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Abstract
We uncover novel solutions of the ’t Hooft anomaly matching conditions for scalarless gauge

theories with matter transforming according to higher dimensional representations of the un-

derlying gauge group. We argue that, if the duals exist, they are gauge theories with fermions

transforming according to the defining representation of the dual gauge group. The resulting

conformal windows match the one stemming from the all-orders beta function results when tak-

ing the anomalous dimension of the fermion mass to be unity which are also very close to the

ones obtained using the Schwinger-Dyson approximation. We use the solutions to gain useful

insight on the conformal window of the associated electric theory. A consistent picture emerges

corroborating previous results obtained via different analytic methods and in agreement with first

principle lattice explorations.
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I. INTRODUCTION

One of the most fascinating possibilities is that generic asymptotically free gauge

theories have magnetic duals. In fact, in the late nineties, in a series of ground breaking

papers Seiberg [1, 2] provided strong support for the existence of a consistent picture of

such a duality within a supersymmetric framework. Supersymmetry is, however, quite

special and the existence of such a duality does not automatically imply the existence of

nonsupersymmetric duals. One of the most relevant results put forward by Seiberg has

been the identification of the boundary of the conformal window for supersymmetric QCD

as function of the number of flavors and colors. The dual theories proposed by Seiberg

pass a set of mathematical consistency relations known as ’t Hooft anomaly conditions

[3]. Another important tool has been the knowledge of the all-orders supersymmetric

beta function [4, 5, 6]

Recently we provided several analytic predictions for the conformal window of non-

supersymmetric gauge theories using different approaches [7, 8, 9]. We also initiated in

[10] the exploration of the possible existence of truly QCD nonsupersymmetric gauge

dual providing a consistent picture of the phase diagram as function of number of colors

and flavors.

Arguably the existence of a possible dual of a generic nonsupersymmetric asymp-

totically free gauge theory able to reproduce its infrared dynamics must match the ’t

Hooft anomaly conditions [3]. We have exhibited several solutions of these conditions for

QCD in [10]. An earlier exploration already appeared in the literature [11]. The novelty

with respect to these earlier results were: i) The request that the gauge singlet opera-

tors associated to the magnetic baryons should be interpreted as bound states of ordinary

baryons [10]; ii) The fact that the asymptotically free condition for the dual theory matches

the lower bound on the conformal window obtained using the all-orders beta function

[9]. These extra constraints help restricting further the number of possible gauge duals

without diminishing the exactness of the associate solutions with respect to the ’t Hooft

anomaly conditions.

In this paper we analyze theories with fermions transforming according to higher di-

mensional representations. Some of these theories have been used to construct sensible

extensions of the standard model of particle interactions of technicolor type passing pre-
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cision data and known as Minimal Walking Technicolor models [7, 8]. Other interesting

studies of technicolor dynamics making use of higher dimensional representations ap-

peared in [12]. These are the only known extension of technicolor type possessing the

smallest naive S parameter while being able to display simultaneously (near) conformal

behavior. One can also construct explicit examples of extended technicolor interactions

[13] for these models [14].

We will exhibit here novel solutions to the ’t Hooft anomaly conditions for theories

with higher dimensional representations. The resuling magnetic dual allows to predict

the critical number of flavors above which the asymptotically free theory, in the electric

variables, enters the conformal regime as predicted using the all-orders conjectured beta

function [9].

Several analytic predictions for the lower end of the conformal window for nonsuper-

symmetric gauge theories with matter transforming according to various SU, SO and Sp

representations have been made [7, 8, 9, 15, 16]. Here we show that using exact anomaly

matching conditions together with the new constraints coming from operator matching

introduced in [10] we arrive at a bound on the conformal windows in agreement with

earlier analysis. In particular we find our results to agree with the ones obtained using the

all-orders beta function conjecture when assuming the maximum anomalous dimension

of the fermion mass to be unity. An interesting result, stemming from the restriction

that the magnetic baryons have baryonic charges which are multiple of the ordinary

baryons, is that the duals prefer to feature magnetic fermions transforming according to

the fundamental representation of the dual gauge group.

