0) to range over
all possible values, which corresponds to describing all
pure Yang-Mills N=3 theories.

Clearly, the first step is finding out how the coupling
constant runs with the scale µ. Integrating the second of
Eq.(2) yields the following relation between g = g(µ) and
log(µ) corresponding to any choice of g0 = g(µ0):

log
(
µ

µ0

)
=

1
2a

 1
g2 −

1
g2

0

 +
b
a

log
(

g
g0

)
. (9)

It is convenient to plot in Fig. 2(b) log
(
µ/µ0

)
as a func-

tion of g with the choice g0 = 1. In the part of this plot
to the left of g(µ) = b−0.5

≈ 4.127, g(µ) decreases as log(µ)
increases. That is the expected asymptotically free be-
havior. On the other hand, to the right of this point,
g(µ) smoothly starts rising with increasing log(µ). There
is no discontinuity at the pole. Clearly, this behavior is
the same as that shown for physical quantities in panels
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(a) βYM(g) as function of g for N = 3.
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FIG. 2: Plots of the YM beta function, panel (a), and of the solu-
tion for the running of the scale (b) as function of the coupling
constant g with g0 = 1.

(a) and (b) of Figs. 1. The existence of a smoothly con-
nected different phase for the theory is intriguing. For
the present, however, we will concentrate on the asymp-
totically free region.

The different N = 3 pure Yang-Mills theory which is
defined by g0 = 3 yields the running coupling constant
plotted in Fig. 3(a). The overall picture is substantially
the same. In particular, the asymptotically free region
still corresponds to g(µ) < b−0.5. Similarly the theory
characterized by g0 = 0.5 is seen from the plot in Fig. 3(b)
to still have the same range in g(µ) for the asymptotically
free region, but with rather different µ values.

Figures 2(b), 3(a) and 3(b) each illustrate that there is
a particular (but different in each case) value of log(µ)
below which the curve does not extend. This is peculiar
since it would imply that the running coupling constant
could not be measured experimentally in that region. The
only way in which this might be consistent is if the disal-
lowed region would be lower than M, twice the mass of
the lightest glueball state in the theory. Then it would be
below threshold and not accessible to experiment. That
seems like a plausible determination of the mass gap of
the theory. It is clear that the value of such a mass gap is
determined by the ordinate of the point where log(µ) is
minimum, i.e. where g = b−0.5. Specifically,
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FIG. 3: Solution for running scale vs. coupling constant g.

log(M) = log(µ0) +
1
2a

b −
1
g2

0

 − b
a

log(g0b0.5), (10)

where g0 is the assumed value of the coupling constant
at µ0 = 91.19 GeV.

Note that the so defined mass gap depends on the par-
ticular N=3 Yang-Mills theory we are considering via its
dependence on g0. In Figure 4 (a) twice the mass gap,
M in GeV is plotted for g0 ranging from 1 to 10. For
orientation, the mass gap for g0 slightly larger than one
is seen to be in the GeV range. The mass gap reaches a
maximum when g0 takes the pole value, 1/b0.5 and de-
clines somewhat for larger values of g0. It seems reason-
able that within the asymptotically free regime, the mass
gap increases with the strength of the coupling constant,
g0. For g0 < 1, the mass gap starts to decline extremely
rapidly, as may be seen from Fig. 4 (b).

To further test the reasonableness of our interpretation,
we may try to predict the mass of the lightest glueball in
this model. We would like the result to be similar to the
usually expected value (about 1.5 GeV) when we adopt
the QCD value for the coupling constant, g0 = 1.228,
mentioned above. This would correspond to neglecting
the effects of quark fields on the glueball mass. Since it
is seen that there is a rapid dependence of M on g0 we
give in Fig. 5 a blow up of the prediction for M/2 in the
region of g0 near the experimental one. This yields for

the lightest glueball mass,

M/2 ≈ 1.67 GeV, (11)

which does seem reasonable for an a priori prediction.
We may compare this value with the result of a lattice
QCD calculation employing a valence assumption [8].
That calculation gave the result for the 0+ glueball which
is found to be lightest:

m(0+) = 1648 ± 58 MeV. (12)

This embarassingly accurate agreement gives us at least
some confidence in the correctness of the interpretation
of the mass gap and the validity of the RS conjectured
beta function. Other lattice results are also in agreement
with the value quoted above [9, 10]. To sum up, the pole
in the beta function does not produce any singularity in
the theory but seems to be the feature which generates
the mass gap. It would be interesting to investigate the
dependence of this result on the choice of renormaliza-
tion scheme.

If the conjectured pure Yang-Mills beta function could
be shown to be the same as the exact one, it would
amount to showing that the theory has the kind of mass
gap defined above.