We begin our analysis by investigating an SU(3) gauge theory with fermionic matter in

the two-index symmetric representation of the gauge group. The interest for this theory

resides in the fact that it has been used to construct models of dynamical electroweak

symmetry breaking. It is also being studied via first principle lattice simulations. We

first investigate the possible duals with fermions in the defining representation of the

dual gauge group and then analyze the case in which the magnetic fermions transform

according to the same higher dimensional representation. We find that operator matching

privileges the former duals. Here the various consistency conditions indicate the lower

bound of the conformal window must start already for two Dirac flavors. The results

are in surprising agreement with the ones derived using the all-orders beta function
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with an anomalous dimension of the fermion mass near unity, and as well as the ones first

predicted in [7] and obtained via the Schwinger-Dyson (SD) approximation [17, 18, 19, 20].

We then investigate SU(N) gauge theories with adjoint Weyl matter. Here we find

that an interesting dual is an SO(N f − 1) gauge theory with N f Weyl fermions in the

vector representation. In this case the number of Weyl fermoins above which we expect

conformality to set in is N f = 4, corresponding to exactly 2 Dirac flavors. This result

is in agreement with analytical [7, 8, 9, 15, 21] and first principle lattice simulations

[25, 26, 27, 28, 29, 30, 31, 32]. Our results can be further tested via first principle lattice

simulations and strongly reduce the number of possible gauge theories one can use to

construct models of nature given that the underlying dynamics of superficially distinct

models may be related, in the infrared, by a gauge duality. Currently the conformal

windows of exactly the theories investigated here, as well as the one investigated in

[10], are object of intense analytic [7, 8, 9, 15, 21, 22, 23, 24] and numerically oriented

[25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44] investigations.

II. SU(3) GAUGE THEORY WITH N f DIRAC FLAVORS IN THE 2-INDEX SYMMETRIC

REPRESENTATION

The underlying gauge group is SU(3) while the quantum flavor group is

SUL(N f ) × SUR(N f ) ×UV(1) , (1)

and the classical UA(1) symmetry is destroyed at the quantum level by the Adler-Bell-

Jackiw anomaly. We indicate with Qi
α;{c1,c2}

the two component left spinor where α = 1, 2

is the spin index, c1, c2 = 1, ..., 3 is the color index while i = 1, ...,N f represents the flavor.

Q̃α;{c1,c2}

i is the two component conjugated right spinor. We summarize the transformation

properties in the following table.

The global anomalies are associated to the triangle diagrams featuring at the vertices

three SU(N f ) generators (either all right or all left), or two SU(N f ) generators (all right or

all left) and one UV(1) charge. We indicate these anomalies for short with:

SUL/R(N f )3 , SUL/R(N f )2 UV(1) . (2)

For a vector like theory there are no further global anomalies. The cubic anomaly factor,

for fermions in fundamental representations, is 1 for Q and −1 for Q̃ while the quadratic
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Fields [SU(3)] SUL(N f ) SUR(N f ) UV(1)

Q 1 1

Q̃ 1 −1

Gµ Adj 1 1 1

TABLE I: Field content of an SU(3) gauge theory with quantum global symmetry SUL(N f ) ×

SUR(N f ) ×UV(1).

anomaly factor is 1 for both leading to

SUL/R(N f )3
∝ ±6 , SUL/R(N f )2UV(1) ∝ ±6 . (3)

‘t Hooft Anomaly Matching

 UV (1)

SUL(Nf )

 

SUL(Nf )

SUL(Nf )

SUL(Nf )

SUL(Nf )

FIG. 1: The ’t Hooft anomaly matching conditions are related to the saturation of the global

anomalies stemming out of the one-loop triangle diagrams represented, for the theory of interest,

here. According to ’t Hooft both theories, i.e. the electric and the magnetic ones, should yield the

same global anomalies.

A. Conformal window from the all orders beta function

Recently we have conjectured an all-orders beta function which allows for a bound

of the conformal window [9] of gauge theories for any matter representation. Other

approaches yield compatible results.
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In this paper we show that thanks to the identification of new possible gauge duals

we lend further strong support in favor of this conjecture. Consider an SU(N) gauge

group with N f Dirac flavors belonging to the representation r of the gauge group. The

conjectured beta function [9] is given in terms of the anomalous dimension of the fermion

mass γ = −d ln m/d lnµ where m is the renormalized mass. At the zero of the all-orders

beta function one has

2
11

T(r)N f (r)
(
2 + γ

)
= C2(G) , (4)

The generators Ta
r , a = 1 . . .N2

−1 of the gauge group in the representation r are normalized

according to Tr
[
Ta

rTb
r

]
= T(r)δab while the quadratic Casimir C2(r) is given by Ta

rTa
r = C2(r)I.

The trace normalization factor T(r) and the quadratic Casimir are connected via C2(r)d(r) =

T(r)d(G) where d(r) is the dimension of the representation r. The adjoint representation is

denoted by G. Hence, specifying the value of the anomalous dimensions at the IRFP yields

the last constraint needed to construct the conformal window. Requiring the absence of

negative norm states at the conformal point requires γ < 2 resulting in the maximum

possible extension of the conformal window bounded from below by:

N f (r)BF
≥

11
8

C2(G)
T(r)

γ = 2 . (5)

The actual size of the conformal window can, however, be smaller than the one determined

above without affecting the validity of the beta function. It may happen, in fact, that chiral

symmetry breaking is triggered for a value of the anomalous dimension less than two. If

this occurs the conformal window shrinks. The ladder approximation approach [17, 18,

19, 20], for example, predicts that chiral symmetry breaking occurs when the anomalous

dimension is larger than one. Remarkably the all-orders beta function encompass this

possibility as well [9]. In fact, it is much more practical to quote the value predicted using

the beta function by imposing γ = 1:

N f (r)BF
≥

11
6

C2(G)
T(r)

, γ = 1 . (6)

The result is very close to the one obtained using directly the ladder approximation as

shown in [9, 15].

Lattice simulations of the conformal window for various matter representations [25,

26, 27, 28, 29, 30, 31, 36, 38, 39, 40, 41, 42, 43, 44] are in agreement with the predictions of

the conformal window via the all-orders beta function.
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B. SU(N) with 2-index symmetric matter conformal window via BF

Specializing to SU(N) with two-index symmetric representation we find:

N f (r)BF
≥

11N
4(N + 2)

, SU(N) for Symmetric rep. with γ = 2. (7)

which for N = 3 implies N f (r)BF
≥ 1.65.

Assuming, instead, the lower bound to occur for γ = 1 we discover that:

N f (r)BF
≥

11N
3(N + 2)

, SU(N) for Symmetric rep. with γ = 1. (8)

which for N = 3 implies: N f (r)BF
≥ 2.2.

It is desirable to have a novel way to determine the conformal window which makes

use of exact matching conditions. By comparing the various methods one can infer the

anomalous dimension to pick as boundary of the window.

III. DUAL OF THE SU(3) AND 2-INDEX SYMMETRIC THEORY

If a magnetic dual does exist one expects it to be weakly coupled near the critical

number of flavors below which one breaks large distance conformality in the electric

variables. This idea is depicted in Fig 2.

Unfortunately the saturation of the global anomalies is an important tool but is not

able to select out a unique solution. We shall see, however, that one class of solutions,

when interpreted as containing a possible dual, leads to a prediction of a critical number

of flavors corresponding exactly to the one obtained via the conjectured all-orders beta

function.