Actually, it is easy to see that this mass gap mechanism
does not, in general, require the RS conjecture if one
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(a) M (twice the mass gap) dependence on 1 ≤ g0 ≤ 10
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(b) M (twice the mass gap) dependence on g0 ≤ 1

FIG. 4: M (twice the mass gap) dependence on g0 for µ0 =
91.19 GeV and g = b−0.5.
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FIG. 5: Mass gap dependence on 1.1 ≤ g0 ≤ 1.3 for µ0 =
91.19 GeV and g = b−0.5.

goes beyond the ordinary Yang-Mills model. That is
because the supersymmetric Yang-Mills theory, which
is of course the starting point of the RS conjecture, is
known to possess an exact beta function of the same
form as Eq.(4) but with somewhat different values of a
and b, namely:

a′ =
3N

(4π)2 , b′ =
N

8π2 . (13)

The numerical results are qualitatively similar if one
assumes a similar value of the coupling constant. For
example if we choose to specify the super Yang-Mills
theory by taking a similar coupling constant at the scale,
µ0 = mZ, we would get for the choice g0 = 1.0, the curve
shown in Fig. 6, which describes the running of g(µ) with
respect to log(µ) and can be compared with the curve in
Fig. 2(b).

We can compare the mass gap, M′/2 in the supersym-
metric case by using Eq.(10) and making the choice g0 =
1.228 (and also N=3). This would give for the mass of
the lightest supersymmetric multiplet,

M′/2 ≈ 0.49 GeV . (14)

Clearly, the supersymmetric and non supersymmetric
Yang-Mills model results seem to be only qualitatively
similar, the lightest supersymmetric particle having a
mass about 1/3 that of the non-supersymmetric model
glueball (assuming the same coupling constant).

Of course, another interesting aspect to explore for
gauge theories is their behavior as the number of colors,
N gets large. Taking the supersymmetric gauge theory
as an example and fixing, for the sake of definiteness,
the gauge coupling constant as 1.228 at µ0 = 91.19 GeV,
we find the running of g(µ) by substituting Eq.(13) into
Eq.(9). Figure 7 (a) show log(µ) plotted against g(µ)
for respectively N=3 (blue solid line), N=15 (red dashed
line) and N=100 (black dot-dashed line). It is seen that
the asymptotically free (left) region in g shrinks as N
increases. Furthermore, the mass gap (corresponding to
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FIG. 6: Solution of the running of the scale as function of the
coupling constant g for the Super Yang-Mills theory.

the ordinate at the minimum point) is shown in Fig. 7 (b).
It shows that the mass gap has a maximum as function
of the number of colors.

When considering the large N behavior of gauge the-
ories it is often desired to make an extrapolation where
large N is taken in such a way that the quantity,

g2
t ≡ g2N (15)

is held fixed. With such an extrapolation there will
be no dependence (in either the supersymmetric Yang-
Mills or the pure Yang-Mills with RS type beta function
cases) on N. This may be immediately seen by writing,
from Eq.(4), a ≡ ãN and b ≡ b̃N so that ã and b̃ are
independent of N. Then, as an example, Eq.(10) for the
mass gap becomes

log
(

M
µ0

)
=

b̃
ã

(1
2
− log(b̃1/2g0N1/2)

)
−

1
2ãg2

0N
, (16)

which only involves N via the fixed combination g2
0N.

IV. SUMMARY AND DISCUSSION

First, an exploration of the scale dependence of phys-
ical quantities (with engineering dimension, D) was
made using dimensional analysis and a specific form,
conjectured by Ryttov and Sannino, of the beta function
for the pure Yang-Mills theory. It was noted that even
though the beta function had a pole (inherited from the
known form for supersymmetric gauge theories which
stimulated the conjecture) physical quantities remained
smooth as the pole value of the coupling constant, g was
crossed.

For a more detailed understanding of how the cou-
pling constant runs, the integration of the beta function
was next carried out for the complete set of SU(3) Yang-
Mills theories, i.e. those corresponding to any choice
of coupling constant, g0 at a convenient reference scale,
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(a) Running of the scale as function of g for Super
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FIG. 7: In the panel (a) we plot the solution of the running of the scale as function of the coupling constant g for the Super
Yang-Mills theory for N = 3, solid blue line; N = 15, red-dashed line and N = 100, black-dot-dashed line. We have kept fixed
g0 = 1.228 at the scale µ0 = 91.19 GeV. In the panel (b) we plot the mass gap M′/2 as function of the number of colors N.

µ0 = mZ. Then g(µ) was also seen to have a smooth
behavior at the pole value of g. Most interesting is that
(due to the existence of the pole) the curve of g(µ) pre-
dicts a numerical value for the mass gap of the Yang-
Mills theory, i.e. the mass of the lightest glueball. The
predicted value, 1.67 GeV, seems rather close to the one
obtained from a lattice treatment of QCD in the valence
or quenched approximation.

It is noted that if the reference value of the coupling
constant, g0 decreases below about 1 (the experimental
value is 1.228) the mass gap drops very quickly.

A similar treatment was carried out for the supersym-
metric SU(3) Yang-Mills theory and the mass gap was
calculated to be about 0.49 GeV. In this case, the form of
the beta function is quite similar but is based on a known
rather than a conjectured beta function.

We plan to next investigate the extent to which this
work can be carried out for non-supersymmetric gauge
theories containing fermions. Evidently there are many
interesting questions which remain.
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