We seek solutions of the anomaly matching conditions for a gauge theory SU(X) with

global symmetry group SUL(N f ) × SUR(N f ) × UV(1) featuring magnetic quarks q and q̃

together with SU(X) gauge singlet states identifiable as baryons built out of the electric

quarks Q. Since mesons do not affect directly global anomaly matching conditions we

could add them to the spectrum of the dual theory. We study the case in which X is a

linear combination of number of flavors and colors of the type αN f + Nβ with α and β

integer numbers. In fact, in the following we will consider N = 3. We will also require that

the baryons constructed out of the magnetic quarks have integer baryonic charges with

respect to the original baryon number. In this way they will be interpreted as possible

7



Weak

Nf

N

Magnetic

Electric

Weak

Strong
Strong

FIG. 2: Schematic representation of the phase diagram as function of number of flavors and colors.

For a given number of colors by increasing the number flavors within the conformal window we

move from the lowest line (violet) to the upper (black) one. The upper black line corresponds to the

one where one looses asymptotic freedom in the electric variables and the lower line where chiral

symmetry breaks and long distance conformality is lost. In the magnetic variables the situation

is reverted and the perturbative line, i.e. the one where one looses asymptotic freedom in the

magnetic variables, correspond to the one where chiral symmetry breaks in the electric ones.

bound states of the original baryons. We will see that this is an important property helping

selecting possible duals.

A. Dual Quarks in the Fundamental Representation

In this initial investigation we search for dual electric quarks in the fundamental

representation of the gauge group X. This choice has the virtue to keep linear in N f the

asymptotic freedom condition we will investigate later. We have searched for the more

complicate case of dual fermions in higher dimensional representaitons and will present

this possibility in the following section.
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We add to the magnetic quarks gauge singlet Weyl fermions which can be identified

with massless baryons of the electric theory. The generic dual spectrum is summarized

in table II. The wave functions for the gauge singlet fields A, C and S are obtained by

Fields [SU(X)] SUL(N f ) SUR(N f ) UV(1) # of copies

q 1 y 1

q̃ 1 −y 1

A 1 1 3 `A

S 1 1 3 `S

C 1 1 3 `C

BA 1 3 `BA

BS 1 3 `BS

DA 1 3 `DA

DS 1 3 `DS

Ã 1 1 −3 `Ã

S̃ 1 1 −3 `S̃

C̃ 1 1 −3 `C̃

TABLE II: Massless spectrum of magnetic quarks and baryons and their transformation properties

under the global symmetry group. The last column represents the multiplicity of each state and

each state is a Weyl fermion.

projecting the flavor indices of the following operator

εc1c2c3εd1d2d3Qi1
{c1,d1}

Qi2
{c2,d2}

Qi3
{c3,d3}

, (9)

over the three irreducible representations of SUL(N f ) as indicated in the table IV. These

states are all singlets under the SUR(N f ) flavor group. Similarly one can construct the

only right-transforming baryons Ã, C̃ and S̃ via Q̃. The B states are made by two Q fields

and one right field Q̃ while the D fields are made by one Q and two Q̃ fermions. y is

the, yet to be determined, baryon charge of the magnetic quarks while the baryon charge

of composite states is fixed in units of the electric quark one. The `s count the number

of times the same baryonic matter representation appears as part of the spectrum of the
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theory. Invariance under parity and charge conjugation of the underlying theory requires

`J = ` J̃ with J = A,S, ...,C and `B = −`D.

Having defined the possible massless matter content of the gauge theory dual to the

electric theory we compute the SUL(N f )3 and SUL(N f )2 UV(1) global anomalies in terms

of the new fields:

SUL(N f )3
∝ X +

(N f − 3)(N f − 6)
2

`A +
(N f + 3)(N f + 6)

2
`S + (N2

f − 9) `C

+ (N f − 4)N f `BA + (N f + 4)N f `BS +
N f (N f − 1)

2
`DA

+
N f (N f + 1)

2
`DS = 6 , (10)

(11)

SUL(N f )2 UV(1) ∝ y X + 3
(N f − 3)(N f − 2)

2
`A + 3

(N f + 3)(N f + 2)
2

`S + 3(N2
f − 3) `C

+ 3(N f − 2)N f `BA + 3(N f + 2)N f `BS + 3
N f (N f − 1)

2
`DA

+3
N f (N f + 1)

2
`DS = 6 . (12)

The left-hand expressions are identical to the ones of QCD while the right-hand side

provides the corresponding value of the anomaly for the electric theory with two-index

symmetric matter.

In Seiberg’s analysis it was also possible to match some of the operators of the magnetic

theory with the ones of the electric theory. The situation for nonsupersymmetric theories

is, in principle, more involved although it is clear that certain magnetic operators match

exactly the respective ones in the electric variables. These are the meson M and the

massless baryons, A, Ã, ...., S shown in Table IV. Besides these obvious identifications

we also required [10] that the baryonic type operators constructed via the magnetic

dual quarks should have baryonic charges multiple of the ordinary baryons ones. We

proposed to identify them, in the electric variables, with bound states of ordinary baryons.

We summarize the proposed operator matching constraints in Fig. 3.

In the case of N f = 2 the cubic anomaly vanishes identically and should not be con-

sidered. For three colors the electric theory looses asymptotic freedom for 3.3 flavors and

hence there is only one value of N f , i.e. N f = 3 for which both anomalies are relevant.

We have found different solutions to the anomaly matching conditions which we will

present the:

10



Operator Matching

Baryonic 
bound states

Magnetic Electric

Baryons

M ∼ QQ

A, S, ....

M

�c1....cX
qc1 · · · qcX

FIG. 3: We propose the above correspondence between the gauge singlet operators of the magnetic

theory and the electric ones. The novelty introduced in [10] with respect to any of the earlier

approaches is the identification of the magnetic baryons, i.e. the ones constructed via the magnetic

quarks, with bound states of baryons in the electric variables.

1. First solution: SU(2NF − 3) dual gauge group

The solutions correspond, for the case N = 3 to the following value assumed by the

indices and y baryonic charge:

X = 2N f − 3 , `A = 0 , `DA = k1 = −`BA ,

`S = −1 + 2k1 + 5k2 , `DS = −2 + 4k1 + 9k2 = −`BS ,

`C = 0 , y = 3
a + bN f + cN2

f

4N f − 6
,

with k1 and k2 integer numbers and

a = 10 − 12k1 − 30k2, b = 2k2 − k1 − 1 c = 3k1 + 4k2 − 1 . (13)
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We have asked that both anomaly matching conditions are satisfied for N f = 3 and that

the solutions satisfy also the quadratic one for N f = 2.

Of course X must assume a value strictly larger than one otherwise it describes an

abelian gauge theory. This provides the first nontrivial bound on the number of flavors:

N f >
3 + 1

2
= 2 . (14)

This value is remarkably consistent with the maximum extension predicted using the

truncated SD equation and the all-orders beta function for a value of the anomalous

dimension equal to one.

Asymptotic freedom of the newly found theory is dictated by the coefficient of the

one-loop beta function :

β0 =
11
3

(2N f − 3) −
2
3

N f . (15)

To this order in perturbation theory the gauge singlet states do not affect the magnetic

quark sector and we can hence determine the number of flavors obtained by requiring

the dual theory to be asymptotic free. i.e.:

N f ≥
33
20

= 1.65 , Dual Asymptotic Freedom I . (16)

This value coincides with the one predicted by means of the all-orders conjectured beta

function for the lowest bound of the conformal window, in the electric variables, when

taking the anomalous dimension of the mass to be γ = 2. We recall that for any number

of colors N the all orders beta function requires the critical number of flavors to be larger

than:

NBF
f |γ=2 =

11N
4(N + 2)

. (17)

For N=3 the two expressions yield 1.65. Actually given that X must be larger than one

this solution requires N f > 2 rather than 1.65. This last feature was also observed for the

QCD dual case. We simply consider this as a signal that we cannot arrive at the maximum

value of γ, nevertheless we can still arrive at a value for the anomalous dimension larger

than one according to this solution. If one requires an even more stringent constraint

X ≥ 2 we then find N f > 2.5 which is very close to the result obtained setting γ = 1 in the

all-orders beta function.

The baryon charge of the magnetic baryons is:

B[qX] = X × y =
3
2

(a + bN f + cN2
f ) = Operator matching = 3 n , (18)

12



with n an integer requiring a + bN f + cN2
f to be an even number. This extra constraints is

easily satisfied by choosing, for example, k1 = 1 and k2 = 0 yielding B[qX] = 3 (N2
f −N f −1).

Intriguingly for N f = 2 one recovers the standard baryonic charge.

2. Second solution: SU(7Nf - 15)

The solutions correspond to the following value assumed by the indices and y baryonic

charge:

X = 7N f − 15 , `A = 0 , `DA = k1 = −`BA ,

`S = 2k1 + 5k2 , `DS = 4k1 + 9k2 = −`BS ,

`C = 0 , y = 3
a + bN f + cN2

f

14N f − 30
.

(19)

with k1 and k2 integer numbers and

a = 4 − 12k1 − 30k2 , b = 2k2 − k1 , c = 3k1 + 4k2 . (20)

The baryon charge of the magnetic baryons is:

B[qX] = X × y =
3
2

(a + bN f + cN2
f ) = Operator matching = 3 n , (21)

with n an integer requiring a + bN f + cN2
f to be an even number. This extra constraints is

also easily satisfied by choosing, for example, k1 = k2 = 0 yielding B[qX] = 6 for any N f

corresponding to a di-baryon charge. One can also consider the case k2 = 1 and k1 = 0.

The condition X > 1 yields:

N f >
16
7
' 2.29 . (22)

This value is also remarkably consistent with the maximum extension predicted using

the truncated SD equation and the all-orders beta function for a value of the anomalous

dimension equal to one.

Asymptotic freedom of the newly found theory is dictated by the coefficient of the

one-loop beta function :

β0 =
11
3

(7N f − 15) −
2
3

N f , (23)

13



yielding

N f ≥
11
5

= 2.2 , Dual Asymptotic Freedom II . (24)

This value coincides with the one predicted by means of the all-orders conjectured beta

function for the lowest bound of the conformal window, in the electric variables, when

taking the anomalous dimension of the mass to be γ = 1. We recall that for any number

of colors N the all orders beta function requires the critical number of flavors to be larger

than:

NBF
f |γ=1 =

11N
3(N + 2)

. (25)

For N=3 the two expressions yield 2.2. This value is even closer to the one obtained

imposing the condition X > 1 which is circa 2.29.

Interestingly the two class of solutions suggest that the electric theory is not conformal

but walking. We observe that the predictions from the dual theory does not depend on

the all orders beta function. However it is remarkable that the predictions are very close

to the ones predicted using the beta function ansatz.

An interesting property of this solution is that one can saturate the anomaly matching

conditions directly via the presumed magnetic quarks. It is, in fact, sufficient to set

k1 = k2 = 0 to see this. If we apply the all-order beta function we can investigate when

chiral symmetry is restored. Setting γ = 1 for the dual theory one finds that N f should be

less than or equal to about 2.29 which is lower than the value for which the electric theory

looses asymptotic freedom. This seems to indicate that more matter is needed and the

solution k1 = k2 = 0 is not an exact dual according to the all orders beta function. However

one can investigate the nonperturbative dynamics of this theory via first principle lattice

simulations and test the duality independently.

B. Third solution: SU(αN f (N + 2) − βN + δ) and two-index symmetric magnetic quarks.

We have investigated also the case in which the magnetic quarks are in the same

two-index representation of the gauge group X = αN f (N + 2) − βN + δ. In this case the

first coefficient of both anomalies must be modified according to X → X(X + 1)/2 to

take into account of the change of the representation of the dual quarks. We have found
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several solutions for different integer values of the coefficients α, β and δ. We present two

examples here for N = 3:

1. α = 2, β = 5 and δ = 0

X = 10N f − 15 , `A = 0 , `DA = k1 = −`BA ,

`S = −2 + 2k1 + 5k2 , `DS = 4 + 4k1 + 9k2 = −`BS ,

`C = 0 , y = 3
a + bN f + cN2

f

10(2N f − 3)(5N f − 7)
.

(26)

with k1 and k2 integer numbers and

a = 16 − 12k1 − 30k2 , b = 22 + 2k2 − k1 , c = 6 + 3k1 + 4k2 . (27)

The one-loop coefficient of the beta function is:

β0 =
11
3

X −
2
3

N f (X + 2) . (28)

Asymptotic freedom requires the previous coefficient to be positive which means:

1.58 ≤ N f ≤ 5.22, Dual asymptotic freedom condition . (29)

The lower bound is now close to the value of the critical number of flavors corresponding

to the maximum extension (γ = 2) value where the all orders beta function requires the

electric theory to start developing an IRFP. This time the condition X > 1 yields a weaker

constraint, i.e. N f > 1.5, with respect to the asymptotic freedom constraint on the lowest

value for N f . The trend is different with respect to the case in which we considered

magnetic quarks transforming according to the fundamental representation of the SU(X)

gauge group.
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2. α = 4, β = 11 and δ = 2

In this case the solution is:

X = 20N f − 31 , `A = 0 , `DA = k1 = −`BA ,

`S = −2 + 2k1 + 5k2 , `DS = 25 + 4k1 + 9k2 = −`BS ,

`C = 0 , y = 3
a + bN f + cN2

f

10(20N f − 31)(2N f − 3)
.

(30)

with k1 and k2 integer numbers and

a = 16 − 12k1 − 30k2 , b = 85 − k1 + 2k2 , c = 27 + 3k1 + 4k2 . (31)

Asymptotic freedom requires the previous coefficient to be positive which means:

1.59 ≤ N f ≤ 5.36, Dual asymptotic freedom condition . (32)

The lower bound is close again to the value of the critical number of flavors corresponding

to the maximum extension (γ = 2) value where the all orders beta function requires the

electric theory to start developing an IRFP. The condition X > 1 yields a constraint, i.e.

N f > 1.6 consistent with the lowest value of the asymptotic freedom window. Note that

we have arranged X in such a way that for X ≥ 2 we recover identically the all order beta

function bound for γ = 2.

We were able to find a solution for different values of α, in particular for α = 3 the

condition X ≥ 2 is consistent with the bound of the all orders beta function but for γ = 1

and asymptotic freedom requires 2.15 < N f < 5.28.

For duals with magnetic quarks in the two index symmetric representation we find

more difficult to have a reasonable interpretation of the magnetic baryons, i.e. possessing

B[qX] = 3n. Our findings suggest that duals with fermions in the fundamental represen-

tation are, actually, privileged.
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3. Summary of this section

We have found solutions matching the predictions coming from the conjectured all

orders beta function also in the case of theories with fermions in the two-index symmetric

representation of the SU(3) gauge group. Moreover if one uses dual quarks in the fun-

damental representation the typical size of the allowed conformal window is consistent

with the γ = 1 condition. On the other hand, when using dual quarks in the two-index

symmetric representation the size of the conformal window compatible with ’t Hooft

anomaly matching can extend to match the one obtained using γ = 2 in the all orders

beta function. However the latter case is disfavored by the operator matching conditions

given that the UV(1) charge of magnetic baryons is typically not an integer number of

ordinary baryons.

IV. MINIMAL CONFORMAL THEORIES: SU(N) WITH ADJOINT WEYL MATTER

We considered till now only a fixed number of colors since the spectrum of possible

composite fermions increases when increasing the number of colors. We turn our attention

now to another class of two-index theories for which the dependence on the number of

colors, spectrum-wise, is trivial. These are theories with a generic number of Weyl

fermions transforming according to the adjoint representation of the underlying SU(N)

gauge group. The associated quantum flavor group is simply SU(N f ). We indicate with

λi
α;a the two component left spinor where α = 1, 2 is the spin index, a = 1, ...,N2

− 1 is the

color index while i = 1, ...,N f represents the flavor. We summarize the transformation

properties in the following table:

Fields [SU(N)] SU(N f )

λ Adj

Gµ Adj 1

TABLE III: Field content of an SU(N) gauge theory with quantum global symmetry SU(N f ).

The global anomalies are associated to the triangle diagrams featuring at the vertices

17



three SU(N f ) generators. We indicate these anomalies for short with:

SU(N f )3 . (33)

For a vector like theory there are no further global anomalies. The cubic anomaly factor,

for fermions in the fundamental representation, is one leading to

SU(N f )3
∝ N2

− 1 . (34)

We seek solutions of the anomaly matching conditions for a possible dual gauge

theory SO(X) featuring magnetic Weyl quarks q transforming according to the vector

representation of the gauge group. The global symmetry group is then SU(N f ). We

also add gauge singlet fields built out of the electric quarks λ. The dual spectrum is

summarized in table IV. The gauge singlet state Λ is nothing but the gauge singlet built

Fields [SO(X)] SU(N f ) # of copies

q 1

Λ 1 `Λ

TABLE IV: Massless spectrum of magnetic quarks and baryons and their transformation properties

under the global symmetry group. The last column represents the multiplicity of each state and

each state is a Weyl fermion.

out of the gauge field strength and λ. We can have several copies of Λ.

Having defined the possible massless matter content of the gauge theory dual we

compute the relevant anomaly:

SU(N f )3
∝ X + `Λ = N2

− 1 . (35)

The right-hand side is the corresponding value of the anomaly for the electric theory. For

any X we have a solution which is:

`Λ = N2
− 1 − X . (36)

The one-loop coefficient of the beta function is:

β0 =
11
3

(X − 2) −
2
3

N f . (37)
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We find that for X = N f − 1 asymptotical freedom is lost for:

N f ≥
11
3
, Dual asymptotic freedom and N f Weyl fermions , (38)

in total agreement with the lower bound of the conformal window obtained by imposing

γ = 1 in the all orders beta function. In fact N f must be larger or equal than four for the

dual SO(N f − 1) theory to be a non-abelian gauge theory. Since N f counts the number of

Weyl fermions we have found that the number of Dirac flavors above which we expect any

SU(N) gauge theory to develop an infrared fixed point must be equal or larger than two.

This is an extremely interesting result since it agrees with earlier analytical expectations

obtained using several different analytic methods as well as recent first principle lattice

results [25, 26, 29, 30, 31, 32].

We have also explored the possibility to introduce dual fermions in the adjoint repre-

sentation of a SU dual gauge group. Although solutions to the anomaly conditions are

straightforward we find that the solution above is the one which better fits the numerical

and analytical results.

V. CONCLUSION

We provided the first investigation of the conformal window of nonsuperymmetric

gauge theories with sole fermionic matter transforming according to higher dimensional

representation of the underlying gauge group. We argued that, if the duals exist, they

are gauge theories with fermions transforming according to the defining representation

of the dual gauge group. The resulting conformal windows match the one stemming

from the all-orders beta function results when taking the anomalous dimension of the

fermion mass to be unity. In particular our results for the adjoint representation indicate

that for two Dirac flavors any SU(N) gauge theory should enter the conformal window.

These results are in excellent agreement with numerical and previous analytical results

[7, 8, 9, 15, 21]. The mapping of higher dimensional representations into duals with

fermions in the fundamental representation can be the source of the observed universality

of the size of the various phase diagrams for different representations noted in [45].
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